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Abstract

The prior self-supervised learning researches mainly se-
lect image-level instance discrimination as pretext task. It
achieves a fantastic classification performance that is com-
parable to supervised learning methods. However, with de-
graded transfer performance on downstream tasks such as
object detection. To bridge the performance gap, we pro-
pose a novel object-level self-supervised learning method,
called Contrastive learning with Downstream background
invariance (CoDo). The pretext task is converted to focus
on instance location modeling for various backgrounds, es-
pecially for downstream datasets. The ability of background
invariance is considered vital for object detection. Firstly,
a data augmentation strategy is proposed to paste the in-
stances onto background images, and then jitter the bound-
ing box to involve background information. Secondly, we
implement architecture alignment between our pretraining
network and the mainstream detection pipelines. Thirdly,
hierarchical and multi views contrastive learning is de-
signed to improve performance of visual representation
learning. Experiments on MSCOCO demonstrate that the
proposed CoDo with common backbones, ResNet50-FPN,
yields strong transfer learning results for object detection.

1. Introduction

The paradigm of supervised pretraining and finetuning
has been dominant in computer vision for a period of time.
Typically, the pretraining is optimized on large-scale la-
beled datasets, and then regarded as initialized weights
to finetune for various downstream tasks [12] [14] [32].
Instead, self-supervised learning (SSL) aims to learn the
generic pretraining representations, independent of man-
ual labels [18]. Recently, SSL has achieved a performance
comparable to supervised pretraining in image classifica-
tion [10] [2] [1] [9]. However, it suffers a performance
degradation when applied to downstream tasks, such as

Figure 1. The performance inconsistency of related SSL methods
in image classification and object detection. Specifically, the clas-
sification performance of the relevant SSL methods on ImageNet
is increasing, while there is no corresponding trend in object de-
tection when finetuning the pre-trained weights on MSCOCO.

object detection. It indicates that the existing SSL ap-
proaches mainly focus on image classification, without con-
sidering the location modeling ability for object detection.
The performance gap of mainstream SSL methods in image
classification and object detection is as suggested in Fig-
ure 1. It can be observed that the linear classification ac-
curacy of the relevant SSL methods on ImageNet dataset
is increasing from 67.5% to 75%. While compared with
MOCO [10], which is proposed in 2020, the detection per-
formance (mAP) of recent approaches is reduced when fine-
tuning on MSCOCO dataset.

Existing works that contribute to bridge the gap usually
focus on pretext task and architectural alignment. Firstly,
instance discrimination, the typical SSL pretext task, usu-
ally assumes that different data-augmentations (views) of
the same image should be similar but discriminable from
other images. Generally speaking, researchers tend to be-

4196



Figure 2. The overview of CoDo. For a pretraining image, we utilize selective search to generate a series of proposals. Only one proposal
is randomly selected, then pasted onto various downstream background images.

lieve that image-level pretext task is not suitable for object-
level task. Namely, instance discrimination is suit for image
classification datasets, such as ImageNet [5], which is usu-
ally single-centric-object. However, not for object detection
datasets, which mainly consist of non-iconic images, such
as MSCOCO [16], there are multiple instances on an image.
And secondly, the spatial modeling required for object de-
tection can be optimized during self-supervised pretraining
by aligning model structures, such as introducing feature
pyramid network [15], RoIAlign [11] and so on. Although
SSL makes it possible to involve downstream datasets dur-
ing pretraining, we identify that prior works still overlook
the function of downstream datasets. Specifically, obtaining
the location ability for same foreground objects of pretrain-
ing datasets, when the various background images are from
object detection datasets.

Motivated by this, we present a new object-level
contrastive learning method that fuses pretraining and
downstream datasets, called Contrastive learning with
Downstream background invariance (CoDo). We firstly
generate object proposals for pretraining images by selec-
tive search [21], and paste them at arbitrary aspect ratios and
scales onto various downstream background images. Then,
by introducing bounding box jitter, proposals with back-
ground information will be regarded as views for object-
level contrastive learning.

Involving bounding box in pretraining, we are allowed to
refer to the object detectors for structural alignment. Apart
form pre-training the backbone, our approach realizes a bet-
ter initialization for all components in detectors. Exper-
imentally, we study mainstream detection backbone net-
work, ResNet50-FPN on MSCOCO. Our approach shows
impressive improvements over the baseline.

2. Related work

Self-supervised learning refers to learn visual features
from unlabeled data without human annotations [13]. A
mainstream solution is to utilize various pretext tasks to
generate pseudo labels in order to obtain the generalizable
representations, such as Rotation [8], Colorization [30], In-
painting [19], Jigsaw Puzzle [6] and so on. Recently, con-
trastive learning becomes the most popular image-level pre-
text task for self-supervised learning [4]. The optimiza-
tion goal is to maximize the representation of image in-
stances and their corresponding views, while minimizing
the remaining other image instances [25]. The further con-
trastive learning approaches focus on a better construction
of negative sample and a simplification of network struc-
ture. For instance, Momentum Contrast (MoCo) [10] builds
a moving-averaged encoder and maintain a negative sam-
ple queue to minimize a contrastive loss. SimCLR [2] veri-
fies the effectiveness of data augmentation strategy and in-
creases the batch size of training samples for contrastive
learning. Bootstrap Your Own Latent (BYOL) [9] mini-
mizes a similarity loss between online and target networks
without using negative pairs. Barlow Twins [29] introduces
a cross-correlation matrix to avoid trivial constant solutions,
the simplified model dose not need predictor network, mo-
mentum encoder and stop-gradients any more.

The further goal of SSL is to learn general representa-
tions which can be transferred for downstream tasks. Some
modified approaches have been proposed to bridge the gap
between pretraining and downstream tasks. Detco [26] and
Insloc [28] separately design a detection-friendly pretext
task. Detco contrasts the global image and local image
patches to improve object detection. Insloc constructs a new
view by randomly pasting foreground objects in different
background images for contrastive learning. OLR [27] and
Soco [23] propose object-level unsupervised representation
learning framework for object detection respectively. Self-
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EMD [17] performs the Earth Mover’s Distance as a metric
to measure the spatial similarity between two image rep-
resentation in order to learn spatial visual representations
for object detection. DiLo [31] selects saliency estima-
tion to localize the foreground object in a data-driven ap-
proach. Self-EMD [17] directly pre-trains on MSCOCO
and achieves a higher detection performance, instead of
commonly used ImageNet.

3. Method
We propose a new object-level contrastive learning

framework as shown in Figure 2, which introduces the unla-
beled downstream datasets information during pre-training.
The proposals of the pretraining images are pasted to the
downstream images, the bonding box of proposals is de-
formed to generate new views with downstream informa-
tion. It enables localization of the foreground object dur-
ing pretraining, and can be regarded as a simulation of ob-
ject detection during pretraining. Considering that no su-
pervised information of downstream dataset is introduced
into the pre-training, so there is no risk of data leakage.
Meanwhile, we introduce architectural alignment to pre-
train the essential properties of object detector, such as FPN,
RoiAlign and R-CNN head. Our proposed method is de-
tailed below.

3.1. Copy, paste and jitter (CPJ)

We design a data augmentation method for proposals to
realize location modeling, terms as CPJ. In order to realize
object-level contrastive learning, we select selective search
to generate proposal in unsupervised way. Considering Ima-
geNet is usually regarded as a single-centric-object dataset,
most proposals are similar. So we only randomly select one
proposal for each image, those proposals with too large or
too small aspect ratios (>= 3 or <= 1/3) are ignored. In
addition to ImageNet, we add two downstream object detec-
tion datasets (MSCOCO and Pasco VOC [7]) as alternative
background images. For the same pretraining image, de-
pending on the number of views involved in the contrastive
learning, we randomly select the corresponding number of
background images to generate the pasted images.

Background invariance is important for object detec-
tion, namely, a robust detector can recognize the foreground
objects on various backgrounds. We paste the proposals
at arbitrary aspect ratios and scales onto various down-
stream background images. In this process, translation and
scale invariance are also considered. The pasted position
is treated as the bounding box. Then the bounding box is
jittered to contain background images. The jittered boxes
are filtered by a proper IoU threshold, we set it to be greater
than 0.6. The whole image I and transformed bounding box
bb are regarded as inputs of Query network and Key network
to conduct contrastive learning.

Iq, bbq = CPJ(Ip, Idq). (1)

Iki , bbki = CPJ(Ip, Idki). (2)

Where Ip is the proposal of pretraining images, Idq is the
downstream background image for Query network, and Idki

is the i-th downstream background image for Key network.
To be consistent with existing SSL methods, the default

version of our proposed method selects two views for Query
network and Key network separately. Actually, multi views
help to increase diversity during contrastive learning. We
also design a 4 views version, which view 2 to view 4 are
inputs of Key network.

3.2. Hierarchical contrastive learning

In our approach, the pipeline of MOCO-V2 [3] is
adopted as baseline for learning contrastive representations.
We will describe how to achieve structural alignment for
MOCO V2 in this section. We select the Resnet50 with
FPN as Query network fq and Key network fk. FPN is a
common component in the object detector, which can fuse
different feature maps to reach a better detection perfor-
mance. To further align with Mask R-CNN, RoIAlign is
introduced to extract feature of bounding box from the out-
put of FPN. For Query network, the object-level feature rep-
resentation vq is extracted from an image Iq and the corre-
sponding bounding box bbq as follows. The computation
for Key network is similar.

vq = RoIAlign (fq (Iq) , bbq) . (3)

vki = RoIAlign
(
fk (Iki) , bbki

)
. (4)

And R-CNN head fR−H is built to obtain embeddings
for contrastive learning. The latent embeddings eq and eki

for Query network and Key network are as follows:

eq = fR−H(vq). (5)

eki
= fR−H(vki

). (6)

SSL usually selects contrastive loss, i.e. InfoNCE to
compute the similatity between views. For Query view and
i-th Key view, the loss function is as follows. Notably, The
calculation is performed in a hierarchical manner. Because
eq and eki

can be divided corresponding to the output of
FPN (P2, P3, P4, P5). Contrastive learning can be carried
out at a finer level.

Lq−ki
= − log

exp(eq · vei/τ)∑N
i=0 exp (eq · eki

/τ)
(7)
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Table 1. Downstream task performance on COCO by using Mask R-CNN with R50-FPN.

Methods Epoch 1x Schedule 2x Schedule
AP bb AP bb

50 AP bb
75 APmk APmk

50 APmk
75 AP bb AP bb

50 AP bb
75 APmk APmk

50 APmk
75

Sepurvised 90 38.9 59.6 42.7 35.4 56.5 38.1 41.3 61.3 45.0 37.3 58.3 40.3
MOCO 200 38.5 58.9 42.0 35.1 55.9 37.7 40.8 61.6 44.7 36.9 58.4 39.7

MOCO v2 200 40.4 60.2 44.2 36.4 57.2 38.9 41.7 61.6 45.6 37.6 58.7 40.5
SimCLR 200 39.6 59.1 42.9 34.6 55.9 37.1 40.8 60.6 44.4 36.9 57.8 39.8
InfoMin 200 40.6 60.6 44.6 36.7 57.7 39.4 42.5 62.7 46.8 38.4 59.7 41.4
InfoMin 800 41.2 61.2 44.8 35.9 57.9 38.4 42.1 62.3 46.2 38.0 59.5 40.8
BYOL 300 40.4 61.6 44.1 37.2 58.8 39.8 42.3 62.6 46.2 38.3 59.6 41.1
SWAV 400 39.6 60.1 42.9 34.7 56.6 36.6 42.3 62.8 46.3 38.2 60.0 41.0

DenseCL 200 40.3 59.9 44.3 36.4 57.0 39.2 41.2 61.9 45.1 37.3 58.9 40.1
InsLoc 200 41.4 61.7 45.0 37.1 58.5 39.6 43.2 63.5 47.5 38.7 60.5 41.9

CoDo 200 41.2 61.3 45.1 36.9 58.2 39.4 42.6 62.6 46.7 38.2 59.7 41.0
CoDo 400 41.9 61.8 45.8 37.4 58.8 40.3 43.1 63.4 47.1 38.8 60.6 41.4

CoDom 400 43.1 63.3 47.1 38.3 60.3 41.2 - - - - - -

Table 2. The influence of background datasets on COCO by using Mask R-CNN with R50-FPN. Q means Query Network and K means
Key Network.

Background Datasets Epoch Schedule AP bb AP bb
50 AP bb

75 APmk APmk
50 APmk

75

Q:ImageNet K: COCO 200 1x 40.7 – 60.7 44.5 36.5 57.6 39.1
Q/K: ImageNet+COCO 200 1x 40.8 +0.1 60.7 44.7 36.6 57.6 39.3

Q/K: ImageNet+COCO+VOC 200 1x 41.2 +0.5 61.3 45.1 36.9 58.2 39.4
Q: ImageNe K:ImageNet+COCO+VOC 400 1x 41.4 – 61.7 45.1 37.3 58.6 40.1

Q/K: ImageNet+COCO+VOC 400 1x 41.9 +0.5 61.8 45.8 37.4 58.8 40.3

Where τ and N are the temperature and the number of neg-
ative samples, respectively.

For multi-view version of our proposed method, we can
calculate InfoNCE between view q and all view k. The total
loss function is as follows.

Lq−k =

N∑
j=0

(Lq−ki
)j (8)

Where N is the number of view k.

4. Experiment

4.1. Dataset

The widely used ImageNe-1K with 1.28 million im-
ages is adopt as dataset for self-supervised pretraining.
MSCOCO is used for finetuning to evaluate the generaliza-
tion performance on downstream task. Significantly, in the
procession of data processing, the training sets of ImageNe-
1K, PASCAL VOC0712 and MSCOCO are involved as the
background images.

4.2. Setting for pretraining and finetuning

During pretraining, we mainly follow the hyper-
parameters setting of Moco-v2, the total batch size is set to
1024 over 8 Nvidia A100 GPUs, and the initial learning rate
is set to 0.06. The optimization takes 200 and 400 epochs

for the evaluation of downstream tasks, respectively. Dur-
ing pretraining, we employ the data augmentation pipeline
of Moco-v2 for pretraing proposals and the background im-
ages.

For finetuing, we validate the performance of pre-
training representation on downstream tasks based on De-
tectron2 [24]. On COCO, we adopt the Mask R-CNN with
the R50-FPN. The performances of object detection and
instance segmentation under 1× and 2× schedules are re-
ported. The batch size is set to 128 over 8 GPUs. The fine
tuning iteration step is set to 90000 and 180000 on the 1x
schedule and 2x schedule, respectively. The initial learn-
ing rate is 0.02. Finally, on the 1x schedule and 2x sched-
ule, the results ofAP bbAP bb

50 and AP bb
75 for object detec-

tion, APmk, APmk
50 , and APmk

75 for instance segmentation
are compared with the state-of-the-art methods. R50-FPN
(ResNet-50 with FPN) is the common backbone network
for Mask R-CNN and Faster R-CNN to evaluate transfer
performance.

4.3. Results

We report the experimental results on object detection
and instance segmentation with state-of-the-art approaches.
Some of these sota methods are designed to focus on
classification, such as SimCLR [2], MoCo [10], MoCo
v2 [3], BYOL [9] , InfoMin [20] and SwAV [1]. While
others are specifically suited to object detection, such as
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DenseCL [22] and InsLoc [28].
Mask R-CNN on MSCOCO. Table 1 shows the results

for Mask R-CNN with R50-FPN. The finetuning follows
with the COCO 1× and 2× schedules. We compare the
proposed method under 200 and 400 epochs of pretrain-
ing. The results show that our method exceeds the above
two kinds of methods. On 1× schedule, Our method out-
performs the baseline MoCo-v2 by +0.8 AP for the R50-
FPN. On 2× schedule, our method exceeds MoCo-v2 by
+0.8. The multi-view version of CoDom further boosts the
performance and reaches a 43.1 AP.

The influence of Background datasets. We analyze
the background datasets selection strategy for Query Net-
work and Key Network. Table 2 shows the influence of
background datasets on object detection. Firstly, consid-
ering the volume gap between ImageNet and object detec-
tion datasets, if we only select the object detection datasets
as background may cause homogenization. A proper so-
lution is to gather ImageNet and object detection datasets
together as the source of the background images. And the
diversity of background dataset sources helps to improve
performance. Under 200 epochs, this setting contributes
a +0.5AP. Secondly, the background datasets selection for
Query and Key Network should be same to reduce Dise-
quilibrium. Under 200 epochs, this role also contributes a
+0.5AP.

5. Conclusion

In this paper, we noticed that most existing self-
supervised learning methods ignore the function of down-
stream datasets, especially the location ability of foreground
objects in downstream scenes. So we propose a new con-
trastive learning method, CoDo, to achieve the downstream
background invariance of the foreground objects. It is
implemented by pasting foreground proposals onto vari-
ous downstream images for contrastive learning. CoDo
achieves a strong results on transfer performance for object
detection on MSCOCO. The experimental results demon-
strate that transfer performance for object detection can be
strengthened by considering downstream background in-
variance.
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