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Abstract

Recently, one-stage trackers that use a joint model to
predict both detections and appearance embeddings in one
forward pass received much attention and achieved state-of-
the-art results on the Multi-Object Tracking (MOT) bench-
marks. However, their success depends on the availabil-
ity of videos that are fully annotated with tracking data,
which is expensive and hard to obtain. This can limit
the model generalization. In comparison, the two-stage
approach, which performs detection and embedding sepa-
rately, is slower but easier to train as their data are eas-
ier to annotate. We propose to combine the best of the two
worlds through a data distillation approach. Specifically,
we use a teacher embedder, trained on Re-ID datasets, to
generate pseudo appearance embedding labels for the de-
tection datasets. Then, we use the augmented dataset to
train a detector that is also capable of regressing these
pseudo-embeddings in a fully-convolutional fashion. Our
proposed one-stage solution matches the two-stage coun-
terpart in quality but is 3 times faster. Even though the
teacher embedder has not seen any tracking data during
training, our proposed tracker achieves competitive perfor-
mance with some popular trackers (e.g. JDE) trained with
fully labeled tracking data.

1. Introduction

Tracking people and objects in videos is an important
task in computer vision and at the core of many applica-
tions. For tracking to be achieved, several sub-tasks need
to be solved. The system has to identify (potentially many)
objects of interest in the video, i.e. object detection, and
it has to relate the locations of these objects as they move
in the video, i.e. data association. Many approaches have
been and continue to be proposed for solving the tracking
problem [2, 6, 41, 51, 55, 61, 68]. One popular approach is
tracking by detection. In this approach, detection is made
on each video frame and the tracker associates the detec-
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Figure 1. The training stage of our proposed one-stage tracking
framework using only detection boxes as labels. We augment a
detection example (top right image) with pseudo ground-truth em-
beddings (shown as the embedding vector in green) through a data
distillation approach. These teacher embeddings are obtained by
feeding the cropped image patches (green bounding boxes) into
a teacher embedder (a pre-trained out-of-box Re-ID network). A
joint model takes an input image, and jointly detects objects of
interest (red bounding boxes) and generates an embedding (red
embedding) for each object. The augmented dataset is used to su-
pervise both predictions. This system is so flexible that different
detectors and teacher embedders can be used.

tions from consecutive frames using various cues such as
motion and appearance (a.k.a. appearance embeddings).

Many of the typical tracking algorithms use separately
trained and operated components for detection and embed-
ding [2,6,41,55]. Recently, one-stage trackers that use a sin-
gle convolutional neural network (CNN) for joint detection
and appearance embedding were introduced [31,51,61]. As
the detections and their embeddings are generated in one
forward pass, these approaches are relatively faster than tra-
ditional two-stage ones. In addition, they achieve state-of-
the-art performance on many Multi-Object Tracking (MOT)
benchmarks [51, 61].

However, the success of these joint models depends
heavily on the availability of fully annotated tracking data
including both detection and identification labels. They
need both labels to simultaneously supervise the detection
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and embedding components. Such datasets are more re-
stricted in nature and quantity than typical detection-only
and identity-only datasets as they are much harder and more
expensive to annotate. The lack of fully-annotated videos
from diverse conditions can negatively impact the ability of
one-stage trackers to generalize. In particular, they work
very well on surveillance videos (i.e. the same data that is
used to train them) but fail on videos from media and other
domains where large people are likely to appear.

Reconsidering the two-stage models, although they are
relatively slower, they do not require the expensive track-
ing labels for training. The two components, namely de-
tector and embedder, are trained separately on their special-
ized datasets [58]. Such decoupling makes it possible to use
less restrictive and more diverse detection and identification
training sets, leading to better generalization of the individ-
ual components and the overall tracking system.

Accordingly, we propose in this paper a practical and ef-
fective approach (Fig. 1) that combines the speed of joint
models with the lower training cost and better generaliza-
tion of two-stage ones. In particular, we introduce a weak
supervision framework that can train a joint model without
fully annotated videos. The framework follows the teacher-
student learning scheme [18,40] for training the embedders,
i.e. embedding distillation. This is done by augmenting a
given detection dataset with pseudo ground-truth embed-
dings generated by a Re-Identification (Re-ID) model inde-
pendently trained on Re-ID datasets [65, 66]. During train-
ing, the detector training loss function is augmented with an
embedding distillation loss term to make sure the detection
and embedding heads of the joint model are adequately su-
pervised. This way, any detection dataset can be converted
to a detection and embedding distillation one that can be
used to train a joint model. Our experimental results sug-
gest that training our model on the additional augmented
detection dataset improves the overall detection and track-
ing performance (see Fig. 5). Furthermore, we show em-
pirically that the overall tracking performance is enhanced
with better teacher embedders (Tab. 3).

In addition, the training of the embedding is simplified
in our weakly supervised framework. In general, there are
two losses on embedding, namely the triplet loss [42,47,53]
and the cross-entropy loss. The implementation of the
triplet loss can be tricky since effectively selecting such
triplets from a large sampling space is a non-trivial prob-
lem [42]. The cross-entropy loss models each person in the
training videos as a class, which can make training harder
and slower as we increase the number of labeled people
in the training set. In comparison, our weakly supervised
loss is straightforward and easy to implement. A simple
least squares error between the predicted and pseudo ground
truth embedding is shown to work well, without any sophis-
ticated weighting algorithm to balance the detection and

embedding losses.
Another potential way of avoiding fully annotated track-

ing data is to alternatively train the detection and embedding
heads of the joint model on detection and Re-ID datasets, re-
spectively. Compared to our approach, this leads to a much
more complicated training process involving more hyperpa-
rameters (e.g. learning rates, data sampling schemes, train-
ing schedules, etc. for different heads). In particular, it is not
clear how to pick generally good settings that would work
well for different combinations of datasets. Our method
avoids these issues by using distillation to generate a sin-
gle dataset, instead of two radically different ones.

To our best knowledge, this is the first work that trains
joint tracking models without using any fully annotated
tracking data. Furthermore, our tracker, named TDT-tracker
(i.e. Teaching Detector to Track), runs 3 times faster than
the counterpart two-stage model and stays competitive on
the benchmark MOT challenges.

In the rest of the paper, Sec. 2 discusses the related work,
Sec. 3 explains the proposed approach, Sec. 4 shows the
empirical evaluation of our model, and Sec. 5 ends the paper
with a conclusion.

2. Related work
Two-stage tracking system: Many methods took public
detections [8,14,57] as input and focused on improving the
data association step [41, 55]. They used historical states in
the tracklet or hand-crafted features as cues to connect ob-
jects across frames. Some approaches [2, 6, 32, 54, 58] used
CNNs to extract embeddings as a more robust representa-
tion of the objects. The detections and embeddings are pro-
duced sequentially, and thus, such systems are referred as
the two-stage tracking system. Xiao et al. [56] proposed to
use the low-level features more efficiently by sharing them
between the detection and embedding branches. However,
the speed is not close to the real time since the two compo-
nents are essentially still sequential.

One-stage tracking system: A recent approach, named
Joint Detection and Embedding (JDE), achieved almost
real-time MOT by jointly predicting bounding boxes and
their associated embeddings using the same CNN in a sin-
gle forward pass [51]. A subsequent work, FairMOT [61]
that is built on the CenterNet [68], further improved the per-
formance on the benchmark tracking datasets by carefully
balancing the two tasks during training. The joint learn-
ing scheme was further extended to include the data as-
sociation step as well and achieved promising results [13,
34, 35, 48, 49]. Particularly, TubeTK [34] jointly modeled
the spatial and temporal directions under a 3D CNN frame-
work. Chained-Tracker chains paired objects from adjacent
frames to directly integrate the data association step into
the end-to-end training [35]. Wang et al. proposed to add
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a learnable correlation module to the joint model [48] and
achieved even better results. All of these trackers are trained
on the tracking annotations [7, 9, 24, 33, 56, 63].

In comparison, our proposed training framework does
not require expensive fully annotated tracking data. In-
stead, we combine a detector and an embedder through a
data distillation approach [36]. We also borrow ideas from
knowledge distillation, which aims to compress a compli-
cated model to a simpler student model [18,40]. We empiri-
cally found that an embedder head consisting of merely two
convolutional layers is able to mimic the embedding of a
much larger teacher embedder given the backbone features,
and thus, it compresses the teacher embedder model.

Not much work focuses on mitigating the scarcity of the
fully annotated tracking data on the MOT problem. Fab-
bri et al. created a synthetic dataset named MOTSynth that
contains ground-truth labels for detection and tracking [12],
and empirically showed that the tracker can achieve promis-
ing results with training only on this dataset. However,
whether these sythetic datasets generalize to real world is
still an open question. A concurrent work, KDMOT [60],
explores in a similar direction with different purposes.
The method still pre-trains a joint model on some fully-
annotated tracking data before using a teacher model to su-
pervise its embedding head. In comparison, our goal is to
understand how well such a joint model can perform with-
out any limited tracking data. Thus, our model does not see
any tracking label during training. In addition, our teacher
embedder is only trained on one Re-ID dataset.

Object detector and Re-ID networks: We need to
choose a suitable detector and appropriate teacher embedder
for our proposed framework. In principle, most of the deep
object detectors [15, 23, 28, 37, 38, 68] and any embedding-
based Re-ID network [1, 25, 45, 46] can be used in our sys-
tem. In our experiment, we choose the one-stage detector
(i.e. without Region-of-Interest pooling) RetinaNet [27] as
our backbone detector given its simple design. Since peo-
ple appearing in videos can come in various sizes and dif-
ferent imaging conditions, we prefer to use Re-ID methods
that cover multi-scale features and generalize well across
domains [5, 29, 50, 65]. Among the many good choices,
we choose OSNet [65] as our teacher embedder. Although
it is not the state-of-the-art embedder on the Re-ID bench-
marks anymore, its simplicity, lightweight design, and well-
maintained code base [66] make it a good candidate to
demonstrate the effectiveness of our method.

3. Method
3.1. Problem formulation

Given a detection dataset and a pre-trained (teacher) Re-
ID network, the goal is to train a one-stage tracker that
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Figure 2. Our proposed joint model, adapted from RetinaNet [27].
The newly added embedder head, consisting of merely two con-
volutional layers, is parallel to the detection head. Given an input
image, the backbone network extract multi-level features, which
are fed into the three sub-networks simultaneously. The box sub-
net predicts the location of the bounding boxes containing the ob-
jects of interest. The class sub-net computes a confidence score of
every class for each predicted bounding box. The embedder head
generates an embedding for each bounding box, representing the
discriminative features of that object.

achieves good performance on a target tracking dataset. The
detection dataset only provides the ground-truth bounding
boxes Bi ∈ RK×4, where K is the number of ground-truth
bounding boxes in the ith image. We do not use any identifi-
cation labels of any tracking dataset in our network training.

3.2. Model architecture

We choose RetinaNet [27] as our base detector, and
add a simple embedder head to the RetinaNet, making it a
joint model of detection and embedding. RetinaNet can be
combined with different available architectures, e.g. Mo-
bileNet [19], ResNet [17], and SpineNet [10] to predict de-
tections. Specifically, RetinaNet uses a Feature Pyramid
Network (FPN) [26] to generate multi-level features as well
as a classification subnet and a box regression one that uti-
lize these multi-level features to make predictions on each
of the FPN levels.

As shown in Fig. 2, an embedder head (highlighted in
the blue rectangle) is added to RetinaNet, parallel to its de-
tection head. The embedder branch is a cascade of 2 con-
volutional layers with a batch normalization layer [20] in
between. This head predicts an embedding for each anchor
box at each level. This means that the output embeddings
for level l have size Ds × S ×R×Hl ×HW , where S and
R are the number of scales and aspect ratios in the anchors
respectively, Hl and Hw are the height and width of level l
in the feature pyramid respectively, and Ds is the dimension
of the output embedding (i.e. student embedding).

At inference time, we apply non-maximum suppression
(NMS) at threshold 0.5 to reduce the number of anchors.
We only take the top 100 or less anchors, and remove those
anchors with classification scores smaller than 0.05. The
predicted embedding is normalized before being used in the
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data association process.

3.3. Weak supervision framework

Figure 1 shows the proposed weak supervision frame-
work. We generate a pseudo ground-truth embedding, i.e.
the teacher embedding, for each ground-truth bounding box
provided by the detection dataset. The areas correspond-
ing to each bounding box are cropped independently and
resized to the resolution expected by the teacher embedder,
say 256 × 128 as in our experiments [65]. These image
patches are fed into the teacher embedder, and a teacher
embedding f ∈ RDt of dimension Dt (i.e. dimension of
the teacher embedding) is generated and attached to each of
these bounding boxes. The student embedding can have the
same or less number of dimensions than the teacher embed-
ding, that is Ds ≤ Dt.

We create these pseudo embedding labels for each detec-
tion dataset beforehand and store them for the training pro-
cess. Therefore, this is a one-time computational cost. The
memory overhead depends on the density of the bounding
boxes in the detection dataset and the number of dimen-
sions of the teacher embeddings. For example, we use a
teacher embedding of 512 dimensions [65,66], and the stor-
age overhead of the detection datasets used in our experi-
ments ranges from 9.3% to 73.3% of the original storage.

Following RetinaNet, each anchor is at most assigned to
one ground-truth bounding box based on the intersection-
over-union (IoU). If an anchor is assigned to a ground-truth
bounding box, it is also assigned the teacher embedding of
that bounding box. There is no pseudo ground-truth embed-
ding for those unassigned anchors.

Teacher embedder We choose a pre-trained out-of-box
Re-ID network as our teacher embedder. The data associ-
ation step in the tracking process requires the embeddings
to be discriminative so that the same object occurrences can
be associated across different frames. This is also required
in the person re-identification task and thus, the Re-ID net-
work is a good candidate as our teacher embedder. We
choose OSNet [65, 66] as the teacher embedder in our pro-
posed teacher-student framework due to its multi-scale de-
sign and well-maintained lightweight implementation [64].

3.4. Losses

We use different types of losses for these three types of
predictions, namely classification, bounding box localiza-
tion, and embeddings. These losses are measured on all the
valid anchor boxes across all the levels defined by the FPN.

Specifically, we use focal loss [27] Lc as the supervi-
sion signal on the predicted classification score by the clas-
sification subnet to mitigate the class imbalance problem.
Although there may be many people in a video, the class

imbalance issue still exists due to the large number of an-
chors. The focal loss reduces the contribution of those easy
samples to the final loss so that the network can learn on the
hard samples.

Huber loss [16] Lb is used on the box regression because
of its robustness to outliers. We use the least square loss (L2
loss) as the loss measured between the teacher embeddings
f and the predicted student embeddings f̂ , that is,

Le(f, f̂) =

Ds∑
i=1

(fi − f̂i)
2 , (1)

where fi is the ith element of the embedding. If Ds < Dt,
we use the first Ds elements in the teacher embedding f
as the supervision signal. Recall that Dt is the dimension
of the teacher embedding. The re-normalization of the new
teacher embedding is not required during training. The em-
bedding loss Le of an image is averaged embedding loss
over all the assigned anchors.

The total loss is weighted over the three losses,

L = αcLc + αbLb + αeLe . (2)

We find that it is robust to a range of different weighting
schemes.

3.5. Data association

Our joint model can be easily integrated into different ex-
isting data association algorithms. Particularly, we use the
association system proposed by FairMOT [61]. A tracklet
represents the current state of the corresponding track. The
first batch of tracklets are initialized based on the detections
in the first frame. The Kalman filter [21] is used to predict
a likely location of the tracklet in the next frame. Both the
motion and the embedding of the objects are used to match
the detections in the new frame and the existing tracklets
in the tracklet pool, by the Hungarian algorithm [22]. We
found that the threshold used in the matching distance can
make a difference, since our embedding space is likely dif-
ferent from theirs. The unmatched tracklets and detections
are further matched by thresholding the IoU at 0.5.

4. Experimental results
4.1. Datasets and metrics

Following JDE [51] and FairMOT [61], we integrate sev-
eral datasets as a large training dataset to avoid training
bias. Particularly, we use ETH dataset [11], CityPersons
dataset [59], and CrowdHuman dataset [43], which only
provide detection labels. In addition, we use fully annotated
tracking datasets CalTech dataset [9], MOT17 dataset [33],
CUHK-SYSU dataset [56], and PRW dataset [63]. How-
ever, we only use their detection labels for training our joint
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models and ignore the ID labels. The embedding branch is
supervised by the teacher embedders that are not trained on
these tracking datasets either.

The teacher embedders used in our experiments are
only trained on the MSMT17 dataset [52], which consists
of 180 hours of videos and identity labels for person re-
identification task. We use the teacher embedders to aug-
ment the mentioned detection datasets with pseudo embed-
ding labels, following the procedure described in Sec. 3.3.

We use BaseTrainSet to denote the collection of all
these augmented detection datasets excluding CrowdHu-
man. BaseTrainSet is used to train various models in our
ablation studies (if not explicitly mentioned) and in Tab. 1.
We use six video sequences from the MOT15 [24] train-
ing set as the validation dataset in the ablation studies and
in Tab. 1, which do not include the overlapped sequences
with the MOT17 dataset. We also evaluate our model,
trained on both the BaseTrainSet and augmented Crowd-
Human datasets, on the private MOT16 and MOT17 bench-
mark [24, 33] to compare with other work (Tab. 2). Our
model is further fine-tuned on the MOT20 [7] training set
before evaluated on the private MOT20 benchmark (Tab. 2).

We evaluate both the detection and tracking abilities of
our models. We use Average Precision (AP) at IoU 0.5
to measure the performance of detection [51, 61]. Track-
ing performance is measured by the popular CLEAR met-
rics [3] and IDF1 score [39].

4.2. Implementation details

We use most of the default settings of RetinaNet [27] in
our base detector. Particularly, the FPN consists of features
from level 3 to 7. We use three scales and three aspect ratios
(0.25, 0.5, and 1.0) of anchors. Both the class subnet and
box subnet consist of four convolutional layers of feature
size 128. The embedder head consists of two convolutional
layers of filter size 3 × 3. The intermediate feature size
is 256. We experiment on the output embedding size of 64,
128, 256, and 512 in an ablation study (Tab. 6), and use 128,
combined with a ResNet-34 backbone architecture, in the
benchmark evaluation (Tab. 2). The teacher embedder [65,
66] generates embeddings of size 512.

The input image size is 608 × 1088 for ablation studies
and Tab. 1, and 1080 × 1920 for private benchmark eval-
uation (Tab. 2). Since our teacher embedder is not trained
on the similar tracking datasets, we found that clearer hu-
man figures resulting from the larger resolution lead to bet-
ter tracking performance. We use standard data augmen-
tation techniques including random horizontal flipping and
random scaling with scaling ratio from 0.5 to 2.0.

For the weighted loss, we set αc = 1 for the focal loss on
classification, αb = 50 for the Huber loss on the bounding
box regression, and αe = 10 for the L2 loss on embedding.
We found that both the detection and tracking performance

are robust to the weight of the embedding loss in a range of
2 to 10. We set α as 0.25 and γ as 1.5 in the focal loss; the
δ in the Huber loss is 0.1.

We set initial learning rate as 0.15 and use the cosine
decay schedule [30]. The warm up learning rate is 0.001
for the first 2000 iterations. We use batch size of 16. The
models are trained with 300K to 500K iterations depending
on the settings. All inferences are computed on a single
Nvidia P100 GPU.

4.3. Main results

4.3.1 TDT-tracker versus two-stage tracker

Table 1 compares our TDT-tracker and its counterpart two-
stage tracker. The detectors of both trackers have the same
architecture and are trained under the same training settings.
From Tab. 1, we see that the joint learning has a negative
effect on the detection performance with 1.2% (0.924 to
0.913) decrease on the Average Precision (AP) of detec-
tion. However, the one-stage tracker achieves much better
tracking performance with much faster speed. For example,
the one-stage tracker achieves 3.3% better MOTA (0.760 to
0.785) and 37.4% (91 to 57) less ID switches with 3.2 times
faster speed (3.03 to 9.61 frame per second).

Tracker MOTA ↑ IDF1 ↑ IDs ↓ AP ↑ FPS ↑
Two-stage 0.760 0.769 91 0.924 3.03

TDT-tracker 0.785 0.787 57 0.913 9.61

Table 1. Comparison between the two-stage model and our joint
model (TDT-tracker). Both models use the same detector architec-
ture, and the joint model has an additional embedder head (Fig. 2).
We use an OSNet [65,66] as the embedder in the two-stage tracker
as well as the teacher embedder for training our TDT-tracker.

4.3.2 MOT challenges

We evaluate our TDT-Tracker on the private benchmark
tracking datasets [7, 33] to compare with some existing
trackers (Tab. 2). There are two categories of trackers,
namely the ones that use the fully annotated real tracking
data in the training and the ones that do not. The state-of-
the-art results are obtained by the former ones [49, 61].

From Tab. 2, our TDT-tracker outperforms other meth-
ods under the same category by a large margin on
MOT17 [33] and MOT20 [7]. For example, TDT-tracker
outperforms the second MOTA performance by 6.9% (59.7
to 63.8) and the second IDF1 by 17.1% (52.0 to 60.9) on
MOT17. On MOT16 dataset, there are two two-stage track-
ers, namely CNNMTT [32] and POI [58], that achieve bet-
ter MOTA and IDF1 than TDT-tracker (we still outperform
on Mostly Tracked Targets (MT) and Mostly Lost Targets
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Dataset Tracker MOTA ↑ IDF1 ↑ MT ↑ ML ↓ IDs ↓ Use Tracking Labels?

MOT16

JDE∗ [51] 64.4 55.8 35.4% 20.0% 1544
YesChainedTrackerV1∗ [35] 67.6 57.2 32.9% 23.1% 1897

FairMOT∗ [61] 74.9 72.8 44.7% 15.9% 1074
SORTwHPD16 [4, 61] 59.8 53.8 25.4% 22.7% 1423

No
DeepSORT 2 [54] 61.4 62.2 32.8% 18.2% 781
CNNMTT [32] 65.2 62.2 32.4% 21.3% 946
POI [58] 66.1 65.1 34.0% 20.8% 805
TDT-tracker∗ (Ours) 64.1 61.5 36.5% 16.5% 1391

MOT17

CenterTrack∗ [67] 67.8 64.7 34.6% 24.6% 2583
YesFairMOT∗ [61] 73.7 72.3 43.2% 17.3% 3303

CorrTracker∗ [48] 76.5 73.6 47.6% 12.7% 3369
SST [44] 52.4 49.5 21.4% 30.7% 8431

NoCenterTrack-MOTSynth∗ [12] 59.7 52.0 - - 6035
TDT-tracker∗ (Ours) 63.8 60.9 35.4% 17.3% 4401

MOT20

GSDT [49] 67.1 67.5 53.1% 13.2% 3133 YesCorrTracker∗ [48] 65.2 69.1 66.4% 8.9% 5183
Tracktor-MOTSynth [12] 43.7 39.7 - - 3467 NoTDT-tracker∗ (Ours) 47.9 46.0 18.5% 20.1% 5342

Table 2. Comparison with existing trackers under the private MOT benchmark datasets [7, 33]. These trackers are further categorized
into the ones that use (i.e. Yes in the last column) the expensive fully annotated real tracking data and the ones that do not (i.e. No). The
one-stage trackers are marked by ‘∗’.

(ML) metrics). CNNMTT uses the publicly available detec-
tions by a state-of-the-art detector and use the ID labels of
MOT16 training set to train its embedder. Those ID labels
are very useful since the MOT16 training and testing sets
contain similar types of people appearing. POI [58] uses
different detection thresholds on different test sequences,
while we only use one threshold. Adaptive thresholding
helps achieve better performance on the benchmark datasets
but it is not very practical.

In addition, while maintaining very similar MOTA as
JDE [51] on MOT16 benchmark, our TDT-tracker achieves
10.2% better IDF1. JDE is a one-stage tracker and trained
on some fully annotated tracking datasets.

4.4. Ablation studies

4.4.1 Importance of teacher embedders

Teacher Embedder MOTA ↑ IDF1 ↑ IDs ↓ AP ↑
ResNet50 (22.8) 0.754 0.764 76 0.902
ON-Small (31.0) 0.763 0.766 76 0.911
ON-Large (43.3) 0.785 0.787 57 0.913

Table 3. Detection and tracking performance of our TDT-tracker
with different teacher embedders. All these models use the same
architecture and training settings. The number in the parentheses
adjacent to each teacher embedder is its mean Average Precision
(mAP) evaluated on the Market1501 dataset [62].

The teacher embedder determines the embedding quality
of our joint model as it provides the pseudo labels for train-
ing. In Tab. 3, we compare our TDT-tracker under three
different teacher embedders, namely ResNet-50 [17, 64],
OSNet-Small [65, 66], OSNet-Large [65, 66]. These three
embedders are trained on the MSMT17 Re-ID dataset [52]
(Fig. 3 left block) and achieve increasing mean Average Pre-
cision (mAP) on the Market1501 Re-ID dataset [62].

Interestingly, the one-stage tracker achieves increasing
detection performance with better teacher embedders, and
the largest AP increase is 1.2% (0.902 to 0.913). The
tracking performance also increases with better teacher em-
bedders. For example, comparing to using ResNet50 as
the teacher embedder, TDT-tracker achieves 4.1% better
MOTA and 25.0% lower ID switches.

Dataset FairMOT TDT-RNet34
AP ↑ MOTA ↑ AP ↑ MOTA ↑

Overall 0.932 80.5 0.926 78.4
KITTI13 0.796 42.7 0.792 32.3
ETH-SunnyDay 0.997 84.3 0.984 88.7

Table 4. Comparison between FairMOT [61] and TDT-tracker on
the detection and tracking performance separately. Both models
are trained on the same datasets including the BaseTrainSet and
CrowdHuman. KITTI13 and ETH-Sunnyday are two sequences
in the validation set.
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MSMT17 Sunnyday KITTI-13

(a) (b) (c) (d) (e) (f)

Figure 3. Left: Two examples from MSMT17 Re-ID dataset [52]
that our teacher embedder is trained on. Middle and right: Exam-
ples from the Sunnyday sequence and KITTI-13 sequence of the
MOT15 [24] training set that is used as the validation set in abla-
tion studies. (a) is a typical sample in the MSMT17 dataset, and
(b) is an occluded sample. (c) and (e) are two clear examples from
Sunnyday and KITTI-13 respetively, and (d) and (f) are unclear
ones. The clear examples are closer to the ones in the MSMT17,
and they are more common in the Sunnyday sequence but not in
the KITTI-13 sequence.

However, the current teacher embedder cannot support
our joint model to achieve comparable tracking perfor-
mance as the state-of-the-art tracker [48, 49, 61] (trained on
the fully annotated tracking labels) on some cases. In Tab. 4,
we compare the performance of a FairMOT [61] model and
our TDT model on the validation dataset. Both models have
been trained on the same datasets, namely the BaseTrain-
Set and the CrowdHuman dataset, and use the ResNet-34 as
the backbone network. In a sequence named KITTI13 (sec-
ond row in Tab. 4) from the validation set, the most of the
pedestrians appearing in the video are not clear (see Fig. 3
(f)), and our embedder does much worse (24.36% worse on
MOTA) than FairMOT. In contrast, our embedder outper-
form FairMOT by 5.22% on MOTA on the sequence ETH-
Sunnyday (third row) where most people are large and clear
in the video (see Fig. 3 (c)). Both detectors perform compa-
rably on both sequences, and thus, the embedding quality is
the main cause. FairMOT does better on the KITTI13 likely
attributes to their privilege of seeing similar samples during
training. However, this privilege may not always exist.

Figure 4 shows qualitative results from our TDT-tracker
on different types of video sequences in MOT17 [33] and
MOT20 [7] test sets. Most of the objects are accurately de-
tected and our TDT-tracker can track well even on occluded
people (see the successful tracking of the fifth person from
left with ID 461 in the starting frame of sequence (a) in
Fig. 4).

4.4.2 Backbone choices for the joint model

A suitable backbone architecture is essential to the success
of our weakly supervised scheme. We need the backbone
features to contain not only the information for detecting
objects but also information on the distinguishing properties
of the objects. In addition, these properties can be extracted

Model MOTA↑ IDF1↑ IDs↓ AP↑ FPS↑
MNet 0.744 0.747 72 0.907 11.18
MNet-FPN 0.764 0.759 73 0.910 10.01
RNet34-FPN 0.785 0.787 57 0.913 9.61
RNet50-FPN 0.757 0.786 58 0.912 7.93

Table 5. Impacts of different backbone architecture on the perfor-
mance of our TDT-tracker. MNet refers to MobileNet [19] and
RNet is ResNet [17].

for people of different sizes in an image. In Tab. 5, we show
the performance of detection and tracking under different
choices of backbone architecture.

From Tab. 5, we can see that the feature fusion mecha-
nism helps the overall tracking performance. With the FPN,
MOTA improves 2.7% (0.744 to 0.764) on the MobileNet
backbone, i.e. from MNet to MNet-FPN. A more power-
ful backbone architecture boosts the tracking performance
by another 2.75% (0.764 to 0.785), i.e. from MNet-FPN to
RNet34-FPN. The improved embedding quality is the main
reason since the detection results are almost the same but
the number of ID switches drops 21.9% (from 73 to 57). In-
terestingly, using ResNet-50 decreases the overall tracking
performance measured by MOTA by a large margin. The
reason is that the tracking precision (as in the CLEAR met-
rics [3]) decreases while other metrics stay similar. Similar
phenomenon is also observed in FairMOT [61], where they
also find that simply increasing the backbone power may
not improve the overall tracking performance.

4.4.3 Impact of embedding dimensionality

Dim MOTA ↑ IDF1 ↑ IDs ↓ AP ↑ FPS ↑
64 0.739 0.772 67 0.902 13.34
128 0.773 0.782 55 0.908 11.82
256 0.762 0.777 63 0.910 10.76
512 0.785 0.787 57 0.913 9.61

Table 6. The effects of using different portion of the teacher em-
bedding as the supervision signal. All the models share the same
architecture except for the last layer of the embedding head since
embeddings of different dimensions are generated.

A practical issue of using the proposed weakly super-
vised framework is that the dimension of the teacher em-
bedder can be too large, which can create a large mem-
ory and computational overhead, especially for the anchor
based detection models as they predict an embedding for
each anchor box.

As mentioned in Sec. 3.4, a simple way to circumvent
the situation is to use the first Ds elements of the teacher
embedding. Recall that Ds represents the size of the desired
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Figure 4. Three qualitative examples by our TDT-tracker on video sequences [7, 33] of different types. Sequence (a) and (b) contain
high-resolution people with less occlusions. Sequence (c) shows the crowded scenario.

output embedding, i.e. student embedding. Tab. 6 shows the
performance of setting Ds to be 64, 128, 256, and 512 re-
spectively, given that Dt (dimension of the teacher embed-
ding) is 512. First, there is a clear pattern of improving de-
tection performance as larger portion of the teacher embed-
ding is used. Interestingly, in comparison to the full teacher
embeddings, our joint model can achieve 94.1% (0.739 out
of 0.785) of the tracking performance measured in MOTA
and 98.1% if measured in IDF1 by using only one eighth
of them. However, increasing the embedding portion gen-
erally leads to better tracking performance and using the
full teacher embedding still bests other settings. More di-
mension contains more information that can be helpful in
discriminating people. In addition, the teacher embedding
may not be evenly distributed, and the first part likely can-
not represent the full information. Note that the Ds = 128
and Ds = 256 are against the trend, where the tracking
performance decreases as Ds increases. We believe this is
due to the randomness of data. On the other hand, there is
a clear increasing pattern of the inference speed as Ds de-
creases. Thus, this is a typical speed and accuracy trade off
situation.

4.4.4 Training data

Under the proposed weakly supervised framework, any de-
tection dataset can be easily augmented with some teacher
embeddings and used as a tracking dataset to train a joint
model for tracking. This is an advantage. We show
in Fig. 5 that the overall tracking performance, measured
in both MOTA and IDF1, improves as more augmented
datasets are used in training. The detector also improves,
although marginally, as well. This means our weakly super-

BaseTrainSet 
 - MOT17

BaseTrainSet BaseTrainSet 
 + CHuman

Training Datasets

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Va
lu

e Detection AP
IDF1
MOTA

Figure 5. Improvement of the performance in both the detection
(AP) and tracking (MOTA and IDF1) of our proposed system as
more distilled detection datasets are used for training. These three
models share the same architecture and training settings. The
higher the better for these metrics.

vised framework benefits from the diversity of the detection
datasets, which is promising because detection datasets are
easier to annotate than tracking datasets.

5. Conclusion
In this paper, we propose a simple but effective embed-

ding distillation framework that aims to mitigate the issue
of expensive and scarce fully annotated real tracking data.
Our TDT-tracker achieves competitive results on the bench-
mark datasets and we analyze various aspects of our frame-
work. Particularly, we have shown that our tracker achieves
better performance with better embedders. This is a promis-
ing direction since better Re-ID networks are actively being
proposed, which directly improves our one-stage tracker.
While our work has avoided using any tracking data to train
the teacher embedder, it is still possible and practical to
sample some pairs of frames from videos, have them anno-
tated, and use their annotations as Re-ID examples to fur-
ther improve the student tracker performance.
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A benchmark for multi object tracking in crowded scenes.
arXiv:2003.09003[cs], Mar. 2020. arXiv: 2003.09003. 3, 5,
6, 7, 8

[8] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Per-
ona. Fast feature pyramids for object detection. IEEE
transactions on pattern analysis and machine intelligence,
36(8):1532–1545, 2014. 2

[9] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Per-
ona. Pedestrian detection: A benchmark. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
304–311. IEEE, 2009. 3, 4

[10] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi,
Mingxing Tan, Yin Cui, Quoc V. Le, and Xiaodan Song.
Spinenet: Learning scale-permuted backbone for recognition
and localization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 3

[11] Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc
Van Gool. A mobile vision system for robust multi-person
tracking. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8. IEEE, 2008. 4

[12] Matteo Fabbri, Guillem Brasó, Gianluca Maugeri, Aljoša
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