
Faster, Lighter, Robuster: A Weakly-Supervised Crowd Analysis Enhancement
Network and A Generic Feature Extraction Framework

Shaokai Wu1, Zhaogeng Liu2, Wencheng Pei1, Jianbo Hong1, Zhanshan Li1

1Collage of Computer Science and Technology, Jilin University
2School of Artificial Intelligence, Jilin University

{wusk2419, zgliu20, peiwc9919, hongjb2419}@mails.jlu.edu.cn, lizs@jlu.edu.cn

Abstract

With bounding box labels needed for training, object
detection is viewed unfavorably in terms of crowd anal-
ysis, due to the intensive labor for labeling and the un-
satisfactory performance in clutters and severe occlusions.
Another feasible method, density-based regression, despite
its proficiency in counting and only point-level labels used
for training, cannot get the location of each person, and
the time and space consumption is relatively high. In
this paper, we propose a generic feature extraction frame-
work, Adaptive Pyramid Score (APS), based on object
detection and designed specifically for extracting quan-
titative and spatial-semantic features. Moreover, as an
intuitive and feasible solution regarding crowd analysis,
we propose the weakly-supervised Confidence-Threshold-
Foresight Network (CTFNet) under our APS feature ex-
traction framework, which only needs count-level labels for
training and improves the performance of various methods
dramatically. Our system realizes the triple enhancement of
counting, localization, and detection, which is also proved
to be faster than advanced crowd analysis methods, lighter
to be transplanted to various object detection methods, and
robuster to tackle tasks of extreme scenes. Furthermore,
the weakly-supervised paradigm leverage the intensive la-
bor for labeling profoundly.

1. Introduction

Crowd analysis mainly includes crowd counting, crowd
localization, and face detection, which has always been a
heated yet challenging task in computer vision, for its close
relationship with humans and the difficulty of detecting un-
der severe occlusions and clutters [12, 21, 33]. However,
most cutting-edge methods focus on a single task such as ei-
ther counting or localization and have a high time and space
consumption together with a strong dependence on fully la-
beled data. The lack of new systems makes it hard to push

Figure 1. Illustrations for the comparison of our method with ex-
isting methods, in which the crowds are marked in Green. Bottom
right: The mainstream density-based methods fail to offer the pre-
cise locations of individuals. Top right: P2PNet cannot provide
the detection box of individuals. Directly below: The traditional
detection-based methods are unable to obtain satisfactory detec-
tion results in dense crowd scenes, with a zoom-in on their details
at the bottom left. Directly above: Our method, which predicts
the accurate counts while providing precise locations and scale in-
formation, is zoomed in on its details in the upper left corner.

forward further analysis such as crowd tracking, anomalous
activity detection, etc [15, 27].

Although object detection can give precise locations and
detection boxes of individuals, it cannot tackle the count-
ing tasks of crowded scenes and is strongly dependent on
bounding box labels, as viewed unfavorably by most rele-
vant papers such as [2,8,12,19,21,27,33]. Another feasible
solution, which is point-based, P2PNet [27], can obtain the
point locations of human heads even in extremely occluded
scenes but fails to meet the need of providing head detection
boxes and has a challenging time and space consumption.

On the other hand, current advanced crowd analysis
methods are mostly density-based [21], which perform rel-
atively satisfactorily when tackling counting tasks. They
work by summing over the predicted density maps to get
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the count of crowds and offer a heat map for visualization.
However, these methods have difficulty in offering precise
locations of individuals, and it is hard for them to obtain
superior ground truth density maps by adopting a Gaussian
kernel [16, 21] to the point annotations.

We regard locating individuals with boxes as a more fine-
grained solution than only point locations or a single count,
as getting detection boxes naturally solves the triple tasks
of counting, localization, and detection. Further, the boxes
can be used for other downstream tasks such as crowd track-
ing and face recognition. Despite the urgent need of crowd
analysis in this increasingly-crowded world, especially in
the global pandemic of Covid-19, there seem to be no meth-
ods that can gather the merits of all crowd analysis methods
while bypassing their drawbacks. That makes us wonder
how good it would be if there existed a detection system that
is faster, lighter, and robuster than all previous methods!
Motivated by this, we determine to design a novel detection
system to tackle crowd analysis.

After extensive research and experiments, we propose
a weakly-supervised enhancement system for object detec-
tion in crowd analysis, aimed at solving two crucial prob-
lems of object detection: the feature loss in high-density
crowds and the single detection means in extremely varied
scenes. To tackle these problems, we propose the Adaptive-
Pyramid-Score (APS) feature extraction framework to ex-
tract deeper features from object detectors and resolve the
feature loss problem. Then we propose the Confidence-
Threshold-Foresight Network (CTFNet) to make full use
of APS features, which needs only count-level labels for
training and greatly enhances the performance of object de-
tection in crowd analysis. The successful transplantation
on YOLO-Series [6, 24], Faster R-CNN [25], and LSC-
CNN [26] manifests the compatibility of our system. The
visualization of various methods is shown in Figure 1.

We highlight our main contributions as follows:
1. We propose a generic feature extraction framework

APS, which can extract multiple features and have strong
compatibility with various methods.

2. We propose a weakly-supervised crowd analysis sys-
tem CTFNet that can enhance various detection methods.
To the best of our knowledge, this is the first generic en-
hancement system in crowd analysis.

3. Our system has been proved to be faster than clas-
sic crowd analysis methods, lighter to be transplanted to
various methods, and robuster to tackle the analysis of all
crowd density with counting, localization, and detection.

2. Related Works

2.1. Density-Based Methods

Since they were first proposed in [16], the density-based
crowd analysis methods with CNN have been continuously

ameliorated. They have gradually become the mainstream
while achieving outstanding results [21, 32, 33]. These
methods [19, 20, 23, 28, 31] obtain the counts by summing
over the estimated density maps. To bypass labor-intensive
point-level annotations, some weakly-supervised methods
based on density maps are also proposed. However, they
fail in offering precise locations [27] and the exact sizes of
individuals. Besides, their time and space consumption is
highly dependent on the size of the input image [30].

2.2. Object Detection Methods

As one of the earliest ideas to tackle crowd analysis, ob-
ject detection provides the count of the crowd while giving
fine-grained estimation, i.e., locations of individuals along
with exact scales of heads. Besides, object detection per-
forms a dramatic detection accuracy in sparse scenarios
[5,17,22,26,39]. On the contrary, the result will go unsatis-
factory under the conditions of high occlusions and clutters.
With bounding box [27] labels needed for training, there re-
mains a drudgery regarding time and labor for labeling.

2.3. Feature Extraction Framework

Lately, some newly proposed feature extractors have ex-
tensively drawn the public’s attention. With proposals of
VIT [4], DETR [1], and other methods, the transformer,
which was first introduced into Natural Language Process-
ing (NLP) [3, 29], is gradually applied in computer vi-
sion. In the meanwhile, the multi-scale feature-extraction
method Feature Pyramid Networks (FPN) [18] benefits
the detection of smaller objects and is continuously im-
proved [14, 38, 40]. This all shows the great potential of
the new feature extraction approach.

3. Our Work

Overview: The brief architecture of our weakly-supervised
enhancement system is shown in Figure 5, consisting of
APS feature extraction framework and CTFNet.

First, multiple features are extracted by an object detec-
tor with APS Framework (Section 3.1). Then these features
are flattened and concatenated, forming the input feature of
CTFNet (Section 3.2). The internal of CTFNet is the Con-
fidence Layer, Threshold Layer, and Foresight Layer, all of
which consist of fully connected layers.

The function of C, T, F Layers is to adaptively change
the detection threshold and detection means (Section 3.3).
With this property, object detection methods perform better
in both sparse and dense crowds. The learning targets are all
generated by count-level labels, with the weak supervision
manner detailedly discussed in Section 3.2.
Notation: [ ][ ][ ] represents the Iverson bracket. ItalicItalicItalic boldboldbold
indicates the matrix. ⌊⌋ means the floor function.
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Figure 2. Illustration for the feature extraction process of Filtering Pyramid. The top row demonstrates the filtering and mapping effect
of the five-layer Filtering Pyramid. Considering that the multi-class Filtering Pyramid is a four-dimensional matrix, we decide to take
the crowd, which is single-class, as an example for visualization. Each heat map represents a filtering layer, demonstrating locations and
counts of detection boxes at different thresholds. The middle and bottom rows demonstrate the convolution, pooling, and flattening process
of the Filtering Pyramid.

3.1. APS Feature Extraction Framework

APS feature extraction framework is to extract deeper
features from object detectors, avoiding conflict with the
internal implementation of specific methods. This unique
quality enables APS Framework to be easily transplanted to
various methods.
The Filtering Pyramid

Whether it is Faster R-CNN [25], YOLO [24], or other
object detection methods, eventually the foreground objects
are detected with detection boxes and confidence scores.
Commonly, a threshold is used to filter the objects of low
confidence. However, the fixed threshold screening method
ignores the difference between images. Specifically, the
object with a low confidence score in a high foreground
density scene may be the foreground to be detected, while
a non-foreground area with few foregrounds still has the
chance to be given a high confidence score. Thus, the use
of a single threshold to identify the foregrounds within a
picture is prone to low-density false detection and high-
density missed detection. Besides, this approach ignores
the spatial-semantic information, i.e., the relative location
of each center point of the object and the foreground object
distribution in the picture. To tackle this problem, we pro-
pose the Filtering Pyramid to conduct a deeper extraction of
quantitative and spatial-semantic features.

First, we map the center points of detected foreground
objects on a rectangle grid, by their relative locations to the
original image and its confidence score. The top row of
Figure 2 demonstrates this mapping process. To be specific,
assume the count of floors in the Filtering Pyramid is 5,
then all the objects’ center points will be mapped on a grid,
according to 5 different thresholds. Notice that the higher

the threshold setting, the sparser the mapped grid, because
objects with low confidence scores are filtered.

The PyramidPyramidPyramid refers to the Filtering Pyramid, contain-
ing the number of foregrounds of each class in each location
and at every threshold. The number of boxes is n, the width
and height of the input image are w0 and h0, and the num-
ber of wide and high grids are w and h. With the box index
as x, its score and class are s[x] and c[x], the location of its
horizontal and vertical coordinates are w[x] and h[x]. We de-
note Pyramid[t][k][i][j] as the number of foregrounds in the
k-th class under the threshold of Filtering Pyramid indexed
by t, with the width and height of the grid indexed by i and
j. The formula is shown below.

Pyramid[t][k][i][j] =

n−1∑
x=0

[[[s[x] ≥ t ∧ c[x] = k ∧ ⌊w[x]/
w0

w
⌋ = i ∧ ⌊h[x]/

h0

h
⌋ = j]]]

(1)

After that, we use convolutional layers to further process
the Filtering Pyramid, with ReLU activation used after each
convolutional layer. Take the five-layer Filtering Pyramid
as an example, assuming that its grid width, height, and the
number of foreground classes are h, w, and c, so its shape
becomes 5× c×h×w. We use 64 convolutional kernels to
increase the Filtering Pyramid to 64 channels, and then per-
formed a 64 to 64 channels convolution, followed by max-
pooling. Eventually, the pyramid is scaled to 1 channel by
a convolutional kernel with 64 channels, as shown in the
middle and bottom rows of Figure 2.
BoxScore

To further extract quantitative features, the confidence
scores of all objects are taken into account. Through ex-
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tensive research, we discover that images with dense fore-
grounds tend to possess more detection boxes that have low
confidence scores and vice versa. Therefore, the scores of
foregrounds reflect the quantitative features of the whole
image to a certain extent. To improve the generalization of
extracted features, the scores should be distributed in the in-
terval [0, 1]. For a multi-class condition, the softmax func-
tion is used to make the scores of each class sum up to 1.
Note that the softmax function is not done to a single class
and makes the scores in this class averaged, instead it is
done over all classes to normalize the confidence score of
each class. This process can be simplified into the sigmoid
process when there is only one class, on which condition
the sigmoid function is used to normalize the distribution of
scores in this single class into the interval [0, 1].

The BoxScoreBoxScoreBoxScore is a matrix that comprises foreground
distribution of different confidence scores. The number of
the detection boxes and the number of classes are n and c,
respectively. For the i-th (0 ≤ i < n) box, the score of
its j-th (0 ≤ j < c) class is s[i][j]. The number of score
groups is g. The scores are distributed between 0 and 1 af-
ter softmax processing, so the score group width is 1

g . We
denote BoxScore[k][j] as the number of BoxScoreBoxScoreBoxScore in the
k-th(0 ≤ k < g) score interval and the j-th class.

BoxScore[k][j] =

n−1∑
i=0

[[[
k

g
≤ s[i][j] <

k + 1

g
]]] (2)
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Figure 3. Distribution of different scales of candidate boxes at
different confidences.

Region Proposal Network (RPN) [25] is widely used
in some object detection methods. Yet we find that more
features can be extracted from RPN to make full use of it.

The distribution of different candidate boxes is a reflec-
tion of both quantitative and spatial features since they have
different ratios and scales [25]. Specifically, the image with
dense foreground generally has small object sizes, and its
predicted candidate boxes focus on small scales. In con-
trast, a picture with sparse foreground renders the candidate
boxes to concentrate on large scales. To find more represen-
tative features, we fixedly select the top N = 4000 highest

scoring candidate boxes and compute their distribution by
groups. Suppose we have 5 scales of candidate boxes and
we use 80 confidence groups. We count the number of each
of these 5 scales of candidate boxes among the 50 anchors
in each group. The RPNAnchorRPNAnchorRPNAnchor matrix is formed by con-
catenating these groups of numbers, as shown in Figure 3.

Let s be the number of anchor scales. The number of
confidence groups is g, and the group interval is N

g . The
anchor serial number is k (0 ≤ k < N), and a[k] represents
the anchor scale. We denote RPNAnchor[i][j] as the i-th
(0 ≤ i < g) group and j-th (0 ≤ j < s) scale anchor of
RPNAnchorRPNAnchorRPNAnchor.

RPNAnchor[i][j] =

n/g×(i+1)−1∑
k=n/g×i

[[[a[k] = j]]] (3)

RPNScore

40
0

200
0

Figure 4. The spectrum under each image is the distribution of
foreground density at different confidence scores.

Different from the BoxScoreBoxScoreBoxScore mentioned before, the
confidence scores given by RPN only distinguish between
two classes, i.e., foreground and background, so the fore-
ground score is the one we need careful analysis.

We still select the top N = 4000 proposals with the high-
est scores, and the distribution of their scores is essentially
a reflection of the quantitative features. In sparse scenarios,
the number of foreground objects is likely to be less than N ,
and many objects with low scores (background objects) are
selected, so the scores are scattered. Otherwise, the scores
are centered at a high level as the foreground objects are
abundant. The visualization is in Figure 4.

For a better generalization, the scores of candidate boxes
also need to be normalized into the interval [0, 1], so the
sigmoid function is used for normalization again. The num-
ber of candidate boxes is counted according to their scores,
forming the score distribution of candidate boxes.

Let N be the number of selected candidate boxes, and
the number of groups dividing scores is g. The scores are
distributed in the interval [0, 1] after normalization, so the
group width is 1

g . The index of the current proposal is i
(0 ≤ i < N) and its score is s[i], then the score feature of
the j-th (0 ≤ j < g) group in RPNScoreRPNScoreRPNScore is:

RPNScore[j] =

N−1∑
i=0

[[[
j

g
≤ s[i] <

j + 1

g
]]] (4)
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Figure 5. Illustration for the CTFNet structure. The input image first enters an object detector with APS Framework, from which features
are extracted. Then features are flattened and concatenated to form a final input feature, which enters the Confidence Layer to obtain the
confidence score and decides to enter the Threshold Layer or Foresight Layer according to the score.

3.2. Weakly-Supervised Training CTFNet

Confidence-Threshold-Foresight Network is an enhance-
ment crowd analysis network for object detection methods,
which needs only count-level labels for training. CTFNet
consists of Confidence Layer (C Layer), Threshold Layer
(T Layer), and Foresight Layer (F Layer). APS Frame-
work and CTFNet make up the whole architecture of our
enhancement system, as shown in Figure 5.

In the next three subsections, we illustrate how CTFNet
can train with only count-level labels, and why it is the
weakly-supervised paradigm. Notice that this section fo-
cuses on the weakly-supervised training paradigm. And the
functions of C, T, F Layers are shown in Section 3.3.
Input Feature

The input feature is formed by concatenating all flat-
tened APS features. According to a specific method, the
total of extracted features can be different. To be specific,
all object detection methods can extract at least two APS
features, i.e., FilteringPyramidF ilteringPyramidF ilteringPyramid and BoxScoreBoxScoreBoxScore. While
methods with RPN can additionally extract RPNAnchorRPNAnchorRPNAnchor
and RPNScoreRPNScoreRPNScore. All extracted features are firstly flattened
to one-dimensional and then concatenated to form the input
feature of CTFNet.
Automatically Labeled Output Value

The output values of C, T, F Layers are a confidence
score, a threshold value, and a count of crowds, respectively.
The label of count has been given by count-level datasets,
and the confidence score and threshold value are labeled au-
tomatically as shown in the next two paragraphs.

Confidence score labels are generated by measuring
whether a detector can get the ground truth count by adjust-
ing the detection threshold. Notice that the relation between
the threshold and detection count is a monotone function,
and the maximum and minimum count can be fetched by
setting the threshold to 0 and 1. Thus, if the ground truth
count is not between the maximum and minimum count, it
means the object detector can not get the ground truth count
by detection, and the confidence label will be marked as 0.
Otherwise, it will be marked as 1.

Threshold value labels are marked by binary searches
to find an optimum threshold. Specially, if the ground
truth count is higher than the maximum detection count, the

threshold label will be marked as 0, i.e., not filtering de-
tected boxes. If lower than the minimum detection count,
it will be marked as 1 to block all boxes. Except for these
two special cases, on other occasions the threshold label is
marked by binary search, i.e., threshold values 0 and 1 are
used as two endpoints, and the binary search will stop when
and only when the detection count is equal (or very nearly)
to ground-truth count.
Weakly-Supervised Paradigm

The training paradigm of CTFNet is more weakly-
supervised than self-supervised. Although the use of APS
Features makes it seem like self-supervised learning, it
should be noticed that CTFNet is an enhancement frame-
work independent of object detection methods, and APS
features originate from object detection. Furthermore, the
training need of CTFNet is count-level labels, and others
are labeled automatically. Therefore, CTFNet is a weakly-
supervised enhancement network.

3.3. The Function of CTF

In this part, the functions of C, T, F Layers are shown.
The internal of each layer is fully connected layers, as de-
scribed in Hyperparameter settings. The input feature and
output value follow that in Section 3.2.
The Confidence Layer

The function of C Layer is to make choice between T
Layer and F Layer. Usually, the scene is not extremely
crowded and using T Layer to adjust the detection threshold
works well. On very rare occasions that classic object de-
tection can not tackle properly, such as the fourth scene in
Figure 8, F Layer will be chosen to handle it.

The output value is a float number of the score. T Layer
is chosen if the score is above 0.5, else F Layer is chosen.
Binary cross-entropy loss is adopted as the loss function.

The Threshold Layer and ThreshLoss
The T Layer is proficient in adaptively adjusting thresh-

old values. We discover that the threshold of many popular
object detection methods such as [1, 6, 25] are fixed. How-
ever, images with dense foregrounds require a lower thresh-
old to improve the recall rate while images with sparse fore-
grounds need a higher threshold to bypass false positives.
With the help of the T Layer, CTFNet can effectively deal

4054



with most scenes, such as the first three in Figure 8.
To improve its performance, we design the ThreshLoss

as the loss function for the T Layer. After thorough exper-
iments, we notice that the smaller the threshold, the greater
the impact on the recall rate. For example, increasing the
threshold from 0 to 0.1 brings a much larger fluctuation in
the number of detection boxes than raising it from 0.5 to 0.6.
Thus, the impact brought by the initial threshold should be
taken into consideration when designing the loss function.
We decide to adopt the form of the square of the error di-
vided by the true threshold to represent the loss function.
Also, to prevent numerical explosion due to a too-small de-
nominator, we add an offset α to the denominator. y is the
predicted value and y′ is the threshold label value.

ThreshLoss(y, y′) = (y − y′)2/(y′ + α) (5)

The Foresight Layer

The F Layer is used to foresee the count of crowds by
regression. The motivation comes from that many previ-
ous researches [2, 19, 27] pointed out that object detection
methods fail to cope with occlusions and clutters. Although
T Layer has solved most of the problems they mentioned,
object detection still performs unsatisfactorily in extreme
scenes. While our F Layer can compensate for this defi-
ciency.

When using the F Layer, the counting result will be the
estimation result and Mean Squared Error is used as the
loss function during training. For a better detection perfor-
mance, the detection threshold will be turned to 0 to fit the
large count of crowds. And then the binary searches should
be done to optimize the Non-Maximum suppression (NMS)
threshold. To be specific, we set the upper limit of the NMS
threshold β = 0.3. The binary search uses the current NMS
threshold and β as two endpoints and will cease when the
number of detection boxes is equal (or very close) to the es-
timation result of the F Layer. Specially, if the estimation
result is greater than the number of boxes at NMS threshold
β, the binary search will not start, on which condition the
final NMS threshold will be set as β.

4. Experiments
Hyperparameters: In the APS framework, the detailed pa-
rameters of the Filtering Pyramid follow that in Figure 2.
The number is 400 for both BoxScore groups and RPN-
Score groups. For RPNAnchor, the number of different
anchor scales is 5 and the number of its groups is 80. In
CTFNet, the offset α in ThreshLoss is 0.05. C, T, F Lay-
ers have the same structure, consisting of 3 fully connected
layers interleaved with ReLU activations. Besides the input
and output layer, there is one hidden layer with 256 hidden
nodes. Adam is used as the optimizer with a learning rate
of 3e-5.

Evaluation Metrics: Following the mainstream methods,
we adopt Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) as counting evaluation metrics,
GAME [7] metric as localization metrics, and F1 Measure,
Precision, and Recall as detection metrics.
Datasets: Extensive experiments are conducted on five
publicly challenging datasets, including ShanghaiTech
PartA (SH A) and PartB (SH B) [37], UCF CC 50 [10],
UCF QNRF [11], NWPU-Crowd [34] and Wider Face [36].
Computing Power: Limited by resources, our training de-
vice is a laptop consisting of R7-4800H and Nvidia 2060.
Most experiments are done on it except the time and space
experiments in Section 4.5, in which a server with Nvidia
3090 is temporarily used.

4.1. Enhancement performance for counting

Experiment settings: All methods are trained on the same
dataset NWPU-Crowd [34] for fair comparisons.

Since our enhancement system can be easily transplanted
to various methods, we show the enhancement degree by
a method without and with our system, of which the lat-
ter is prefixed with ’CTF’. The compatibility of our system
with FPN [18] is also tested. The counting enhancement on
SH A and UCF QNRF datasets is shown in Figure 6.

Notice that the performance of classic methods is
strongly dependent on the setting of the threshold, so we
measure their performance under multiple thresholds. With
the enhancement of our system, the methods are no longer
subject to the threshold, so the results manifest as points,
with horizontal lines added for better visualizations.

1. After adding our system to classic methods, the MAE
is lessened ranging from 34.3% (YOLOX [6] in SH A) to
53.4% (Faster R-CNN in UCF QNRF), compared with even
the best-fine-tuned threshold version.

2. Our APS feature extraction framework can work with
other feature extraction frameworks such as FPN. And our
system proves to work better compared with a single FPN
when applied to Faster R-CNN. These all show the strong
compatibility of our enhancement system.

3. Object detection methods are no longer subjected to
threshold settings in terms of crowd analysis, which shows
more possibility of tackling severe situations adaptively.

Figure 6. Illustrations of the enhancement of various object de-
tection methods on two counting datasets UCF QNRF and SH A
with CTFNet applied.
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Method Venue Result UCF CC 50 SH A SH B UCF QNRF
Count Location Size MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

LSC-CNN [26] PAMI21 ✓ ✓ ✓ 225.6 302.7 66.4 117.0 8.1 12.7 120.5 218.2
Bayesian+ [21] ICCV19 ✓ % % 229.3 308.2 62.8 101.8 7.7 12.7 88.7 154.8
S-DCNet [35] ICCV19 ✓ % % 204.2 301.3 58.3 95.0 6.7 10.7 104.4 176.1

DM-Count [33] NerIPS20 ✓ % % 211.0 291.5 59.7 95.7 7.4 11.8 85.6 148.3
AMSNet [9] ECCV20 ✓ % % 208.4 297.3 56.7 93.4 6.7 10.2 101.8 163.2
ASNet [13] CVPR20 ✓ % % 174.8 251.6 57.8 90.1 - - 91.6 159.7

SUA-Fully [23] ICCV21 ✓ % % - - 66.9 125.6 12.3 17.9 119.2 213.3
P2PNet [27] ICCV21 ✓ ✓ % 172.7 256.2 52.7 85.1 6.3 9.9 85.3 154.5

CTF-LSC (Ours) - ✓ ✓ ✓ 168.3 224.6 53.4 82.3 7.1 9.7 90.8 166.7

Table 1. Comparisons in counting, in which the current SOTAs and runner-ups are marked with bold and underline, respectively.

4.2. Comparisons with SOTAs in counting

Experiment settings: All compared methods are trained
on corresponding training datasets for fair comparisons, and
follow the 5-fold cross-validation on UCF CC 50 [10].

As a rare object detection method in crowd analysis,
LSC-CNN [26] can get the location and size of individuals
beyond a single count, which many mainstream approaches
cannot. But its counting performance loses to that of ad-
vanced density-based and point-based methods. However,
our enhancement system makes it great again! After adding
our system to LSC-CNN, it successfully outstrips current
state-of-the-art methods in several benchmarks. The MAE
is lowered by 20.5% and RMSE is lowered by 26.2% on
average, as shown in Table 1.

4.3. Enhancement performance for localization

Experiment settings: The same as that of Section 4.1.

Method SHA UCF QNRF
GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓

YOLOV3 216.8 233.1 259.8 454.3 471.0 505.3
YOLOX 170.9 187.2 223.5 405.6 421.7 462.9

Faster R-CNN 116.6 131.0 157.5 264.1 279.6 308.5

CTF YOLOV3 139.1 173.3 215.8 287.9 323.5 396.3
CTF YOLOX 113.2 139.6 184.6 252.1 278.3 334.2
CTF R-CNN 68.4 90.5 127.4 119.6 143.8 201.0

Table 2. Enhancement of CTFNet on Localization
Our system can also improve the localization perfor-

mance of various methods. GAME [7] is an existing metric
used as evaluation of localization performance, which is de-
fined as GAME(L) = 1

N ·
∑N

i=1(
∑4L

l=1

∣∣eli − gtli
∣∣), where

N is total of images, eli and gtli represent estimated count
and ground truth count of l-th region in i-th image, and L is
the restrict factor. The results are shown in Table 2.

4.4. Enhancement performance for detection

Experiment settings: Models are trained on the Wider
Face training dataset and evaluated on the validation dataset
by F1 Measure, Precision, and Recall, where IOU is 0.5.

Benefiting from adaptively changing threshold and de-
tection means, the performance of Faster R-CNN in F1
Measure and Precision is also greatly enhanced with little
influence on the Recall rate, as shown in Table 3.

Set Faster R− CNN CTF R− CNN
F1 Measure ↑ Precision ↑ Recall ↑ F1 Measure ↑ Precision ↑ Recall ↑

Easy 11.14% 5.92% 93.59% 20.03% 11.24% 91.98%
Medium 18.43% 10.24% 91.97% 29.29% 17.46% 90.88%

Hard 32.24% 19.95% 83.98% 46.16% 32.09% 82.17%

Table 3. Enhancement of CTFNet on Detection. The validation
dataset is officially split into 3 parts, easy, medium, and hard.

4.5. Time Consumption and Space Consumption

Experiment settings: All compared methods follow their
settings in the papers or code, and the evaluation dataset is
UCF QNRF.

The consumption of time and space is closely related to
whether it can work on low-performance devices. We evalu-
ated them by the mean processing time and mean used video
memory per image, as shown in Figure 7.

Compared with other crowd analysis methods, object de-
tection has a relatively low time and space consumption.
Although classic object detection performs unsatisfactorily
in dense crowds, this deficiency has been compensated in
an all-round way by our brand new system.

Benefiting from the light structure of APS Framework
and CTFNet, there is almost no additional consumption af-
ter adding our system, especially in terms of space.

Figure 7. Time Consumption and Space Consumption. Methods
are ranked by consumption from high to low in each chart.

4.6. Ablation Studies

Each part of our weakly-supervised system is evaluated
to prove its effectiveness. Here we show 13 group ablation
studies of the counting performance on the SH A dataset.
The experiment setting is identical to Section 4.1.
APS features: Faster R-CNN is selected as the detec-
tor to show the enhancement degree of each APS Feature
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Figure 8. The robustness in tackling analysis tasks towards all densities of crowds, including counting, localization, and detection. The
detection results are generated by CTF R-CNN, with the count of crowds in the bottom-right corner of each image.

Figure 9. Illustrations of the effect of each component in our
weakly-supervised system.

i.e., FilteringPyramidF ilteringPyramidF ilteringPyramid, BoxScoreBoxScoreBoxScore, RPNAnchorRPNAnchorRPNAnchor and
RPNScoreRPNScoreRPNScore on SH A dataset, and only the F Layer is used
to follow the univariate analysis. Here we assign numbers
➀, ➁, ➂, and ➃ for the above four features in turn.

With the number of features rising, MAE and RMSE are
decreasing. The best enhancement is achieved when all 4
features are available, as shown in the left part of Figure 9.

CTFNet: Except ➀ is Faster R-CNN without our system,
the rest are enhanced by CTFNet. ➁ uses only the T Layer
with MSE loss while ➂ uses the T Layer with ThreshLoss.
➃ uses only the F Layer. ➄ and ➅ both use all CTF Layers,
with the former using MSE loss in the T Layer and the latter
using ThreshLoss.

T Layer (➁ and ➂) brings down the error of Faster R-
CNN. ➃ displays the enhancement with only F Layer ap-
plied. ➄ and ➅ exhibit the effect of using all three layers of
CTF with the error further reduced. Further, the improve-
ment from ➁, ➄ to ➂, ➅ manifests the effect of ThreshLoss.
The results are shown in the right part of Figure 9.

4.7. Faster, Lighter, Robuster

Multi-Dimensional enhancements of our system have
been proved with extensive experiments. It is still worth-
while to be noticed that our system needs only count-level
labels for training while achieving triple enhancement in
counting, localization, and detection.

As for ’Faster’, Figure 7 has shown the processing time
advantages. Besides, it takes a very short time for training
even on our laptop with Nvidia 2060. This merit enables
us to do extensive experiments with limited computing re-
sources.

’Lighter’ is the capability to be easily transplanted to
various methods, which we regard as the essential quality
of our enhancement system. The successful transplantation
on various methods manifests the lightness of our weakly-
supervised system. Further, the little additional space con-
sumption in Figure 7 also shows this valuable quality.

Finally, ’Robuster’ has double meanings. The first is the
capability to enhance all parts of crowd analysis, includ-
ing counting (Section 4.1), localization (Section 4.3), and
detection (Section 4.4). The second is the robustness in de-
tecting all densities of crowds, as shown in Figure 8.

5. Conclusion
In this work, we propose a weakly-supervised enhance-

ment system to improve the performance of various meth-
ods in crowd analysis with only count-level labels. The mo-
tivation comes from the phenomenon that advanced meth-
ods concentrate on either counting or localization while ne-
glecting the overall performance in crowd analysis. Our
system includes APS Feature Extraction Framework and
CTFNet, all of which are easy to be transplanted with
strong compatibility. After adding our enhancement sys-
tem, crowd analysis becomes more all-rounded, achieving
a multi-dimensional improvement in counting, localization,
and detection. Compared with state-of-the-art methods, the
enhanced methods under our system have a comprehen-
sive performance with a low time and space consumption.
Faster, Lighter, Robuster, all of which are realized with only
count-level labels, which leverage the intensive labor for
labeling and enhance the performance of various methods
profoundly.
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