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Abstract

Self-supervised learning (SSL) aims to learn feature rep-
resentation without human-annotated data. Existing meth-
ods approach this goal by encouraging the feature rep-
resentations to be invariant under a set of task-irrelevant
transformations and distortions defined a priori. However,
multiple studies have shown that such an assumption of-
ten limits the expressive power of the representations and
model would perform poorly when downstream tasks vio-
late this assumption. For example, being invariant to rota-
tions would prevent features from retaining enough infor-
mation to estimate object rotation angles. This suggests ad-
ditional manual work and domain knowledge are required
for selecting augmentation types during SSL. In this work,
we relax the transformation-invariance assumption by in-
troducing a SSL framework that encourages the feature rep-
resentations to preserve the order of transformation scale in
embedding space for some transformations while maintain-
ing invariance to other transformations. This allows the
learned feature representations to retain information about
task-relevant transformations. In addition, this framework
gives rise to a handy mechanism to determine the augmen-
tation types to which the features representations should
be invariant and equivariant during SSL. We demonstrate
the effectiveness of our method on various datasets such
as Fruits 360, Caltech-UCSD Birds 200, and Blood cells
dataset.

1. Introduction

There is an emerging interest in using self-supervised
learning (SSL) approaches for learning feature representa-
tions with unlabeled data. Such SSL approaches include
contrastive learning methods such as SimCLR [2], MOCO
[13], MOCO-V2 [3] and PIRL [20], where representations
are often learned by minimizing embedding distances be-
tween the different augmented views of same images and
maximizing the embedding distances between different im-

*This work was done during Jianhong Wen’s internship at TCL

ages. Another category of SSL approach consists of non-
contrastive methods such as BYOL [11], SimSiam [4] and
Barlow-twins [35] manage to learn feature representations
without the use of negative samples while avoiding unde-
sired trivial solutions. Regardless of the category of SSL,
a careful choice of transformations is nevertheless required
to generate different views of the input data and the trained
feature representations are encouraged to be invariant to
these transformations.

However, a few recent work [7, 33] show that it may
be harmful to enforce transformation invariance for some
downstream tasks. For example, as shown in [33], adding
color jitters in the augmentation may harm the performance
of the model designed to classify objects with similar ap-
pearances but different colors. Similarly, [9] points out
the issue of dismissing intra-class variance, proposing a
new framework that preserves the local structure change of
intra-class samples in the embedding space. However, their
method still requires negative samples to learn inter-class
variance and therefore existing non-contrastive approach
cannot naı̈vely apply this approach. Moreoever, SSL train-
ing often relies on choosing transformation types and scales
to generate image views, which would take considerable
amount of trials and errors [27]. Most SSL methods have
been adopting a pre-defined set of transformations to gener-
ate image views during training and their works have been
based on often implicit assumption that such a selection
would be generic to any downstream tasks. [16, 27, 29, 31]
propose different ways of automatically generating opti-
mal views to help the model learn more efficiently. How-
ever, these methods focus on acquiring feature represen-
tations that are invariant to the transformations. As a re-
sult, they may not capture the important information when
applied to a downstream task that requires transformation-
equivariant feature representations, i.e., feature representa-
tions that varies according to the transformation via a map-
ping function [17].

In this paper, we present a SSL framework that
learns both transformation-invariant and transformation-
equivariant representations by correlating the feature em-
beddings of different image views with the corresponding
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transformation scales orders. To avoid trying out different
transformation types manually, we then leverage the pro-
posed framework and further design a procedure to deter-
mine the transformation type to which the feature repre-
sentations should be equivariant and invariant for a specific
downstream task without training. The main contributions
of this work can be stated as follows:

1. Unlike existing SSL methods which can only learn
transformation-invariant feature representations, we
extend these methods by developing a SSL frame-
work that learns both transformation-invariant and
transformation-equivariant features.

2. Based on the framework above, we provide a proce-
dure to determine the transformation types to which
the feature representations are invariant and equivari-
ant during the training process.

3. We validate the effectiveness of our proposed approach
on several benchmark datasets and show significant
performance improvement over baseline methods.

The code to our methodology will be released.

2. Related Works
2.1. Self-Supervised Learning

Self-supervised learning methods aim to learn supervi-
sion information from unlabeled data. One promising direc-
tion is to learn feature representations by maximizing agree-
ment between differently augmented views of the same data
example via a contrastive or non-contrastive loss in the la-
tent space [2,20]. The contrastive learning based SSL tech-
niques have been successful in learning view-invariant rep-
resentations - by bringing feature representations of the pos-
itive pairs closer and repelling apart the feature representa-
tions of the negative pairs [1, 2, 28, 30]. Non-contrastive
learning methods, on the other hand, manage to learn use-
ful feature representations with only positive pairs. These
methods typically employ a dual pair of siamese networks
composed of an online network and a target network which
requires no gradient. For example, BYOL [11] employs a
momentum encoder that slowly follows the online network
in a delayed fashion through an exponential moving average
while SimSiam [4] uses a direct copy of the online network
to form the target network. Barlow Twins [35] enforces the
cross-correlation matrix between outputs of a positive pair
close to the identity matrix.

2.2. Selecting the Appropriate Transformation
Types

Regardless of which SSL approaches mentioned above,
as [2] points out, the choice of the composition of multi-
ple data augmentation operations in SSL is crucial for pro-
ducing effective representations. Yet we often lack efficient

ways to determine which data augmentation operation to
choose and it often requires domain expertise and well un-
derstanding of the downstream tasks to make such a choice.
InfoMin [29] proposes a way of selecting good views for a
given task by minimizing the mutual information between
views while keeping task-relevant information. Neverthe-
less, this method requires transfer-task knowledge to select
appropriate augmentation. Viewmaker [27] proposes a gen-
erative model to learn the appropriate views without domain
knowledge. However, this method cannot generate views
with structural changes such as cropping and rotation, so the
feature representations may lack generalization capacity.
AutoAugment [6], PBA [15], Fast AutoAugment [19] and
Faster AutoAugment [12] propose algorithms that find the
optimal augmentation policy from a self-designed search
space contains various transformations, but these methods
all require training additional networks to learn the strategy.

2.3. Transformation Invariance and Equivariance

The SSL methods mentioned above ignore the variance
among the positive samples by enforcing the features to be
invariant to the augmentation applied. In [33], the authors
show that training a set of transformation-invariant feature
representations can cause poor performance of the model in
the downstream task. They present a framework that helps
capture transformation variant and invariant visual repre-
sentations by constructing separate embedding spaces, each
of which is invariant to all but one transformation. Note
that in their work, although the features are variant to trans-
formation, they are not equivariant to the transformation as
they cannot express the similarity between different aug-
mented views. In [9], the authors present a novel frame-
work which can capture the features that are sensitive to
the local structure change of the input image by design-
ing a new loss function. However, they simply compos-
ite different types of transformations with ordered scales,
and it may not be the optimal choice for every task. Some
other works like [5, 7, 10, 18, 25, 26] have shown the advan-
tages of transformation-equivariant feature representations
in some computer vision tasks. However, they do not pro-
vide a method to determine which transformations should
be invariant or equivariant when training the network.

3. Method
Our objective is to learn feature representations that are

equivariant to only a specific set of transformations and in-
variant to others. To achieve such kind of property, we cor-
relate the feature embeddings of augmented views with the
corresponding transformation scales. The model architec-
ture and the loss design are described in Section 3.1 and
Section 3.2. In addition, since the optimal strategy of choos-
ing transformations is task-dependent [8, 24, 34], in Sec-
tion 3.3 we propose a procedure to determine the transfor-
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Figure 1. Overview of model structure: The structure con-
sists of an ordered scales of transformation modules, followed
by encoders, and projection heads. The model learns the
transformation-equivariant features by correlating mean of diag-
onal elements of correlation matrix with transformation scales.

mation type to which the features should be variant for a
given downstream task without trying all the types of trans-
formations during training. By following this procedure,
we can find the optimal setting to train our neural network
without consuming lots of computation resources.

3.1. Model Architectures
For each augmentation type, we generate a series of dis-

tinct views of each data sample using a set of scales of an
augmentation that are ordered by their relevant strength.
This is in contrast to the conventional random augmenta-
tions to generate different views of the data. For each in-
put image denoted as I0, we generate a series of k trans-
formed views (I1, I2, . . . , Ik) ordered by the k scales of an
augmentation as shown in the Figure 1. Together with an
input image I0, these k transformed views of the input im-
age are mapped to their corresponding feature representa-
tions through an encoder followed by the projector to gener-
ate the feature embeddings. The projector consists of three
linear layers that reduces the dimensionality of the feature
representations. Similar to Barlow-Twins, we calculate the
correlation matrix between the feature embeddings of each
transformed view against the original view to get a series
of k correlation matrices, C1, C2, . . . , Ck. To decorrelate
the feature components, the off-diagonal elements of these
metrices are encouraged to be zero, which are mostly con-
sidered as the redundancy between the components of these
features. Howerver, unlike Barlow Twins, which equates
the diagonal elements of all correlation matrices to be one,
here we want the mean of diagonal elements of the corre-
sponding correlation matrix to follow the order of the trans-
formation scale n, i.e:

1

D

D∑
i=1

Cn
i,i ≥

1

D

D∑
i=1

Cn+1
i,i (1)

where i, i indexes the diagonal elements, and D represents
the feature dimensions.

3.1.1 Generating Transformations

Following the above procedure, we now discuss the pro-
cedure to generate a series of ordered scales of transfor-
mation for each augmentation type that are applied to the
input images. We define Tordered to represent the ordered
scale of transformations for an augmentation that results in
equivariant feature representations when applied to the in-
put images. The Trandom in contrast represents the scale of
transformations for an augmentation that results in invariant
feature representations when applied to the input images.

For Tordered, we randomly divide the total scale range
into k non-overlapping sub-ranges. The degree of sepa-
ration between the sub-ranges is controlled by the hyper-
parameter d. We randomly pick the scales from each sub-
range with a truncated Gaussian sampling centering around
the mid-point of each sub-range to maintain the order of
sampled scales and a considerably large distance between
two adjacent scales. For instance, if we learn the feature
representations that are equivariant to cropping, we generate
k different cropping ratio (i.e., Tordered = {c1, c2, . . . , ck}
where ci is the cropping ratio for i-th view and c1 >
c2 > · · · > ck). For the augmentation types that are used
to learn invariant feature representations, we generate the
set Trandom of transformations using a random scale. All
the transformations can be applied together to generate the
views Ii.

Extending to the case where we need to learn multiple
types of transformation-equivariant feature representations,
we simply composite the series of ordered scales of dif-
ferent transformations together. Suppose we have n types
of transformation with k ordered scales for each, we can
form n sets of Tordered. We then randomly sample k val-
ues from each Tordered and rank the lists in ascending or-
der. We finally concatenate these n scale lists element-
wisely. Concretely, if we have two types of transforma-
tions such as cropping c and rotation r, we firstly gener-
ate a Tordered (e.g., {c1, c2, . . . , ck} and {r1, r2, . . . , rk})
for each type of transformation, and we randomly pick n
elements from it with replacement to form a new scale list
(e.g., c2, c2, c3, ..., cn and r1, r2, r2, ..., rn−1). Lastly, we
concatenate both scale lists element-wise to form a final
transformation set (i.e., c2r1, c2r2, c3r2, ..., cnrn−1 in this
example). By combining different transformations this way,
the model can benefit from varies of views. We further per-
form this study in Section 5.3.

3.2. Loss function

Inspired by Barlow-twins, our loss function operates on
the correlation matrices of the embeddings obtained from
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different transformed views of the input image. Unlike
Barlow-twins, it encourages the values of the diagonal el-
ements of the correlation matrix to inversely correlate to the
scale of the transformation, so that feature embeddings of
a less transformed image will be more correlated with the
feature embeddings of the original image. Since we have
k correlation matrices, obtained by correlating the embed-
dings of the input image with the embeddings of its each
k transformed views, it implies that the mean of diagonal
values of k− 1 correlation matrix should be higher than the
mean of the diagonal values k correlation matrix, i.e.,

1

D

D∑
i=1

Cn
i,i ≥

1

D

D∑
i=1

Cn+1
i,i + α (2)

where, n ∈ 1, 2, 3, . . . , k-1, and α is a hyperparameter that
controls the degree of the margin between the two mean
values. Taking such prospect of the loss function into con-
sideration, the final loss is a combination of three loss com-
ponents, viz., Lranking, Lpositive, and Loffdiag. The ranking
loss Lranking is defined as:

Lranking =

k∑
n=1

Relu(α− dn−1 + dn) (3)

where dn = 1
D

∑
i C

n
i,i.

Since all the transformed views of the input image rep-
resent positive samples, the feature representations of the
transformed views should remain positively correlated with
the feature representations of the original image. We design
an additional loss term Lpositive to reflect this constraint:

Lpositive = Relu(β − dn) (4)

where β is a hyper-parameter which control the lower
bound of the correlation between the input image and the
n transformed view of the input image.

Also as suggested in Barlow-Twins, we further try to
equate the off-diagonal elements of the correlation matrices
to zero to avoid the redundancy among feature components.
Therefore, we include another loss term Loffdiag specified
below:

Loffdiag =
1

D(D − 1)

k∑
n=0

∑
i,j,i ̸=j

∣∣Cn
i,j

∣∣ (5)

The final loss is a linear combination of Lranking, Lpositive,
and Loffdiag as:

L = Lranking + Lpositive + Loffdiag (6)

3.3. Selection of transformation

In this section, we consider the problem of selecting the
optimal transformation types during SSL. As suggested in

Figure 2. Overview of our procedure of how to select the appro-
priate types of transformation without training.

the previous works [8, 34], it is important to select the
optimal set of transformation types in SSL pretraining for
maximum performance for a particular downstream task.
However this often requires an exhaustive search over the
possible sets of all transformations types, which is compu-
tationally expensive and infeasible in practice, particularly
when performing SSL with large-scale unlabeled datasets.
To alleviate this problem, we study the transformation-
equivariant feature representations obtained by our pro-
posed approach (Section 3.1).

We show our selection procedure in Figure 2. Assume
we have n collection of models that are pretrained on a
reference dataset (e.g., ImageNet) using our proposed ap-
proach in Section 3.1, i.e., each model learns feature repre-
sentations that are equivariant to one of the transformation
types and invariant to other transformation types. Addition-
ally, we have a base model which learns feature representa-
tions that are invariant to all the transformation types. We
use image retrieval to compare the performance of the each
individual model in our collection against the base model.
For this purpose, we use the feature representations of the
test set to query similar feature representations in the train-
ing set. The class label of each image in the test set can
then be determined by the majority voting of K nearest fea-
ture representations in the training set. We hypothesize that
if a certain model achieves better performance compared
to the base model, then the transformation type to which
the feature representations are equivariant would be task-
relevant. Eventually, we can determine a subset of trans-
formation types to which the features should be equivariant
for a given downstream task and these choices can be used
when we perform SSL on a different large-scale unlabeled
dataset for the downstream task. We validate our hypothesis
and procedure above in Section 4.3.
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3.4. Implementation Details

We use PyTorch to implement our method on a GTX
3090Ti GPU with 24GB memory. All the input images are
resized to 64 × 64 during training and testing due to the
limitation of our computation resource. In our experiments,
we pick three transformations including cropping, rotation
and color jittering, and examine how the pretrained model
would behave when we apply these transformations with
ordered scales. In addition, we randomly apply horizontal
flipping, Gaussian blurring and grayscale conversion to the
input. It should be noted that our approach can be used with
any transformation types. We set the number of ordered
scale k = 4, which implies that each transformation type
will be applied 4 times to every image to generate the dis-
torted views for training. The training time of our method
is around 2.5× that of Barlow-Twins due to multiple views
generated for training. The computation time for the fine-
tuning and inference stage is the same as Barlow-Twins.

Throughout our experiments, we use ResNet50 [14] as
the feature encoder, followed by a projector network with
the output dimensions of 128. For the pretraining stage, we
follow the optimization protocol in Barlow-twins. We use
the Adam optimizer and train for 1000 epochs with batch
size of 128. The learning rate is set to 0.001 with a weight
decay of 10−6, and a learning rate warm-up period is set
to 10 epochs. For the fine-tuning stage, we train a linear
classifier for 200 epochs with batch size of 512. The hyper-
parameters α is set to 0.05 and β is set to 0.8. The scale
ranges of the transformations are set to be the same as those
used in Barlow-twins.

4. Experiments
4.1. Datasets

We evaluate our models on four datasets, including the
Fruits 360 dataset [22], Caltech-UCSD Birds 200 (CUB-
200-2011) [32], Oxford 102 Flower [23] and the Blood
Cells dataset [21]. Due to the relatively small-scale of the
later three datasets, we use the whole training set for both
SSL pretraining and fine-tuning to ensure enough data is
available for obtaining expressive feature representations
during SSL pretraining.

The Fruits 360 dataset [22] It consists of 90483 images
of 131 different types of fruits. Unlike the rest of the other
datasets, here we split the dataset into two parts, one for
SSL and one for downstream task. We select images from
63 classes to form a dataset for downstream task evaluation
and use the images from the other 68 classes for SSL pre-
training.

Caltech-UCSD Birds 200 (CUB-200-2011) [32] It con-
tains 11,788 images of 200 species of birds. Each class con-
sists of 50 to 60 images.

Oxford 102 Flower [23] This dataset is an image clas-

Figure 3. We display the difference of the averaged feature values
of each augmented view and the input image. I1, ..., I4 are gen-
erated by applying color jitters with 4 ordered scales to the each
input image from the Fruit 360 dataset.

sification dataset consisting of 102 categories of flowers.
There are around 7000 images and each class consists of
between 40 and 258 images.

The Blood Cells dataset [21] It contains 12,500 aug-
mented images of blood cells. There are approximately
3,000 images for each of 4 different cell types which are
Eosinophil, Lymphocyte, Monocyte, and Neutrophil.

4.2. Evaluation on transformation-equivariant fea-
tures

First, we conduct an experiment on the Fruit 360 dataset
to verify that the model can be trained to extract features
that are equivariant to a specific type of transformation by
following our method described in Section 3.1. We choose
color-jitters as the transformation type, and follow the steps
in Section 3.1 to learn a transformation-equivariant feature
extractor. We randomly select 1000 images from the Fruit
360 dataset and apply color-jitters with four different or-
dered scales to each image followed by extracting the cor-
responding feature representations. We then calculate the
average embedding values across the image batch for each
transformation scale. Figure 3 shows how these average
embedding values change for different transformation scale.
Here, the y-axis displays the difference between the aver-
aged feature values across each batch of four augmented
views and those across the batch of original images. We
can see from the Figure 3 that as the augmentation scale
increases, the differences of the feature values of the aug-
mented views and the original input images become larger.
This demonstrates that the feature representations extracted
from this model are indeed equivariant to color-jitters.

Secondly, we compare the performances of our method-
ology against the baseline SSL method, Barlow-Twins,
that only learns transformation-invariant feature represen-
tations. We notice that Barlow-Twins [35] does not
learn rotation-invariant feature representation in the origi-
nal setting. To demonstrate the effectiveness of rotation-
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Pretraining Datasets barlow-twins barlow-twins cropping color-jitter rotation
(w/ rotation)

CUB w/ finetune 19.70 15.30 22.75 25.50 21.90
Fruits 360 w/ finetune 92.51 96.19 94.57 96.74 96.58
Blood cells w/ finetune 58.30 49.30 70.89 74.47 81.75
Oxford 102 Flowers w/ finetune 78.38 77.65 77.75 74.5 77.88

Table 1. Evaluation results on the Caltech-UCSD Birds, the Fruits
360 dataset, the Oxford Flowers and the Blood cells dataset.

equivariance, we also include random rotation when gen-
erating views when training the Barlow-Twins baseline
for a fair comparison, and the results are shown in ta-
ble 1 column 3. Since the rotation-invariant feature de-
teriorates all datasets’ performance except Fruits 360, we
does not include it when we study the cropping and color-
jitter equivariant feature representation. For our method,
we use color-jitters, crop and rotation as the transforma-
tion types to which the feature representations are equiv-
ariant and the rest as transformation types to which the fea-
ture representations are invariant. These models are pre-
trained on the pretraining dataset specified in Section 4.1
and fine-tuned on the corresponding fine-tuning dataset. As
shown in Table 1, each column shows a type of transfor-
mation that the model is equivariant to, and the Barlow-
Twins is used as the baseline that is invariant to all these
transformations. The evaluations on the CUB, the Blood
cells and the Fruits 360 datasets demonstrate that the
transformation-equivariant feature representations can per-
form better than the transformation-invariant representa-
tions in some tasks. However, transformation-equivariant
feature representations are less expressive for the Oxford
102 Flower dataset since the classes of this dataset cannot be
discriminated by the features equivariant to these transfor-
mations. For example, the same type of flowers may have
multiple colors, and the flowers with the same color may
belong to different categories.

Based on these evaluations, we conclude that hav-
ing transformation-equivariant features and transformation-
invariant features could benefit different cases. It is crucial
to determine the optimal choice of transformation types be-
fore pretraining, and such a selection is task-dependent. For
this reason, we need a method to efficiently determine the
appropriate choice of transformations for a given task, as
described in Section 4.3, and we conduct experiments to
demonstrate the efficacy of our method.

4.3. Evaluation on the selection of transformations

In this section, we first want to validate the hypotheses
made in Section 3.3, i.e., for a particular transformation
type, if we find using transformation-equivariant feature
representations perform better for a specific downstream
task, we deem this particular transformation type crucial to
be included in pretraining, even if the model is trained on
a different dataset. We then follow the procedure in Sec-

tion 3.3 and show how one can select the optimal transfor-
mation types effectively.

We use the Tiny-ImageNet as the reference dataset on
which we train the SSL models. We first train three models
following the method described in Section 3.1. Each model
is trained to be equivariant to one of the transformations,
i.e., cropping, color jitters, and rotation. We also train a
baseline Bawlow-Twins model for reference purpose. As
shown in the first row of Table 2, we pretrain different mod-
els on Tiny-ImageNet and evaluate the downstream task
performance by KNN, following the steps in Section 3.3.
Since all these models outperform the baseline, we believe it
is beneficial to include all of the transformation types when
training for transformation-equivariant features, as verified
in Table 6. Indeed we show that when pretraining on Fruits
360, it is also beneficial to include all transformation types
when training transformation-equivariant features. More-
over, we find the performance of the models pretrained on
the Fruits 360 is positively related to that of the models pre-
trained on Tiny-ImageNet, which verifies our hypothesis.
The same conclusion stands for the scenario when the la-
beled data is limited as well. As we can see from the Ta-
ble 2, even when we conduct our experiments on the few-
shot learning cases where we only have 10 images per class
for fine-tuning the pretrained model, the performance of the
fine-tuned model on the target set are still positively related
to the performances of models pretrained on the reference
dataset. We conduct the same experiments on Blood cells
dataset and reach the same conclusion.

Similarly with the Oxford 102 Flowers dataset,
we conduct the above analysis and find that the
transformation-invariant features are more effective than the
transformation-equivariant features when pretrained on ref-
erence dataset. Therefore we derive the conclusion that
we should encourage the models to learn transformation-
invariance representations for the downstream dataset,
which is also confirmed in Table 3 as we show that the base-
line Barlow-Twins model without transformation equivari-
ance performs the best.

Test on Fruit-360

Pretrained Datasets barlow-twins cropping color-jitter rotation

Tiny-ImageNet w/o finetune 82.16 83.39 88.59 84.43
Fruits 360 w/o finetune 75.79 84.10 92.90 89.49
Fruits 360 finetuned 92.51 94.57 96.74 96.58
Fruits 360-finetuned-10 shots 72.50 75.11 88.17 86.20

Test on Blood-cells

Tiny-ImageNet pretrained 37.60 41.82 43.71 49.14

Blood cells-finetune 58.30 70.89 74.47 81.75

Table 2. Comparison of the evaluation results of different mod-
els on Fruits 360 and Blood cells dataset with Tiny-ImageNet as
reference dataset.
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Pretraining Datasets Barlow-Twins cropping color-jitters rotation

Tiny-ImageNet (w/o finetune) 33.1 30.0 30.0 28.25
Tiny-ImageNet (w/ finetune) 62.63 63.75 58.75 59.63
Oxford Flowers (w/ finetunue) 78.38 77.75 74.50 77.88

Table 3. Comparison of the evaluation results of different models
on Oxford 102 Flowers dataset.

5. Ablation Study

In this section, we conduct a few ablation studies to an-
alyze how different numbers of ordered scales, transfor-
mation scale sampling methods, transformation composi-
tion methods and cropping methods would affect the per-
formance of our model.

5.1. Number of ordered transformation scales

Firstly, we conduct an experiment to explore the effect
of the number of ordered scales of transformation, denote
by k as described in section 3.1, on the performance of the
model. In this experiment, we apply cropping with different
values of k and follow the method described in section 3.1
for SSL pretraining. We vary the numbers of cropping ratios
during training and see how that would affect the perfor-
mance. Note that since our method require at least two cor-
relation matrices for comparison, the minimal value of k is
2. In addition, for a fair comparison, the ranges of cropping
ratio are kept the same regardless of the number of ratios
we use during training. We train and evaluate on the Fruit
360 dataset following the setup described in Section 4.1 and
compare the accuracy between the models trained with dif-
ferent values of k in Table 4. Surprisingly, we find the model
achieves the best performance when k equals to 2 and 3, and
the performance starts to drop as k increases in the train-
ing process. We conclude that even though transformation-
equivariant features are beneficial for a specific task, simply
increasing the number ordered scales of transformation may
hurt the performance. We conjecture that as the number of
transformation scales increases, the difference between the
generated views will decrease, and the model trained this
way will extract features that are too sensitive to the trans-
formation. This may cause a large variation of feature em-
beddings of the samples within the same class, and it will
require more labeled data to learn the in-class variance.

Number of ordered scales 2 3 4 6

pretrained 89.12 88.56 84.10 84.46
finetuned 96.40 96.42 94.57 93.14

Table 4. Comparison of the performance of models trained with
different number of augmented views.

5.2. Comparison of different ways of sampling
scales for transformations

We also compare different ways of choosing the scales of
the transformation. Firstly, the range of the scale is the same
for transformation with ordered scales and random scales.
The first method is to set a fixed range for each transfor-
mation with ordered scales and sample the scale within the
range uniformly for each iteration during training. The sec-
ond way is to generate the range randomly and sample the
scale uniformly for each image. The third way is to gener-
ate the range randomly and sample the scale using Gaussian
distributed sampling. We generate the augmented views
with these 3 ways while training the models on Fruits-360
and compare their results in Table 5. The model trained
with applying transformations using Gaussian distributed
sampled scales achieve slightly better performance than the
other models. This result demonstrates that increasing the
of variety of augmented views in the training stage can im-
prove the expressiveness of the transformation equivariant
features.

5.3. Combination of transformations

We compare two ways of composing different types
of transformation when generating image views. Given
two types of transformations and their corresponding
series of scales c1, c2, ...ck and r1, r2, ..., rk. A simple
way to generate a series of combined transformations
is to concatenate the two series of transformation scales
element-wise to form a series of transformation scales of
the two types c1r1, c2r2, ..., ckrk. We describe a different
method in Section 3.1, where we randomly generated a
composite ordered series in which not all transformation
scales are strictly increasing. We train our models on Fruits
360 by applying color jitters, cropping and rotation together
with ordered scales and show the performance comparison
of the two approaches in Table 6. Column 5 shows the
results of the model trained by combining the three trans-
formations with element-wise composition and Column 6
shows the results by combining the transformations with
random non-decreasing scales. Both methods outperform
the model trained with one transformation using Tordered,
while the performance of the model trained by combining
the transformations with non-decreasing random order is

Pretraining Datasets color-fixed color-random color-Gaussian

Fruits 360-w/o finetune 91.99 91.84 92.21
Fruits 360-finetuned 96.87 96.46 96.99

Table 5. Comparison of three ways of sampling transformation
scales. We apply color jitters with ordered scales to generate aug-
mented views during training and compare the performances of
the three models on the Fruits 360 dataset.
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Pretraining Datasets color-jitter rotation cropping Combined
(e.w.c.)

Combined
(n.d.r.)

Fruits 360 w/o finetune 92.90 89.49 84.10 93.33 94.46
Fruits 360 w/ finetune 96.74 96.58 94.57 98.01 98.91

Table 6. Comparison of the performances of model trained with
multiple transformations with ordered scales. Combined means
using color-jitter,cropping, and rotation simultaneously. Here
e.w.c. stands for element-wise composition and n.d.r. stands for
non-decreasing randomization.

slightly better than that by combining transformations with
fixed order. We conclude that the model is more robust
when trained by combining transformations with random
orders during training. We conjecture that generating more
varied views can help the model to capture more expressive
features.

5.4. Comparison of two ways of applying cropping
with ordered scales

Unlike other types of transformations that we study,
cropping operation is often defined by the four coordinates
of cropped regions, and therefore it is not straightforward
how we define the “scales” for cropping. Here we com-
pare two ways of applying cropping with ordered scales on
the Blood Cell dataset. The first method, as shown by the
first row of Figure 4, is applying cropping on the input im-
age with ordered ratios to generate the augmented views,
yet it is not required the subsequent view region need to
be fully covered by the previous view region. The second
method, shown by the second row of Figure 4, is to gener-
ate a view by applying cropping on its previous view so that
the subsequent image will always be a subimage of its pre-
vious view. Table 7 shows the performances of the models
trained with these two methods of cropping as well as the
performance of the baseline Barlow-Twins model for refer-
ence. As we can see from the results, although it is clear
that learning cropping-equivariant feature representations is
beneficial for downstream tasks, we are seeing mixed re-

Figure 4. Examples of 2 ways of applying cropping with ordered
scales on the Blood cells dataset. First row shows the example of
applying cropping on the input with different ratios. Second row
shows the examples of generating views from applying cropping
on the previous view.

Pretraining datasets Barlow-Twins cropping 1 cropping 2

Tiny-ImageNet w/o finetune 37.60 45.24 41.82
Tiny-ImageNet fintune 49.38 50.99 49.05
blood cells w/o finetune 55.49 53.96 58.06
blood cells-finetune 58.30 60.96 70.89

Table 7. Comparison of the results of different transformation-
equivariant models on Tiny-ImageNet and Blood cell dataset.

sults when it comes to which way to use when generating
ordered cropping scales. Essentially, we find the second
approach works better for the Blood Cell dataset while the
first one works better for the Tiny-ImageNet dataset. We
look into it and conjecture such a phenomenon is caused
by the misalignment of the semantic information correla-
tion and the transformation scale orders. For example, the
object of interest in the Blood Cell dataset is the purple re-
gion which indicates the main portion of the cell. As we
can see from the sample images and cropping regions pro-
duced by the first method, even though the fourth cropping
ratio is larger than the third one, it contains more area of the
object of interest and therefore it should have higher cor-
relation with the original image compared to the third im-
age view in terms of semantic information. The loss func-
tion, on the contrary, is encouraging the correlation terms
to follow the scale order, which would in turn affect the
performance. The second cropping approach, as shown in
Figure 4, avoids this problem by limiting the subsequent
image being a subimage of the previous one, hence contain-
ing less semantic information in subsequent images. We
do not observe similar behavior when pretraining on Tiny-
ImageNet primarily because of much larger and centered
object of interest in those images, and the model benefits
from the large variety of views when applied with the first
cropping method.

6. Conclusion

This work presents a new framework that is able to ex-
tract both transformation-equivariant and transformation-
invariant feature representations by extending existing SSL
method with a new way of view generation approach, a
new methodology as well as the corresponding novel de-
sign of the loss function. Beyond that it provides a proce-
dure to determine the appropriate types of transformations
to which the features should be trained to be invariant and
equivariant. Experiments show that our new framework out-
performs the baseline when the appropriate types of trans-
formations are applied, and the efficacy of our procedure
of transformation selection is also validated by the experi-
ments. In the future, we will explore more effective view
generation method that does not require hand-crafted de-
signs, so that it can be easier to generalize to domains such
as text and audio.
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