
Efficient Conditional Pre-training for Transfer Learning

Shuvam Chakraborty
Stanford University

Burak Uzkent*

Stanford University
Kumar Ayush*

Stanford University
Kumar Tanmay
IIT Kharagpur

Evan Sheehan
Stanford University

Stefano Ermon
Stanford University

Abstract

Almost all the state-of-the-art neural networks for com-
puter vision tasks are trained by (1) pre-training on a large-
scale dataset and (2) finetuning on the target dataset. This
strategy helps reduce dependence on the target dataset and
improves convergence rate and generalization on the tar-
get task. Although pre-training on large-scale datasets is
very useful for new methods or models, its foremost disad-
vantage is high training cost. To address this, we propose
efficient filtering methods to select relevant subsets from the
pre-training dataset. Additionally, we discover that lower-
ing image resolutions in the pre-training step offers a great
trade-off between cost and performance. We validate our
techniques by pre-training on ImageNet in both the unsu-
pervised and supervised settings and finetuning on a diverse
collection of target datasets and tasks. Our proposed meth-
ods drastically reduce pre-training cost and provide strong
performance boosts. Finally, we improve the current stan-
dard of ImageNet pre-training by 1-3% by tuning available
models on our subsets and pre-training on a dataset filtered
from a larger scale dataset.

A. Method Visualization
We present visual depictions for clustering based filter-

ing in Figure 1 and for the domain classifier in Figure 2.

B. Additional Methods
B.1. Active Learning

Active learning is a research field concentrating on un-
derstanding which samples in a pool of samples should be
given priority for annotation. One of the most common and
simple active learning method relies on training a model on
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a labeled dataset and finding the entropy of the unseen sam-
ples by running them through the trained model. Next, top
N unseen samples w.r.t their entropy (assigned by the cur-
rent model) are listed in descending order. Usually, there is
a single data distribution for labelled and unlabelled data,
however, for our task we consider two data distributions:
pre-training and target, which can be similar or completely
different. For this reason, we apply two variations of active
learning to conditional pre-training. First, we train a net-
work ft on the target dataset Dt and run images xi

s in source
dataset through the network ft to get the entropy of the pre-
dictions. Next, we list the images xi

s by ascending or de-
scending entropy and choose the top N ′

images. Choosing
high entropy samples can be interpreted as standard active
learning, and we call the method that chooses low entropy
images Inverse Active Learning.

Dataset #classes #train #test

Stanford Cars [11] 196 8143 8041

Caltech Birds [8] 200 6000 2788

Functional Map of the World [2] 62 18180 10609

Table 1. We use three challenging visual categorization datasets
to evaluate the proposed pre-training strategies on target classifi-
cation tasks.

B.2. Experimental Setup

For classification tasks, we train the linear classifica-
tion layer from scratch and finetune the pre-trained back-
bone weights. We give basic details about our classification
datasets in Table 1.

Methods We experiment with clustering based filtering,
using K = 200 clusters and both average and min distance
to cluster centers, as well as our domain classifier method,
using ResNet-18 [6] as our classifier. Furthermore, we com-
bine our filtering methods with downsizing pre-training im-



Figure 1. Schematic overview of clustering based filtering. We first train a model on the target domain to extract representations, which we
use to cluster the target domain. We score source images with either average or min distance to cluster centers and then filter.

Figure 2. Depiction of the Domain Classifier. We train a simple
binary classifier to discriminate between source and target domain
and then use the output probabilities on source images to filter.

age resolution from 224x224 to 112x112 using bilinear in-
terpolation. We always perform filtering on 224 resolution
source images, but use it to pre-training at both resolutions
to assess flexibility, as we want robust methods that do not
need to be specifically adjusted to the pre-training setup.

Supervised Pre-training. For supervised pre-training,
in all experiments, we utilize the ResNet-34 model [6]
on 1 Nvidia-TITAN X GPU. We perform standard crop-
ping/flipping transforms for ImageNet and the target data.
For pre-training, we pretrain on the given subset of Ima-
geNet for 90 epochs, utilizing SGD with momentum .9,
weight decay of 1e-4, and learning rate .01 with a decay
of 0.1 every 30 epochs. We finetune for 90 epochs with a
learning rate decay of 0.1 every 30 epochs for all datasets.
For Cars and Birds, we utilize SGD with momentum .9 [10],
learning rate 0.1, and weight decay of 1e-4. For fMoW, we
utilize the Adam optimizer [7] with learning rate 1e-4.

Unsupervised Pre-training. For unsupervised pre-
training, we utilize the state of the art MoCo-v2 [4] tech-
nique using a ResNet-50 model [6] in all experiments. We
train on 4 Nvidia GPUs. MoCo [3, 4] is a self-supervised
learning method that utilizes contrastive learning, where the
goal is to maximize agreement between different views of
the same image (positive pairs) and to minimize agreement

between different images (negative pairs). Our choice to
use MoCo is driven by (1) performance, and (2) computa-
tional cost. Compared to other self-supervised frameworks,
such as SimCLR [1], which require a batch size of 4096,
MoCo uses a momentum updated queue of previously seen
samples and achieves comparable performance with a batch
size of just 256 [3].

We keep the same data augmentations and hyperparam-
eters used in [4]. We finetune the MoCo pre-trained back-
bone on our target tasks for 100 epochs using a learning
rate of 0.001, batch size of 64, SGD optimizer for Cars and
Birds, and Adam optimizer for fMoW.

B.3. Low Level Tasks

Object Detection. We use a standard setup for object de-
tection with a Faster R-CNN detector with a R50-C4 back-
bone as in [3,5,12]. We pre-train the backbone with MoCo-
v2 on the full or filtered subset of ImageNet. We finetune
the final layers for 24k iterations (∼ 23 epochs) on train-
val2007 (∼ 5k images). We evaluate on the VOC test2007
set with the default metric AP50 and the more stringent met-
rics of COCO-style [9] AP and AP75. For filtering, we use
the domain classifier with no modifications and for cluster-
ing we use MoCo-v2 on Pascal VOC to learn representa-
tions.

Semantic Segmentation. We use PSAnet [13] network
with ResNet-50 backbone to perform semantic segmenta-
tion. We train PSAnet network with a batch size of 16 and a
learning rate of 0.01 for 100 epochs and use SGD optimizer.
Similar to object detection, we pre-train the backbone with
MoCo-v2 on the full or filtered subset of ImageNet and then
we finetune the network using VOC train2012. We evaluate
on the VOC test2012 set with the following three metrics:
(a) mIOU: standard segmentation metric, (b) mAcc: mean
classwise pixel accuracy, (c) allAcc: total pixel accuracy.
For filtering, we use the domain classifier with no modifica-
tions and for clustering we use MoCo-v2 on Pascal VOC to
learn representations.



C. Additional Results
C.1. Active Learning

We utilize our Active Learning based methods using the
same supervised pre-training and finetuning setup described
previously. We present our results updated with Active
Learning in Table 2.

Least vs Most Confident Samples We see that at
224×224 pixels resolution pre-training, standard active
learning seems to be applicable to the transfer learning
setting as selecting samples with high entropy generally
does better than the inverse. However, at lower resolution
(112×112 pixels) pre-training, active learning does worse
than inverse active learning and random in most cases, sug-
gesting a lack of robustness for the active learning method
since filtering is performed at 224×224 pixels resolution.

Performance Comparison As alluded to, active learn-
ing methods perform noticeably worse in the lower resolu-
tion setting for all datasets, suggesting that filtering and pre-
training conditions must be similar to maintain good perfor-
mance, unlike domain classifier and clustering. In general,
we see that for Cars and Birds, even at 224×224 pixels reso-
lution pre-training, active learning performance lags behind
our clustering and domain classifier methods and struggles
to improve over the simple random baseline in several set-
tings. In contrast, for an out of distribution dataset like
fMoW, active learning does well in the 224×224 pixels
resolution pre-training setting. Since active learning di-
rectly considers label distribution when filtering, it may be
more prone to overfitting compared to the other methods.
This can degrade its performance when relevant features are
shared between the pre-training and target datasets and thus
focusing only on features, not labels, when filtering may be
more effective. However, in fMoW, there is very little over-
lap in relevant features with ImageNet, bridging the gap be-
tween active learning, and domain classifier and clustering.

Adaptability Comparison Active learning is noticeably
less flexible than other methods as it relies on a notion of
confidence that can be hard to construct and quantify for
target tasks besides classification. As said, it is also much
more sensitive to filtering and pre-training resolution, mak-
ing it a less robust method. In general, we see that our clus-
tering and domain classification methods can outperform a
non-trivial baseline like active learning in flexibility, adapt-
ability, and performance.
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Supervised Pre-train. Target Dataset Cost
(hrs)224 x 224 Small Shift Large Shift

Pretrain. Sel. Method Cars Birds fMow

0% Random Init. 52.89 42.17 43.35 0

100% Entire Dataset 82.63 74.87 59.05 160-180

6%

Random 72.2 57.87 50.25 30-35
Inv. Active Learning 72.19 58.17 49.7 40-45
Active Learning 73.17 57.77 50.91 40-45
Domain Cls. 74.37 59.73 51.17 35-40
Clustering (Avg) 73.64 56.33 51.14 40-45
Clustering (Min) 74.23 57.67 50.27 40-45

12%

Random 76.12 62.73 53.28 45-50
Inv. Active Learning 76.1 62.7 53.43 55-60
Active Learning 76.43 63.7 53.63 55-60
Domain Cls. 76.18 64 53.41 50-55
Clustering (Avg) 77.12 61.73 53.12 55-60
Clustering (Min) 75.81 64.07 52.91 55-60

Supervised Pre-train. Target Dataset Cost
(hrs)112 x 112 Small Shift Large Shift

Pretrain. Sel. Method Cars Birds fMow

0% Random Init 52.89 42.17 43.35 0

100% Entire Dataset 83.78 73.47 57.39 90-110

6%

Random 72.76 57.4 49.73 15-20
Inv. Active Learning 71.05 58.43 49.56 25-30
Active Learning 72.95 56.3 48.94 25-30
Domain Cls. 73.66 58.73 50.66 20-25
Clustering (Avg) 74.53 56.97 51.32 25-30
Clustering (Min) 71.72 58.73 49.06 25-30

12%

Random 75.4 62.63 52.59 30-35
Inv. Active Learning 75.3 62.4 52.45 40-45
Active Learning 76.26 61.9 52.04 40-45
Domain Cls. 76.36 63.5 53.37 35-40
Clustering (Avg) 77.53 61.23 52.67 40-45
Clustering (Min) 76.36 63.13 51.6 40-45

Table 2. Results on supervised pre-training and classification tasks, including Active Learning.
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