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Abstract

Self-supervised video representation learning has been
shown to effectively improve downstream tasks such as
video retrieval and action recognition. In this paper, we
present the Cascade Positive Retrieval (CPR) that succes-
sively mines positive examples w.r.t. the query for con-
trastive learning in a cascade of stages. Specifically, CPR
exploits multiple views of a query example in different
modalities, where an alternative view may help find another
positive example dissimilar in the query view. We explore
the effects of possible CPR configurations in ablations in-
cluding the number of mining stages, the top similar ex-
ample selection ratio in each stage, and progressive train-
ing with an incremental number of the final Top-k selec-
tion. The overall mining quality is measured to reflect the
recall across training set classes. CPR reaches a median
class mining recall of 83.3%, outperforming previous work
by 5.5%. Implementation-wise, CPR is complementary to
pretext tasks and can be easily applied to previous work.
In the evaluation of pretraining on UCF101, CPR consis-
tently improves existing work and even achieves state-of-
the-art R@1 of 56.7% and 24.4% in video retrieval as well
as 83.8% and 54.8% in action recognition on UCF101 and
HMDB51. The code is available at https://github.
com/necla-ml/CPR.

1. Introduction
Recently, large-scale self-supervised pretraining such as

BERT [7] and DINO [3] has been shown to improve the rep-

resentations and potentially outperform its supervised coun-

terpart. Most approaches revolve around proposing pretext

tasks [1, 10, 16, 19, 23, 38, 40–42] based on instance dis-

crimination to learn representations by matching or clas-

sifying specific relationships between the query example

and its augmented variants with the objective to minimize

*Work done as a NEC Labs intern in 2021.

the contrastive loss [33] and other predictive losses. How-

ever, few address the lack of true positives (TP) other than

the query example variants and likely harmful false nega-

tives uniformly sampled from the entire dataset [6]. Previ-

ous work CoCLR [12] demonstrates the significant perfor-

mance gap with the upper bound achieved in a supervised

contrastive setting using the labels for TP as in [18].

We are inspired by related work [11, 14, 27, 32, 35, 37]

that exploits multi-views of video to learn the representa-

tions through the correspondences between different modal-

ities. Previous work [12, 17, 30] incorporating hard exam-

ple mining in metric learning, object detection and action

recognition further motivates the necessity of positive ex-

ample mining in self-supervised representation learning. As

for video representation learning, hard positive examples in

the RGB view may be mined from the motion view despite

seemingly different background appearances. On the other

hand, hard positive examples in the motion view may be

mined from the RGB view as the motions can differ signifi-

cantly from various camera angles while the background re-

mains similar in the RGB view for actions in the same class.

CoCLR [12] shows mining in the alternative view during

training improves the representations and downstream task

performance. Nonetheless, it is not necessarily sufficient

for mining only once in a single view to prevent sampling

false positives (FP).

To address this issue, we propose the Cascade Positive

Retrieval (CPR) and systematically explore the design space

of positive example mining. The idea is to refine the mining

successively in a cascade of stages across different views

as search with filters to be applied progressively. For in-

stance, given a query example, one may first select those

with similar background in the RGB view, then further filter

out those dissimilar in the motion view and so on. Appar-

ently, the number of mining stages and the selection ratio

in each stage matter. The goal is to conclude the strategy

for effective positive example mining and make it applica-

ble to existing work. Moreover, it remains unclear of the

overall mining quality in terms of the recall across train-
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ing set classes despite the R@1 mining retrieval recall by

CoCLR [12]. We measure and compare the mining quality

that suggests correlation with the resulting performance in

ablations.

In short, we make the following contributions:

1.) We propose the Cascade Positive Retrieval for self-

supervised learning (SSL) of video representations that

complements pretext tasks and can be applied to exist-

ing work easily regardless of the SSL framework used.

2.) We apply CPR to previous work and observed consis-

tent improvement in downstream video retrieval and ac-

tion recognition. We then extensively explore the de-

sign space of mining configurations in ablations w.r.t.

the number of stages in the cascade, the top similar ex-

ample selection ratio in each stage and the progressive

training regime.

3.) We measure the mining quality of CPR in terms of the

positive mining recall denoting each time the fraction of

TPs in the final stage Top-k selected as the positive set,

and the class mining recall representing the fraction of

distinct TPs selected from a class in one training epoch.

4.) We evaluate the transfer performance in video retrieval

and action recognition on UCF101 and HMDB51 from

pretraining on UCF101 with CPR applied to an existing

work, achieving state-of-the-art (SOTA) results.

2. Related Work
Self-supervised Learning. Large-scale representation

learning through self-supervision has achieved great suc-

cess in multiple fields including natural language process-

ing (NLP) and computer vision (CV). In NLP, the general

idea is to build a language model that learns to predict

masked out words as in BERT [7]. In CV, the feature ex-

traction backbone is trained to learn representations based

on instance discrimination that works on both images and

videos. The instance discrimination views an example and

its augmented variants as positive while the other examples

are treated as negative. A typical objective is to minimize

the contrastive loss that encourages positive examples to be

similar in representations while pushing away negative ex-

amples. Many SSL frameworks were proposed in recent

years such as SimCLR [4], BYOL [9], MoCo [5, 13] and

SwAV [2] to facilitate systematic composition of numer-

ous pretext tasks that augment the input examples and for-

mulate the contrastive loss, delivering competitive perfor-

mance in comparison with supervised counterparts. In this

paper, we focus on improving self-supervised video repre-

sentation learning from the perspective of hard positive ex-

ample mining and show our method can be easily applied

to existing work regardless of a particular SSL framework

used or not.

Video Representation Learning. In contrast with SSL of

images, videos enables rich spatiotemporal augmentation to

generate diverse positive and negative example clips from

sampled frames. Common pretext tasks include future pre-

diction [11] and speed prediction [1, 16, 38, 42] to infer the

relationship between clips and the pace a clip is sampled.

Other tasks may require to sort out the ordering of frames

or clips [41], solve jigsaw puzzles [19], match features in

different modalities [14, 27, 35, 37] or group visual entities

based on co-occurrences in space and time [15]. We target

the video domain as videos in multiple views potentially

provide opportunities to mine hard positive examples in the

query class. Nonetheless, the proposed method is not lim-

ited to video tasks or specific pretext tasks. Instead, we aim

to complement existing approaches with hard positive ex-

ample mining.

Hard Example Mining. Hard example mining in super-

vised learning is well studied in metric learning and other

CV tasks. In metric learning, the goal is the push away those

hard negative examples but the challenge is the intractable

computational overhead over large datasets as the embed-

ding is updated constantly. One possible solution is to ef-

ficiently sample negative instances in nearest classes as in

deep metric learning [30]. Regarding positive example min-

ing, InvP [34] selects positive examples that preserve high

semantic consistency through a recursive k-nearest neigh-

bors graph. In addition, CMA [25] introduces the cross-

modal agreement that discovers positive examples highly

similar in both audio and visual feature space through multi-

view learning [32].

In video object detection, [17] leverages the temporal

consistency to identify hard negative and positive examples

from detection misses and isolated detection in consecutive

video frames.

In the case of SSL, it is challenging for no labels and the

representation learning is limited to the augmentations of

the query example with instance discrimination for the lack

of hard positive examples in the query class. Worse, the

negative examples are uniformly sampled and potentially

include false negatives (FN). This is called the sampling

bias in [6] and a possible solution is to reweight the posi-

tive and negative terms in the contrastive loss for correction

given the estimated class priors [6, 28].

On the other hand, as with the video object detection,

self-supervised video representation learning may exploit

multi-views of video clips to mine hard positive examples.

CoCLR [12] mines positive examples from action recog-

nition datasets given a query example in the RGB view

with its corresponding motion or flow view. Intuitively, this

may help find positive examples with similar motions de-

spite dissimilar background and vice versa. Our work fur-

ther explores the possibilities to mine diverse positive ex-

amples in the query example class as CoCLR only mines
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positive examples in one view at a time. Chances are out

of those with similar motions, top instances similar in the

RGB view could be more likely the true positives. There-

fore, we reshape the positive example mining as a cascade

refining process between different video views. While Co-

CLR measures R@1 for mining retrieval recall, we further

evaluate the mining quality in terms of the overall mining

recall across the classes throughout training in reflection of

the coverage of distinct class instances. The metric is ex-

pected to correlate with the resulting performance w.r.t. the

upper bound in the supervised contrastive setting where the

mining recall is essentially perfect for all the class instances

being selected during training.

3. Proposed Method

Algorithm 1 CPR: Cascade Positive Retrieval

Variables: MB,C, S,B, V, r, vq, qv, q, q
+

Macros: E(c), K(c, s), SV (s), B(e)
Macros: select(fv, candidatesv, r), topk(fv, candidatesv, k)

1: C � range of training cycles
2: S ← 1..n � range of CPR stages
3: E(c) ∈ Z

+ � epochs given a training cycle

4: K(c, s) ∈ Z
+ � Top-k to select at stage s in cycle c

5: r ∈ R
+ � selection ratio before the last stage

6: select(fv, candidatesv, r) ∈ Z
+ � select top similar instances by ratio

7: topk(fv, candidatesv, k) ∈ Z
+ � select top k similar instances

8: SV (s) ∈ Z
+ � given a view at stage s

9: V ∈ {v1, v2, ...} � set of views
10: for c ∈ C do
11: for e ∈ E(c) do
12: for (q, q+) ∈ B(e) do
13: for v ∈ V do
14: if v == vq then
15: fqvq ← encodervq (qvq )

16: f
q
+
vq

← encoderema
vq

(q+vq )

17: else
18: f

q
+
v

← encoderfixed
v (q+v )

19: end if
20: end for
21: for s ∈ S do
22: v ← SV (s)
23: if s == 1 then
24: pos ← select(f

q
+
v
,MBv, r)

25: else if s == n then
26: pos ← topk(f

q
+
v
, posv, K(c, s))

27: pos = {q+, pos}
28: neg = MB \ pos
29: else
30: pos ← select(f

q
+
v
, posv, r)

31: end if
32: end for
33: loss ← MIL NCE(qvq , posvq , negvq )

34: optimize(encodervq , loss)

35: update(MB, f+
q )

36: end for
37: end for
38: end for

In this section, we first revisit the concept of contrastive

learning with different discrimination learning objectives.

Next, we present CPR in Algorithm 1, detailing the cascade

positive retrieval for mining examples in general.

3.1. Instance Discrimination

Self-supervised video representation learning based in-

stance discrimination where each instance serves as its own

class has been shown effective with the contrastive loss of

InfoNCE [33]. Specifically, given a set of videos V , a video

clip vi is a number of frames sampled from a video in V
and its positive variant v+i that can be an augmentation or

another clip sampled from the same video, forming a posi-

tive pair (vi, v
+
i ). On the other hand, a set of negative ex-

amples N− consists of those clips v−j , j �= i. These clips

are fed into a query encoder and a key encoder to obtain the

visual representations. The output features of the query, its

positive augmentation and negative keys are denoted by qi,
q+i , and k−j respectively. The InfoNCE loss is defined as

follows:

LN = − log
exp(qi · q+i /τ)

exp(qi · q+i /τ) +
∑N

j=1 exp(qi · k−j /τ)
(1)

where the similarity is measured by dot product with a

temperature hyperparameterper τ to adjust its scale. In-

tuitively, InfoNCE encourages to pull positive pairs closer

while pushing away negative pairs.

3.2. Multi-instance Discrimination

In the case of multiple positive pairs, Multi-Instance In-

foNCE or MIL-NCE proposed in [24] is defined as follows:

LM = − log

∑
p∈P exp(qi · q+p /τ)

∑
p∈P exp(qi · q+p /τ) +

∑N
j=1 exp(qi · k−j /τ)

(2)

where P is a positive set containing positive augmentation

of the query and other keys with the same label as the query.

For example, in an action video dataset, a fencing positive

set includes the augmentation of the query video and other

videos with the fencing label.

3.3. Cascade Positive Retrieval

In view of issues with instance discrimination includ-

ing the lack of other non-augmented positives and potential

false negatives, previous work CoCLR [12] has proposed

to mine positive examples in an alternative view other than

the query view. However, there is a possibility that CoCLR

suffers from FPs with similar motion patterns from the flow

view because the mining in the alternative view is only done

once such that some actions with very similar motion pat-

terns such as Shouput and ThrowDiscus may be wrongly

selected and confuse the model as shown in Figure 2. Un-

like CoCLR mining heavily dependent on a single view, our

CPR fully exploits the advantage of multi-views to improve

the mining quality. Figure 1 illustrates that in one cascade

of positive retrieval, CPR alternates between the RGB and

flow views to mine a top number of positive examples with

most similar appearances and motions as the query clip.

When applying CPR to existing work, there are many

possible configurations and hyperparameters to consider as

described in Algorithm 1 that assumes a memory bank MB
storing encoded instance features in different views, a pro-

gressive training schedule in cycles, the number of epochs
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Figure 1. Overview of CPR in mining alternately from both RGB and flow views for one cascade retrieval. K denotes the size of the

memory queues storing instance features in both views. Given a query example in the RGB view, the mining starts with selecting top k1
most similar instances from the flow memory queue at stage 1, top k2 most similar instances from the RGB memory queue at stage 2, and

so on up to top kn−1 from the RGB memory queue at stage n-1, where k1, k2, ..., kn−1 are values derived from the number of instances

selected from the previous stage multiplied by a fixed selection ratio (e.g. 0.5) at each stage. Unlike previous stages, the Top-k most similar

instances kn at the final stage are selected to form the positive set.

in one cycle, the number of mining stages in one cascade,

the selection ratio of top similar examples at each stage and

etc. Specifically, the algorithm iterates through each cy-

cle c and epoch e to train with query examples in batches

B. Each batch consists of query examples and their posi-

tive variants from augmentation or sampling as q and q+.

In the beginning of the batch processing, the representation

encoder to train in the query view, encodervq , encodes the

query examples qvq and produces the features fqvq . Those

q+ may be encoded in the query view with the momen-

tum encoderema
vq (q+vq

) and in the other views with frozen

encoderfixedv (q+v ). Next, CPR retrieves the most similar

examples in successive stages S given a selection ratio r
used at stages before the last one and a Top-k for the final

stage selection determined by the current cycle c and stage

s. Note that the mining always uses the features of positive

query variants to measure the similarities with those stored

in MB by view. Eventually, a set of Top-k most likely posi-

tives are selected at the last stage as pos and combined with

q+. The other instances in MB are viewed as negatives

neg. Then the MIL-NCE loss is computed given the query

examples, mined positives and negatives to optimize the en-

coder in the query view. Afterwards, the memory bank MB
is updated with the newly encoded query example variants

for the next batch training iteration. In the next section, we

will evaluate the effects of changing CPR hyperparameters

in ablations as well as compare the performance with SO-

TAs.

4. Experiments
4.1. Setup

Dataset. In this section, we conduct ablation studies and

evaluate CPR on two action video datasets:

UCF101 [29] contains 13K videos in 101 human action

classes at more diverse camera angles than HMDB51. Out

of the three splits of the dataset, the first one is used for our

ablations, pretraining, and downstream task evaluations.

HMDB51 [21] consists of 7K videos in 51 human ac-

tion categories. The dataset is divided into three splits. We

use the first split to conduct two downstream tasks in video

retrieval and action recognition.

Implementations. We apply CPR to previous work

IIC [31] and CoCLR [12]. While the latter uses MoCo [13],

CPR is not dependent on specific SSL frameworks. For fair

comparison, we use exactly the same hyperparameters as

previous work and only plug in CPR to construct the posi-

tive and negative sets for computing the MIL-NCE loss. If

necessary, we even retrain previous work for the same num-

ber of epochs to compare with the reproduced results. More

details can be found in the supplemental materials.

Data Preprocessing: The data preparation follows previous

work respectively. As for CoCLR [12], a clip in both RGB

and flow views is randomly sampled from 32 consecutive

frames in the video. Each frame is randomly cropped and

resized to 128×128 pixels. We apply the same data augmen-

tations including horizontal flips, color jittering and Gaus-

sian blur to the clips. Note that Gaussian blur is not used

for downstream tasks. To generate optical flow maps from
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Figure 2. Qualitative Top-5 mining comparison with wrong selection in red.

the video, we use TV-L1 [43] to extract the flow view with

a third channel filled with zeros. The features are clipped

in the range of 20 pixels and rescaled from [−20, 20] to

[0, 255]. In contrast, the motion view for IIC [31] is based

on frame difference residuals.

Self-supervised Pretraining on UCF101. For IIC [31],

we train from scratch with CPR under NPID [39]. For Co-

CLR [12], we begin with the released RGB and flow mod-

els pretrained with InfoNCE as there is no positive mining

in the initialization. Next at the co-training stage, the RGB

and flow models are alternately trained for 400 epochs on

2 GPUs, each with a batch size of 16. That is the same

number of epochs as two cycles in CoCLR.

Video Retrieval. We evaluate video retrieval as a down-

stream task on both UCF101 and HMDB51 based on ex-

tracted features from the pretrained model without finetun-

ing. Following the test protocol in [23, 41], we take a video

in the test set as a query and use it to retrieve k-nearest

neighbors in its corresponding training set. The recall at k
(R@k) serves as the evaluation metric, which means if one

of the retrieved top k nearest neighbors is from the same

class as the query, it is counted as a correct retrieval result.

Action Recognition. In addition to video retrieval, we

also evaluate the action recognition performance of the pre-

trained models on UCF101 and HMDB51. The pretrained

models are transferred as the feature extraction backbone

for downstream tasks. Two scenarios including linear
probing and finetuning are considered respectively. For

linear probing, we freeze the backbone while training the

linear classifier only. For finetuning, we train the entire net-

work including the backbone and the linear classifier. The

training and evaluation protocols essentially follow previ-

ous work for fair comparison even with test time augmenta-

tion used.

4.2. Ablation Study

In this section, we explore CPR in numerous configura-

tions. All experiments are conducted on UCF101 following

the setup mentioned in Section 4.1 except for the number of

training epochs fixed at 100 for pretraining and finetuning

respectively. Unless said otherwise, the ablations are based

Stages (s) R@1 R@5 R@10 Probe Finetune

s = 1 45.1 64.0 71.9 60.0 69.5

s = 3 46.5 64.5 72.0 60.0 69.6

s = 5 47.5 65.1 73.3 60.2 70.6

s = 7 47.8 66.2 74.6 60.4 71.3

Table 1. Ablations with CPR applied to CoCLR w.r.t. the number

of stages. CoCLR is a special case with CPR in only one stage as

s = 1 where only the Top-5 positive candidates are selected.

SR (r) R@1 R@5 R@10 Probe Finetune

r = 0.8(s=3) 46.1 63.9 72.4 60.0 69.8

r = 0.5(s=3) 46.5 64.5 72.0 60.0 69.6

r = 0.8(s=7) 46.2 63.6 71.7 59.6 69.9

r = 0.5(s=7) 47.8 66.2 74.6 60.4 71.3

Table 2. Results for CPR applied to CoCLR with varied selection

ratios but a fixed number of stages s.

IIC(+CPR) R@1 R@5 R@10 R@20

Baseline-Top-5 36.2 53.5 63.6 72.7

Prog-Top-1 39.4 57.5 67.6 77.2

Prog-Top-2 42.5 60.5 69.0 77.5

Prog-Top-3 44.1 62.3 70.2 77.9

Prog-Top-4 45.3 63.2 70.4 78.2

Prog-Top-5 46.2 63.6 71.4 79.2

Table 3. Improvements in video retrieval with progressive training

when CPR is applied to IIC [31] in 5 cycles with incremental Top-

k selection. The baseline is trained with the same number of total

epochs in the 5 cycles with a fixed Top-k selection at the last stage.

Settings PMR R@1 Finetune

s = 1 (CoCLR) 35.1 45.1 69.5

s = 3, r = 0.5 35.8 46.5 69.6

s = 5, r = 0.5 37.4 47.5 70.6

s = 7, r = 0.5 38.9 47.8 71.3

Table 4. Mean PMR and R@1 measured in the last epoch as well

as fine-tuning results w.r.t. different CPR configurations.
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Figure 3. Positive Mining Recall (PMR) for 100 training epochs.

The results are generated by both models pretrained on UCF101.

Figure 4. TP class instance mining counts in selected classes.

Method R@1 R@5 R@10 Finetune

IIC [31] 34.8 51.6 60.8 71.8

IIC(+CPR) 46.2 63.6 71.4 73.1

CoCLR 45.1 64.1 71.9 69.5

CoCLR(+CPR) 47.8 66.2 74.6 71.3

UberNCE 70.3 81.7 86.8 80.7

Table 5. Summary of improvements over IIC and reproduced Co-

CLR [12] with CPR on UCF101. UberNCE is reproduced in the

supervised contrastive setting serving as the upper bound.

on application of CPR to CoCLR.

Number of Stages. Our CPR mines positive examples in

a cascade of multiple stages. It is necessary to demonstrate

the influence of this hyperparameter given a fixed selection

ratio 0.5 for positive selection across stages before the last

one and Top-5 for the last stage. As shown in Table 1, with

more mining stages, the model may learn better representa-

tions for the downstream task and the best performance is

achieved in the configuration with 7 stages. As a result, we

use 7 stages in later evaluation with other SOTAs.

Diving

PommelHorse

UnevenBars

Lunges

Haircut

HandstandWalking

Figure 5. Visualization of the action classes that are ranked in

CMR. The top half of the figure shows the Top-3 classes while the

bottom of the figure shows the Bottom-3 classes.

Selection Ratio. In this ablation, we set the selection ratio

(SR) to 0.5 and 0.8 respectively to evaluate the impact of

SR before the final stage that uses fixed Top-5. The total

number of stages are set to 5 and 7 for comparison. It is

observed that no matter in 5 or 7 stages, a smaller SR can get

better performance in Table 2. Hence, we choose SR = 0.5
when comparing with other SOTAs.

Progressive Training. This configuration examines the

training regime of the Top-k selection at the last stage.

Specifically, is it better to train with a fixed Top-k or the

training should be progressive with an incremental num-

ber of Top-k. The conclusion is likely model architecture

dependent as we see the improvement with IIC shown in

Table 3 in terms of video retrieval recalls but little with Co-

CLR. Therefore, progressive training will not be applied to

CoCLR in other evaluations.

CPR Mining Quality. While CoCLR [12] measures R@1

for the mining retrieval against the ground truth (GT)

throughout training, it remains unclear how many TPs

are actually mined each time and throughout the training.

Therefore, we measure the positive mining recall and class

mining recall defined in Eq. 3 and Eq. 4:

Positive Mining Recall =
# TP

Size of Positive Set
(3)

Class Mining Recall =
#Distinct TP Selected

#Total Class Instances
(4)

The positive mining recall (PMR) measures each time the

fraction of TPs in the final Top-k selected as the positive
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Method Year Backbone
UCF101 HMDB51

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

VCOP [41] 2019 R(2+1)D 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8

VCP [23] 2020 R3D-50 18.6 33.6 42.5 53.5 7.6 24.4 36.3 53.6

MemDPC-RGB [11] 2020 R-2D3D 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7

MemDPC-Flow [11] 2020 R-2D3D 40.2 63.2 71.9 78.6 15.6 37.6 52.0 65.3

IIC [31] 2020 R3D-18 42.4 60.9 69.2 77.1 19.7 42.9 57.1 70.6

PacePred [38] 2020 R3D-18 23.8 38.1 46.4 56.6 9.6 26.9 41.1 56.1

CoCLR-RGB [12] 2020 S3D 53.3 69.4 76.6 82.0 23.2 43.2 53.5 65.5

CoCLR-Flow [12] 2020 S3D 51.9 68.5 75.0 80.8 23.9 47.3 58.3 69.3

DSM [35] 2021 I3D 17.4 35.2 45.3 57.8 7.6 23.3 36.5 52.5

STS [36] 2021 R3D-18 38.3 59.9 68.9 77.2 18.0 37.2 50.7 64.8

CMD [14] 2021 C3D 41.7 57.4 66.9 76.1 16.8 37.2 50.0 64.3

VCLR [20] 2021 R2D-50 46.8 61.8 70.4 79.0 17.6 38.6 51.1 67.6

MFO [26] 2021 R3D-18 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7

MCN [22] 2021 R3D-18 53.8 70.2 78.3 83.4 24.1 46.8 59.7 74.2

CoCLR-RGB(+CPR) S3D 50.4 66.1 73.0 80.4 18.2 40.1 52.5 66.7

CoCLR-Flow(+CPR) S3D 56.7 75.5 82.2 88.2 24.4 48.5 62.4 74.3

Table 6. Comparison with SOTA video retrieval on UCF101 and HMDB51. Note that all methods are pretrained on UCF101.

set. The class mining recall (CMR) measures the frac-

tion of distinct TPs selected from a class in one training

epoch. Table 4 shows that as PMR and mining R@1 in-

crease with more stages, higher fine-tuning performance on

action recognition is expected. However, PMR seems to

serve as a better performance indicator for being in propor-

tion to improvement.

Furthermore, we provide a breakdown of full PMR

during the entire pretraining process for 100 epochs on

UCF101 in Figure 3. The results show CPR gradually in-

creases its PMR from 34.0% to 40.3%. On the other hand,

the PMR of baseline CoCLR is sluggish between 35.2%

and 37.4%. It can be found that CPR indeed can mine

more true positives by leveraging both RGB and flow views

while baseline CoCLR suffers from false positives for min-

ing only in a single view. This is the crucial factor to support

why CPR has better performance than baseline CoCLR. In

summary, PMR seems to serve as a better performance in-

dicator for being in proportion to improvement.

To further quantify the mining quality across classes, we

count the number of distinct TPs selected for each action

class. Figure 4 illustrates the statistics from 10 randomly

chosen classes with 18 instances each in the last train-

ing epoch. CPR succeeds in selecting all the distinct TPs

from both Surfing and UnevenBars classes while discover-

ing much less from the Hammering class. Through visual

inspection, Hammering is difficult with motions at differ-

ent camera angles in varied scenes. In contrast, Swing and

Surfing are easy to mine for having regular motion patterns

and consistent background. Furthermore, we list the CMRs

of the Top-3 and the bottom 3 classes respectively. The

Top-3 classes are Diving(100%) , PommelHorse(100%),

and UnevenBars(100%). On the other hand, the bottom

3 classes are Lunges(27.8%), Haircut(33.3%) and Hand-
standWalking(33.3%). We demonstrate video frames from

these classes above to visualize their content including hu-

man action and background. In Figure 5, sampled frames

in the bottom 3 classes cover different camera angles and

varied backgrounds, which increases the difficulty of min-

ing full video instances in each class. In contrast, it is sim-

ple to discover entire video instances in each Top-3 class

because these classes represent a relatively consistent back-

ground and standard motion with a fixed pattern. To sum

up, out of all the UCF101 classes, CPR scores higher CMR

than baseline CoCLR in 48 classes while the baseline mines

better only in 20 classes. It is even in the rest classes. Over-

all, CPR achieves the median CMR of 83.3% across all the

classes, which is 5.5% improvement over the baseline Co-

CLR with the median CMR of 77.8%.

Besides quantitative measurements, we visualize the

Top-5 positive examples mined from the baseline CoCLR

and CPR for qualitative comparison. In Figure 2, the base-

line mining heavily relies on the motions from optical flows

and tends to select false positives (FPs) with similar motion

patterns to the query. Instead, our CPR alternately mines

from both RGB and flow views to discover positive ex-

amples with similar appearances and motions to the query.

Even the only FP still contains visually similar motions and

context as the query. This indicates that CPR is able to ef-

fectively filter out potential FPs from a single view. Conse-

quently, CPR facilitates learning representations from more

diverse TPs compared with the baseline mining.

Applicability. In addition to CoCLR, CPR is also applied to

IIC [31] in the ablation of progressive training, demonstrat-
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Method Year Dataset Resolution Architecture UCF101 HMDB51

VCOP [41] 2019 UCF101 16 × 1122 R(2+1)D-26 72.4 30.9

VCP [23] 2020 UCF101 16 × 1122 C3D 68.5 32.5

IIC [31] 2020 UCF101 16 × 1122 R3D-18 74.4 38.3

PacePred [38] 2020 UCF101 16 × 1122 R(2+1)D 75.9 35.9

PRP [42] 2020 UCF101 16 × 1122 C3D 69.1 34.5

TT [16] 2020 UCF101 16 × 1122 R3D-18 77.3 47.5

CoCLR-RGB [12] 2020 UCF101 32 × 1282 S3D 81.4 52.1

DSM [35] 2021 UCF101 16 × 1122 C3D 70.3 40.5

STS [36] 2021 UCF101 16 × 1122 R3D-18 77.8 40.7

CMD [14] 2021 UCF101 16 × 1122 R3D-26 76.6 47.2

MFO [26] 2021 UCF101 32 × 1282 S3D 74.3 37.2

Vi2CLR [8] 2021 UCF101 32 × 1282 S3D 82.8 52.9

MCN [22] 2021 UCF101 32 × 1282 S3D 82.9 53.8

CoCLR-Flow(+CPR) UCF101 32 × 1282 S3D 83.8 54.8

Table 7. Comparison with SOTA action recognition on UCF101 and HDMB51 based on pretraining on UCF101

ing the general applicability. Particularly, IIC uses memory

banks instead of momentum encoders to maintain features

as well as frame difference residuals as motion views. It

focuses on generating hard negatives from the query video

by repeating or shuffling the frames but there is no positive

example mining. With CPR, IIC gains significant perfor-

mance improvement in both downstream tasks on UCF101

in Table 5 where CoCLR is also listed to show consistent

performance boost. This suggests that CPR is generally ap-

plicable whether or not the existing approach has positive

example mining in mind.

4.3. Comparison with State-of-the-arts

As CPR aims to benefit existing work in terms of better

positive example mining, our focus is to show how much

improvement an existing work can be enhanced with CPR

to compete with newer SOTAs. CoCLR [12] is chosen as it

already has positive example mining in mind.

Video Retrieval. To validate the effectiveness of learned

representations with CPR, we evaluate the nearest neigh-

bor video retrieval on both UCF101 and HMDB51. Specifi-

cally, the top-k video retrieval recalls for k = 1, 5, 10, 20
are computed as the performance metrics. As shown in

Table 6, CoCLR-Flow(+CPR) outperforms the the other

SOTA methods in all recall metrics on both datasets. We

achieve the best top-1 recall of 56.7% on UCF101 and

24.4% on HMDB51, outperforming the the latest SOTA

MCN [22] by up to 2.9% based on the same backbone.

Moreover, CPR also gains much more improvement at

higher top-k metrics. Since video retrieval does not require

fine-tuning and leaves little room for manipulation, posi-

tive example mining from diverse positive examples across

distinct videos is likely the key to learning effective repre-

sentations.

Action Recognition. In table 7, we compare our method

with SOTAs on video action recognition. All methods

are applied in a fully finetuning setting that finetunes all

layers on the downstream task. Pretrained on UCF101,

CoCLR-Flow(+CPR) outperforms all the previous SOTAs

fine-tuned on UCF101 and HMDB51 with accuracies of

83.8% and 54.8% based on the same or comparable back-

bone and resolutions as illustrated in Table 7.

5. Conclusion
In this work, we propose the Cascade Positive Retrieval

(CPR) for self-supervised video representation learning and

extensively explore the design space of positive example

mining configurations. We find that more mining stages in

the cascade likely improves the performance. The positive

selection ratio on the contrary works better if set to a smaller

number. The progressive training with an incremental final

Top-k selection could bring potential improvement. Beyond

the R@1 mining retrieval recall by CoCLR [12], we further

measure the mining quality quantitatively in PMR and CMR

that seem to correlate with downstream task performance

better. Moreover, the mining quality is also visualized for

qualitative comparison. Finally, we evaluate the transfer

performance from UCF101 to UCF101 and HMDB51 that

is either SOTA or competitive in both video retrieval and

action recognition. Aside from promising results, our CPR

can be applied to existing work easily regardless of a spe-

cific SSL framework used or not. Nonetheless, the gap

from the supervised contrastive performance upper bound

remains, suggesting the necessity of follow-up research for

even better mining in self-supervised representation learn-

ing. In the future, we plan to facilitate the application of

CPR to existing work, automate the hyperparameter search

for improved mining quality, and examine the scalability of

transfer learning from large-scale dataset.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in Self-Supervised vision transformers. In

ICCV, 2021. 1

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In ICML, 2020. 2

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint, 2020. 2

[6] Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, An-

tonio Torralba, and Stefanie Jegelka. Debiased contrastive

learning. In NeurIPS, 2020. 1, 2

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In ACL, 2019. 1, 2

[8] Ali Diba, Vivek Sharma, Reza Safdari, Dariush Lotfi, Saquib

Sarfraz, Rainer Stiefelhagen, and Luc Van Gool. Vi2clr:

Video and image for visual contrastive learning of represen-

tation. In ICCV, 2021. 8

[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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