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Abstract

Complete and pre-trained models are readily available
for download for object detection and can perform well
on datasets containing everyday images. Domain adap-
tation is used to transfer models to more specific datasets
with characteristics not present in pre-training. We pro-
pose the novel adaptation setting of pedestrian detection
in fisheye images, where target samples are scarce but an-
notated. Our setting provides interesting new challenges
for adaptation due to global perspective changes and ge-
ometric distortions not found in existing adaptation tasks.
To this end, we introduce loss coupling for unsupervised
adversarial adaptation and boost prototype-based adapta-
tion with ground-truth information. We additionally pro-
pose a novel supervised adaptation head for features in the
bounding box regressor. Our method leads to more stable
adversarial training and outperforms supervised and unsu-
pervised baselines. Our method requires half the amount
of training samples for small datasets to achieve the same
performance as supervised fine-tuning.

1. Introduction

Object detection is a well-studied field of research, and
many recent machine learning models achieve excellent ac-
curacy through the models’ capacity to learn from large
amounts of labeled data. However, in more specialized do-
mains, the type of data encountered can differ significantly
from existing large training datasets.

An essential and challenging domain of this nature is
the footage of omnidirectional cameras, called fisheye im-
ages, which is common in surveillance and security applica-
tions [3—0]. Fisheye cameras are widely used since they of-
fer an ultra-wide-angle field of view with a single sensor and
are thus cost-effective in covering large areas. Large fisheye
datasets, e.g. for person detection, are unavailable, as data
protection laws and security concerns make it challenging to
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Figure 1. The proposed adaptation setting featuring a small, anno-
tated target dataset. Existing domain-adaptive object detection set-
tings instead use large unannotated datasets. Our setting extends
the usual domain gap consisting of pixel-level color or bright-
ness changes (e.g. through added fog [1]) or class-level appearance
changes (e.g. in clip art images [2]) by global distortions, arbitrary
object rotations, and a changed viewpoint.

collect large amounts of data, especially for public datasets.
Fortunately, large amounts of annotated pedestrian imagery
recorded by conventional consumer cameras exist. Knowl-
edge from these images can be transferred across the do-
main gap to the fisheye setting by suitable domain adapta-
tion methods.

Similar to other domain adaptation tasks, our target do-
main differs from the source domain due to scene differ-
ences and changes in the appearance of classes. However,
note that the domain gap is further widened by the unique
camera geometry, which results in the distortion and rota-
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tion of objects, as shown in Figure 1. These properties also
render the synthesis of artificial training samples by visual
adaptation of source domain samples similar to Arruda et
al. [7] or Lee et al. [8] infeasible, making the small number
of training images an even bigger challenge.

However, the smaller amount of data makes it feasible to
annotate all images resulting in a different domain adapta-
tion setting rarely considered in prior works: few-shot su-
pervised domain adaptation [9]. We propose a novel ap-
proach for this setting with fisheye images as the target do-
main. Specifically, our contributions can be summarized as
follows.

* We introduce a novel and challenging domain adapta-
tion task featuring global distortions and perspective
changes. We publish this setting, including our dataset
partitioning and code', to encourage further research
on this domain.

* We propose a novel loss coupling scheme for adver-
sarial adaptation that provides a more stable training
process and improves adaptation results.

* To incorporate ground-truth information in the adap-
tation mechanism, we propose two novel supervised
prototype-based adaptation heads for fine-grained
adaptation of classification and bounding box regres-
sion.

e We thoroughly analyze the effect of dataset size on
model performance resulting in new insights for re-
searchers and practitioners. To the best of our knowl-
edge, the effect of training set size in domain-adaptive
object detection has not yet been analyzed to this ex-
tent.

Our experiments show that the proposed method requires
2.1 times fewer training samples to perform on par with su-
pervised fine-tuning training.

2. Related work

Object detection and domain adaptation are well-
established fields with a broad range of literature. This sec-
tion summarizes existing research in both domains focusing
on fisheye pedestrian detection and few-shot domain adap-
tive object detection.

Object detection. The two main branches of development
for object detection in the past decade are single-stage archi-
tectures [10—13] and two-stage architectures [14—16]. The
former branch predicts detections in a single pass, resulting
in a simpler architecture. Recently, anchor-free approaches
for one-stage architectures were proposed by Tian et al. [17]

lhttps://qithub.com/ThaddaeusWiedemer/FisheyeSPA

and Kong et al. [18] to overcome the need for choosing
suitable anchor box sizes. Two-stage architectures uses a
refinement stage to predict classes (if needed) and refine
bounding boxes yielding more accurate predictions. Novel
methods like DETR [19] refrain from using a pixel-based
prediction approach. Instead, they use a transformer archi-
tecture to directly predict a list of objects rendering the need
for post-processing steps superfluous.

Multiple adjustments have been proposed to improve
detection performance on fisheye images. The majority
of works use a pre-trained detector and apply fine-tuning
and additional data augmentation to adjust to fisheye im-
ages [4, ]. In this regard, object detectors have been
extended to incorporate depth information [4, 22], location-
specific refinement of bounding boxes [22, 23], and random
rotation augmentation [23]. Another line of works focuses
on transforming image patches [24-29] or extracted im-
ages features [0, 30] to reduce distortions. On the architec-
tural side, convolutional neural networks (CNNs) have been
adapted to work on spherical data by distributing the con-
volution sample locations on a sphere and using a rotation-
invariant convolution operation [31-34]. An important de-
sign decision in many works is the modality of the output.
While most object detection approaches use axis-aligned
rectangular bounding boxes, the use of shapes similar to
circular sectors [21], bounding ellipses [22], and oriented
bounding boxes [23, 28, 29] have been investigated to fit the
shape of people in fisheye images more accurately.

Domain adaptation. Following Wang et al. [35] and
Li et al. [36], methods for domain adaptation can be sorted
into three categories. All approaches aim to align inter-
mediate features across both domains. (1) Discrepancy-
based methods achieve alignment through optimizing an
explicit loss function. Typical criteria for the optimiza-
tion are classification [37, 38] (fine-tuning can be thought
of as a special case of this), population statistics [39], archi-
tectural considerations [40], and geometric properties [41].
(2) Adversarial-based approaches align features by train-
ing an adversarial domain discriminator and encouraging
domain-confusion [42]. (3) Reconstruction-based meth-
ods use autoenconders [43] or cyclic generative adversarial
networks (GANS) [44] to generate synthetic training sam-
ples [7, 8,45-47].

While most approaches were initially proposed for clas-
sification tasks, many have been adapted for domain-
adaptive object detection. The adapted approaches in-

clude disrepancy-based methods [48—53] and adversarial-
based methods [54-60] as well as reconstruction-based ap-
proaches [7, 8,46,47,61,62] using CycleGAN [44] or Aug-

GAN [63]. Multiple authors investigated the combination
of adversarial-based approaches with either discrepancy-
based [2,64-68] or reconstruction-based methods [69].

4143



annotation [J ignored

=
= ==

source

TARGET

SOURCE

=

o e
—
D:l ]
[ foreground
[0 background

target

Oa>o [Ja<o
=
[ EJ@
| -
m

LT
—1

source

Yy ‘m'fi 1oy 1eada

| target

Figure 2. We apply domain adaptation to both network stages: Adversarial adaptation (ADV) on global image features and supervised
prototype-based adaptation (SPA) on region-specific features. For ADV, we propose to couple the domain discriminator’s influence to
its loss, resulting in higher precision and more stable training. In SPA, we compute each region’s overlap with annotations to build
foreground/background prototypes to align classification features (SPA-class). In the bounding box regressor, we form prototypes from
regions with positive/negative regression targets (SPA-bbox, depicted is the assignment of regions to prototypes based on the offset Ax of
their center points). In both cases, regions with an overlap smaller than some threshold are ignored (grey). Prototypes of the same category
are aligned across domains, while different categories are kept distinguishable. Lrpn, Leis, Lioc are the training losses of Faster R-CNN.

Most previous works investigate an unsupervised domain
adaptation scenario that lacks class and bounding box labels
in the target domain. Few-shot supervised domain adapta-
tion with a small number of annotated images in the target
domain, as explored in this work, has only been rarely in-
vestigated [9]. This scenario clearly differs from traditional
few-shot object detection which detects novel classes in the
same domain [70-72].

Dissociation. To the best of our knowledge, domain adap-
tive object detection targeting fisheye images with its spe-
cific challenges introduced in Section | has not yet been
investigated, neither in an unsupervised nor in a few-shot
supervised scenario. Methodologically, the most related ap-
proaches are Wang et al. [9] and Xu et al. [51]. Compared to
Xu et al. [51], we introduce the exploitation of ground-truth
information in multiple ways and a novel adaptation head
called SPA-bbox for bounding box regression. Moreover,
we apply image-level adversarial-based adaptation. Com-
pared to Wang et al. [9], we introduce a novel loss coupling
for adversarial adaptation and apply our novel discrepancy-
based method called supervised prototype alignment (SPA)
for instance-level adaptation. Compared to all prior works
on fisheye pedestrian detection, our method is completely
domain agnostic. It does not rely on available camera pa-
rameters or assumptions on the exact nature of distortions.

3. Method

We propose a novel approach to include supervision in
domain adaptation for few-shot settings. The complete
method is depicted in Figure 2. Faster R-CNN [14] serves
as the base detection architecture for all experiments since
the two-stage architecture facilitates alignment of features
in all parts of the detection pipeline. In contrast to unsuper-
vised adaptation methods, we fine-tune the detector on the
target domain but ignore training losses on the source do-
main. As in previous works [9], adaptation is performed on
global, image-level features in the first stage of the network
and local, region-specific, instance-level features in the sec-
ond stage.

Image-level features are aligned using unsupervised ad-
versarial domain adaptation [42] which we modify for im-
proved stability on small datasets in Section 3.1. We pro-
pose supervised prototype alignment (SPA) for instance-
level alignment of features corresponding to regions of
interest (Rols) in Section 3.2. Prototypes are generated
and aligned by class (SPA-class) and bounding box offsets
(SPA-bbox).

3.1. Image-level adversarial adaptation

We first align extracted global image features between
domains through a domain discriminator on feature patches
similar to Wang et al. [9] and Zhu et al. [44]. Aligning small
patches reduces the number of parameters in the discrimina-
tor and guarantees a fixed-size input independent of feature
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map size. In contrast to Wang et al. [9], we simplify patch
extraction by choosing a fixed spatial size sxs and sample
n random patch locations

(x17yz) ~ (uuuuh) (1)

for each image in the training batch, where U denotes a
uniform distribution on [%, k— %] . Using fixed dimensions
and a single square aspect ratio has the advantage that no
subsequent pooling is required to process patches, preserv-
ing high-frequency information. Patches are extracted from
the feature map in the feature pyramid network (FPN) [73]
with the highest spatial resolution, referred to as neck 0.
This feature map provides a good trade-off between rich se-
mantic information and high spatial resolution and is highly
interconnected to other FPN features. We experiment with
aligning other FPN or backbone features—or even multiple
global image features simultaneously—but find adaptation
on only neck 0 to yield the best results.

Loss coupling. Adversarial learning commonly suffers
from unstable training, which is made worse by the scarcity
of training samples. The coupling of the domain discrimina-
tor to the main network is commonly implemented accord-
ing to Ganin et al. [42] as a gradient reverse layer R(x)
where the forward pass is the identity function, and the
backward pass is defined as

oR

ox
The additional factor A € [0,1] can be thought of
as the discriminator’s influence on the main network.
Ganin et al. [42] increase the influence monotonously over
all N training iterations using

Y )

2

1+ exp (f’y . ﬁ)
with v usually set to 10. As a result, the adversarial loss
does not affect the main network until the discriminator is
initialized. However, this schedule is ineffective in few-shot
settings. It implies a monotonous increase in the quality
of the discriminator throughout training, which cannot be
guaranteed with limited update steps per epoch. Instead of
using a fixed schedule, we propose to couple the influence
in each iteration ¢ to the discriminator’s quality, using the
domain classification loss as a proxy. Coupling the influ-
ence to the loss reduces the impact on the main network
when discrimination performance is poor, leading to more
stable training. The coupling is implemented as

NG, ~1 3)

A(i) = exp (= Lq(i — 1)) @)

with an exponential function mapping the discriminator’s
negative log-likelihood loss L4(%) € [0, 00) to the influence

factor A € (0,1]. Our coupling scheme also simplifies ad-
versarial adaptation by removing the hyperparameter v in
the original formulation.

3.2. Instance-level prototype-based adaptation

Features after Rol pooling in the second stage of Faster
R-CNN are aligned using prototypes and a contrastive
loss [74]. A prototype is the average feature representation
of some category, obtained by clustering and aggregating
features according to that category.

Unsupervised alignment. We first implement Graph-based
Prototype Alignment (GPA) based on the code provided by
Xu et al. [51]. Input features are embedded into a lower-
dimensional space using an FC layer. Region coordinates
are used to compute an adjacency matrix

Aij = IOU(’I"Z', ’I"j) (5)
of all proposed regions ;,7;. Features F' = (fo,..., fr)
and class predictions p(*) = (pék), ...,p%c)> for all R re-

gions are then aggregated into instance prototypes

F=AF and (6)
p = ap™ ™)

which can be thought of as the average feature of each ob-
ject instance in the image. The aggregation is necessary
since one object might be partly represented in several dif-
ferent regions. The class prototypes

N (k) T
c(k‘) — Zi:l b; ) Fl (8)

DAY
aggregate instance prototypes over all [N images in the
batch for all & classes. In this formulation, regions are im-
plicitly assigned to prototypes based on the model’s classifi-
cation of each region. Therefore, the actual class labels are
not needed.

Finally, a contrastive loss L. = Linga + Lineer With an
intra-class component and an inter-class component as pro-
posed by Hadsell et al. [74] is used to align the prototypes.
The intra-class loss can in principle be implemented as any
D-dimensional distance metric d. We follow Xu et al. [51]
and use the mean-squared distance, resulting in

©_Ff o

e = (P, 57) = L 5

The inter-class loss

Linter = (M> 2 . (max {07m — \/g})2 (10)

m
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encourages the model to increase the distance between
classes up to a margin parameter m = 1. Minimizing the
loss pair aligns prototypes of the same class across both do-
mains, keeping classes across domains and within each do-
main distinguishable.

Supervised alignment by class. The implicit assignment
of regions to classes can be made explicit when class labels
are available. To this end, we propose Supervised Proto-
type Alignment (SPA). Regions 7; overlapping more than
some threshold ¢¢ with any ground truth are considered
foreground samples; regions overlapping less than some
threshold ¢; with all ground truths are considered back-
ground samples. A region’s maximum overlap

a; = max{IoU(r;, g;)} (11)
j

with any ground-truth instance g; is used to calculate the
weights

o = max{a; —t;,0} +t; and (12)

i =

al? =1 — min{a; — t,0} + t, (13)
of features belonging to both classes. The extension to more
than two classes is trivial but not needed for the setting of
this work. The class prototypes

N (k)
(k) _ >ia F .
c\" = with k€ {f,b} (14)
= af
aggregate all region proposals over /N images and can be
aligned with the contrastive intra-class and inter-class loss
pair, just as in GPA.

Supervised alignment by bounding box offset. So far,
prototypes are only generated and aligned for different
classes. This intuitively improves the classification task of
object detection but does not directly benefit the localization
task. If features were perfectly aligned by class—and only
by class—regression of different bounding box offsets Ax,
Ay, Aw, Ah for objects of the same class would be im-
possible. Xu et al. [51] use prototype alignment in a shared
head of the second stage, leaving only a single FC layer
to regress bounding box dimensions from class-aligned fea-
tures. On the shared features, the choice is between improv-
ing classification or localization accuracy. It makes sense to
focus on classification since completely undetected objects
(objects predicted to belong to the background) are worse
than slightly mislocalized ones. But the contrastive loss pair
from equations 9 and 10 has no limitation to align proto-
types only by class. Therefore, we propose to align features
separately in the classification head and bounding box re-
gressor based on prototypes useful for each task.

Our proposed SPA-bbox follows the same idea as SPA-
class introduced above. Regions are assigned to the ground
truth with which they overlap the most. Only regions with
an IoU greater than a threshold ¢ are considered. Instead of
assigning regions to foreground prototypes and background
prototypes, their offsets along each bounding box offset di-
mension are computed. For each dimension d, features with
a positive or negative offset Ad are aggregated into offset
prototypes

N (k) g
plh) = % al™ € {01}, k € {p,n}. (15)
> a;
The resulting four pairs of positive/negative prototypes
along different offset dimensions are not mutually exclusive
(e.g. Az < 0 and Ay > 0 can be valid for the same Rol).
Therefore prototypes along different dimensions should not
be separated using the contrastive inter-category loss. In-
stead, an individual contrastive loss is defined for each di-
mension. This is similar to using four separate SPA-bbox
heads, each for another offset dimension. The only differ-
ence is that all prototypes are generated from the same fea-
ture embeddings (the same initial FC layer is used for all
dimensions). Each loss pair’s influence is reduced by a fac-
tor of 0.25.

4. Experiments

Datasets. We use PIROPO [75] and Mirror Worlds [76]
as target datasets due to their large size compared to other
fisheye datasets. Both datasets contain indoor recordings of
people sitting, walking, standing, and interacting in multi-
ple rooms. Labels in the form of axis-aligned rectangular
bounding boxes are available for a small number of train-
ing frames (2357 and 819) and test frames (357 and 481)
thanks to Tamura et al. [23]. Available oriented rectangu-
lar bounding boxes are not used in our setting as rotation
information provides little benefit to surveillance settings
and can be inferred from an object’s location. To evalu-
ate the relationship between number of training images and
model performance, random subsets of sizes {1b,2b, 5b}
with b € {1,10,100,1000} are generated from both train-
ing sets (sampled evenly across cameras and rooms). Re-
sults for each size are averaged over the same three ran-
dom instances a, b, c for each size. A custom subset of
COCO 2017 [77] called COCO-person and containing 64k
images where only pedestrians are annotated is used as the
source domain.

Baselines. We compare our method against four baselines:
(1) The model trained on source data only without addi-
tional fine-tuning. (2) Fine-tuned model without additional
adaptation. (3) The model trained only with patch-based
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Figure 3. Results of our combined model compared against the
fine-tuning baseline, unsupervised adversarial adaptation (ADV),
and unsupervised prototype-based adaptation (GPA) (top row).
Both unsupervised methods achieve a better accuracy than a model
solely pre-trained on COCO, but are outperformed by fine-tuning
with even a single image. Our supervised domain adaptation
boosts fine-tuning performance across nearly all dataset sizes. We
also compare our final model to its components (bottom row). Su-
pervised prototype alignment (SPA; including SPA-class and SPA-
bbox) improves performances on small dataset sizes, while ad-
versarial adaptation works better on larger ones. The combined
method performs best on datasets with less than 100 images.

unsupervised adversarial adaptation (ADV). This base-
line still uses our proposed loss-coupling scheme. (4) The
model trained only with unsupervised prototype-based
adaptation. This corresponds closely to GPA [51] but uses
our modified training setting, different loss weights, and a
split R-CNN head. We cannot compare directly to the su-
pervised few-shot approach by Wang et al. [9] due to the
lack of code and the description being insufficient for reim-
plementation.

Implementation. = The method is built on the open
source frameworks MMDetection 2.12.0 [78] and
MMCYV 1.3.6 [79] which also provide a pre-trained version
of Faster R-CNN [14] (36 epochs on COCO [77] and 12
epochs on COCO-person). We modify the model to use
separate heads for classification and bounding box regres-
sion by duplicating the previously shared layers. Prototype
alignment is based on the code provided by Xu et al. [51].
To stabilize training, we re-balance all intra-class and inter-
class loss terms with a factor of 10 and 0.1, respectively. We
empirically determined that setting the SPA-class thresholds
ty and t to 0.75 and 0.25 works well in practice, but the
exact values do not have a large impact on performance.

Number of training images

Method 1 10 100

ADV 0.62440014  0.63410027  0.70740.038
GPA 0.633.0055  0.681s0013  0.70340038
fine-tuning  0.76019038 0.85040018 0.920+0008
FT+ADV  0.762.0005 0.861s0017  0.915.0000
FT + SPA 0.789.0024 0.861.9018 0.929.9 004
combined 0.785i0,()02 0.871i0,031 0-92310.001

Table 1. AP@50 on PIROPO of methods from Figure 3 for se-
lected dataset sizes with 95 % confidence intervals. Exact values
for all datapoints can be found in the supplementary materials.

Adversarial domain discriminators are implemented with 3
FC layers (zx — 128 — 32 — 2) and process n = 32
patches of size 35x35 per image. An evaluation of hyper-
parameters is included in the supplementary material. For
more implementation details, please refer to our published
code.

Training. As is usual for few-shot settings [9, 80, 81], the
learning rate is fixed to 0.001 and warmup iterations are re-
moved. We use SGD with a momentum of 0.9 and a weight
decay of 0.0001. The training uses a total batch size of 16 on
4 NVIDIA GeForce GTX 1080Ti GPUs. For training sets
with less than 16 or 4 images, the batch size and the num-
ber of GPUs are decreased accordingly. Images on both do-
mains are resized to 800 x 800 pixels and normalized. Ran-
dom rotation was tested and found to decrease performance,
so only random horizontal flips with probability 0.5 are used
for data augmentation. Models are trained with early stop-
ping for 40 epochs, results are reported for the checkpoint
achieving the highest AP@50 on the test set.

Metrics. We measure performance as COCO-style average
precision (mAP, AP@75, AP@50) and log-average miss-
rate (LAMR), which is more common in security-related
settings. Note that mAP, AP@75, and AP@50 increase
with improved detection performance, while LAMR de-
creases. We omit some of these metrics in diagrams and
only show the mean over three model instances for visual
clarity but report the full data with confidence intervals in
the supplementary material. The three model instances are
trained on different subsets of the dataset to compensate for
randomness due to sampling. We quantify improvements
over the baseline not only along the y-axis (as increase in
percentage points) but also along the x-axis as the aver-
age distance between performance curves. We express this
quantity as a factor that indicates how much larger the train-
ing set would have to be for the baseline to reach the same
performance. Details on the derivation of this value can be
found in the supplementary material.

4147



method trained on
e OUr'S —— same dataset
—— fine-tuning - = different dataset
----- pre-trained
mAP AP@50
e 08 “\
Ju— —
g /f"x__z’ N
o 7
—
0.6 [rrerfrereq e e
1 2 5 10 20 50 100
12}
ke,
S
=
S
<

12 5 10 20 50 100 1 2 5 10 20 50 100
training images training images

Figure 4. Performance of combined adversarial adaptation and
SPA (blue) compared to a fine-tuned model on PIROPO (top
row) and Mirror Worlds (bottom row). The performance of mod-
els trained and tested on the same dataset is shown as a solid
line, while models transferred between datasets are indicated with
dashed lines. The performance of the pre-trained model without
additional training is shown dotted in gray.

The performance drop of transferred models clearly shows a re-
maining domain gap even between fisheye datasets. Adaptation in
training can slightly increase performance across datasets, indicat-
ing that adaptation helps with regularization during training.

4.1. Quantitative results

Results on PIROPO. The top row of Figure 3 shows the
performance of our final model, including all improvements
evaluated on PIROPO [75] compared to a fine-tuning base-
line, unsupervised domain adaptation, and a model solely
pre-trained on COCO [77]. Our model outperforms the fine-
tuning baseline across almost all evaluated dataset sizes.
Only for the largest datasets with 100 images, the perfor-
mances are tied. For AP@50, the performance boost av-
erages 1.9 percentage points across all data set sizes. The
baseline requires 2.1 as many training samples on average
to yield the same performance. These results demonstrate
that adaptation methods can compensate for the lack of data
samples in small datasets, even when the training uses an-
notations.

While achieving better results than the model pre-trained
solely on COCO [77], both baselines using unsupervised
domain adaptation are less accurate than the fine-tuning
baseline. The fact that fine-tuning on even a single anno-
tated image results in higher precision than unsupervised
domain adaptation highlights the importance of research re-
garding few-shot supervised domain adaptation scenarios.

Our results also indicate that unsupervised domain adapta-
tion shows little additional benefit for more than 50 images.

The bottom row of Figure 3 compares the combined
method to both our enhanced adaptation methods sep-
arately. The combination of both adaptation methods
achieves the best overall results on both metrics, while ad-
versarial adaptation and SPA perform slightly better on in-
dividual dataset sizes. Exact values for all methods in Fig-
ure 3 for selected sizes are listed in Table 1 including 95 %
confidence intervals.

Cross-dataset results. We also evaluate our model on Mir-
ror Worlds [76] (see Figure 4). Additionally, we test perfor-
mance across datasets by training on one dataset and testing
on the other. For training and testing on Mirror Worlds,
our method outperforms the fine-tuning baseline. Results
are only worse for a dataset size of 2 images. However,
the baseline also exhibits a performance drop here, indicat-
ing that the randomly sampled training samples for this size
are likely of low quality. For Mirror Worlds—PIROPO, our
method outperforms the baseline on 5 to 50 training sam-
ples. For PIROPO— Mirror Worlds, the range is 1 to 20 im-
ages. All methods outperform the model solely pre-trained
on COCO [77]. The results indicate that the domain gap
consists of two parts. The first part contains the general
characteristics of fisheye images. The model initially learns
to reduce this gap, leading to increased performance on a
fisheye dataset it has not been trained on. The second part
contains the properties specific to a particular dataset, like
the layout of rooms and the position of each camera. With
larger datasets and more training iterations, the model over-
fits on the training domain at the cost of poorer generaliza-
tion to other domains. Since our model adapts more easily
to a particular domain, it overfits earlier than the fine-tuning
baseline. The model trained on PIROPO overfits before the
one trained on Mirror Worlds since PIROPO contains fewer
unique cameras (4 vs. 7) and fewer unique people (2 vs. 5).

4.2. Ablation studies

We validate the effectiveness of our method through ab-
lation studies described in this section. Due to high com-
putational resource requirements for experiments across all
dataset sizes with multiple subsets per size, our ablation
studies are performed on a single subset with 20 images.

Supervision of Prototype Alignment. In Table 2, the
results of different supervision types in the instance-level
alignment with GPA as described in Section 3.2 are shown.
While no supervision shows the overall worst precision, su-
pervising the alignment of classes proves to have the largest
impact on AP@50. Supervising the bounding box regres-
sion alignment benefits mostly mAP and AP@75, which
target a high localization accuracy. As expected, the super-
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Align GT mAP+ AP@75+ AP@50r LAMR,

class X 0574 0.643 0.886 0.153
class v 0.579 0.642 0.901 0.138
Az v/ 0.589 0.662 0.900 0.137
YAd v 0591 0.666 0.899 0.139

Table 2. Performance on PIROPO-20a for different adaptation
methods in the bounding box head. The combined alignment of
all bounding box dimensions yields the best overall performance,
especially on mAP and AP@75 which put greater emphasis on
correct localization. GT denotes whether ground-truth informa-
tion was used.

A mAP+ AP@75+ AP@50r LAMR,
Constant 0.521  0.573 0.842 0.217
Increasing 0.536  0.590 0.861 0.188

Coupled (ours) 0.563  0.627 0.895 0.148

Table 3. Performance for different schedules of the influence fac-
tor \ in adversarial adaptation on PIROPO-20a. Coupling the in-
fluence to the discriminator’s loss boosts overall performance.

vision of the bounding box regressor is most helpful when
applied to each regression dimension.

Loss coupling. The impact of loss coupling for adver-
sarial training on the precision of the model is shown
in Table 3. We compare performance to training with a
monotonously increasing influence factor A as proposed by
Ganin et al. [42] and a fixed influence factor A = 1. Figure 5
shows the AP@50 over the course of 40 training epochs for
all three A-schedules. Training with a constant or increas-
ing influence factor suffers from drastic performance drops,
which require several epochs to recuperate from. This leads
to decreased overall performance and is a problem in few-
shot settings, where the small number of samples should
be fully utilized and cannot be held back for validation and
early-stopping. Our method leads to a more stable learning
process with decreased performance drops and boosts over-
all performance. This is particularly valuable in real-world
training settings without early-stopping, where stable train-
ing guarantees good performance independent of the exact
number of training epochs.

5. Conclusion

This work presents the novel domain adaptation setting
of pedestrian detection in fisheye images. The setting poses
significantly different challenges than existing adaptation
tasks due to geometric distortions, perspective changes, and
the scarcity of training samples. We demonstrate that the
combination of supervised domain adaptation with fine-
tuning is effective in meeting these challenges. Our main
contributions are stabilizing adversarial adaptation through

= coupled (ours)
—— increasing
== fixed

AP@50

epoch

Figure 5. AP@50 for different schedules of the influence factor A
in adversarial adaptation on PIROPO-20a. Coupling the discrimi-
nator’s influence to its loss leads to more stable training and better
performance.

loss coupling and incorporating ground-truth information in
prototype-based alignment. We align features for classifica-
tion and localization by their respective regression targets,
which leads to more fine-grained adaptation. On average,
our method reduces the number of training samples needed
to reach competitive performance by a factor of two com-
pared to using fine-tuning. In real-world applications, this
paves the way for quickly adapting cameras to their specific
surroundings after installation.

Potential societal impact. Fisheye images are predomi-
nantly used in surveillance settings. While all methods in
this area can be misused, our method does not extend to
biometric data and does not facilitate the detection of par-
ticular groups of people. We think that the benefit to legiti-
mate security applications outweighs the potential negative
impact.

Limitations and future work. While experiments were
only conducted on our newly proposed setting, all proposed
methods are domain agnostic. Results should therefore gen-
eralize well to other supervised few-shot settings, including
multi-class detection tasks. Similarly, our methods were
tested only with a Faster R-CNN architecture. However,
since they do not rely on mechanisms specific to this detec-
tor, we expect them to transfer well to other two-stage archi-
tectures. Our novel loss coupling scheme might be helpful
on larger datasets as well. The proposed prototype-based
alignment for bounding box features could be modified to
use the model’s predictions instead of ground-truth infor-
mation. With this modification, it could be used for un-
supervised adaptation. Future works might validate these
expectations. Also left for future works is a deeper investi-
gation of the data-versus-supervision trade-off. In our work,
supervised adaptation is beneficial in addition to fine-tuning
only on small datasets < 100 images. In this context, we
also want to encourage the community to generally be more
thorough in investigating the influence of dataset size on
domain adaptation to give practitioners clear guidelines of
how many samples are needed.
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