

Few-Shot Image Classification Along Sparse Graphs

Supplementary Material

Joseph F Comer Philip L Jacobson

Heiko Hoffmann

HRL Laboratories, LLC

3011 Malibu Canyon Rd, Malibu, CA 90265

joseph.comer@ncf.edu, philip-jacobson@berkeley.edu, drawfind@gmail.com

In this supplementary material, we present 1) the dependence of K-Prop on the number of propagated labels for 1-shot learning, 2) the relationship between the 1-shot accuracy and the probability that nearest neighbors are in the same class, 3) additional comparisons between K-Prop and the three other methods from the literature: MatchingNets, ProtoNets, and Adaptive Subspaces, and 4) numerical values for our ablation studies.

1. Dependence on number of extra labels

Figure 1 shows the dependence of the 1-shot accuracy for K-Prop (with EsViT backbone) on the number, M , of labels added by our label propagation method. For each number of labels added, we sampled 1,000 random 5-way tasks and plotted the mean. We evaluated each value of M from 1 to 10, and subsequently $M = 15, 20, \dots, 100$. The maximum accuracy depended on the dataset used, e.g., for RESISC45, the peak was at $M = 30$, while it was at a lower value for CropDisease and a higher value for EuroSat. In our main experiments, we chose $M = 4$ for all datasets for simplicity and computational speed, but for EuroSat we could have gotten significantly better results using $M = 95$ instead of 4.

2. Accuracy vs nearest-neighbor probability

Figure 2 shows the absolute values for the relationship between 1-shot learning accuracy and the probability that nearest-neighbors are in the same class, p_{NN} . For each dataset, we evaluated three different backbone networks: Resnet18 trained on Imagenet1k, EsViT trained on Imagenet1k, and EsViT trained on the target data.

3. Comparison with other methods

We present additional results comparing K-Prop to other methods, using again ProtoNets, MatchingNets, and Subspaces for comparison. Here, we used a fixed backbone (ei-

ther Resnet18 or EsViT) pretrained on Imagenet1k for each method. For each of the meta-learning algorithms, we carried out meta-training using mini-Imagenet. We then evaluated each method on the RESISC45, CropDisease, EuroSat, CUB, and Fungi datasets.

For K-Prop with EsViT, no label information from Imagenet1k or mini-Imagenet is used, while for K-Prop with Resnet18, we used the same Imagenet1k pretrained weights as with the other methods, but no additional training using mini-Imagenet. The comparisons using a Resnet18 backbone are shown in Tab. 1, while the comparisons using an EsViT backbone are shown in Tab. 2. Despite K-Prop with EsViT being at a disadvantage compared to ProtoNets and MatchingNets, it still outperformed both in most cases. For this comparison with the Imagenet-pretrained EsViT, we omitted Subspaces due to computation-time limits.

4. Ablation study

We provide the results of Fig. 9 from the main paper in tabular form in Tables 3, 4, and 5.

RESISC				
# of Shots	ProtoNets	MatchingNets	Subspaces	Ours
1	49.47 \pm 0.8	40.45 \pm 0.7	49.14 \pm 0.8	71.15 \pm 0.7
2	57.45 \pm 0.7	53.50 \pm 0.7	55.57 \pm 0.7	76.52 \pm 0.6
5	69.9 \pm 0.6	64.03 \pm 0.6	67.12 \pm 0.6	84.84 \pm 0.5
CropDisease				
# of Shots	ProtoNets	MatchingNets	Subspaces	Ours
1	57.16 \pm 0.9	46.36 \pm 0.9	51.01 \pm 0.9	78.53 \pm 0.7
2	69.76 \pm 0.8	53.75 \pm 0.9	55.28 \pm 0.8	83.56 \pm 0.6
5	80.77 \pm 0.7	62.38 \pm 0.9	70.37 \pm 0.7	91.20 \pm 0.4
EuroSat				
# of Shots	ProtoNets	MatchingNets	Subspaces	Ours
1	60.58 \pm 0.9	48.04 \pm 0.8	45.94 \pm 0.8	67.90 \pm 0.7
2	67.38 \pm 0.8	60.66 \pm 0.8	53.61 \pm 0.8	74.54 \pm 0.6
5	77.67 \pm 0.7	68.50 \pm 0.8	69.79 \pm 0.7	82.86 \pm 0.4
CUB				
# of Shots	ProtoNets	MatchingNets	Subspaces	Ours
1	38.95 \pm 0.8	37.42 \pm 0.8	35.60 \pm 0.7	81.08 \pm 0.8
2	46.02 \pm 0.8	42.36 \pm 0.7	40.24 \pm 0.7	83.77 \pm 0.7
5	56.62 \pm 0.8	49.19 \pm 0.8	48.92 \pm 0.7	89.39 \pm 0.6
Fungi				
# of Shots	ProtoNets	MatchingNets	Subspaces	Ours
1	36.19 \pm 0.7	34.17 \pm 0.7	31.76 \pm 0.7	42.87 \pm 1.1
2	42.25 \pm 0.8	38.00 \pm 0.7	33.92 \pm 0.7	56.93 \pm 1.2
5	52.05 \pm 0.7	44.93 \pm 0.7	41.65 \pm 0.7	64.21 \pm 1.2

Table 1: Comparing the performance of our method with ProtoNets, MatchingNets, and Adaptive Subspaces, all using Resnet18 backbones pre-trained on Imagenet1k.

RESISC			
# of Shots	ProtoNets	MatchingNets	Ours
1	72.82 \pm 0.8	72.56 \pm 0.9	78.60 \pm 1.0
2	82.08 \pm 0.7	78.56 \pm 0.8	82.80 \pm 0.9
5	89.48 \pm 0.5	85.55 \pm 0.6	89.28 \pm 0.9
CropDisease			
# of Shots	ProtoNets	MatchingNets	Ours
1	81.97 \pm 0.8	81.94 \pm 0.8	86.23 \pm 0.6
2	89.54 \pm 0.6	87.37 \pm 0.7	90.06 \pm 0.5
5	94.61 \pm 0.4	92.05 \pm 0.6	95.43 \pm 0.3
EuroSat			
# of Shots	ProtoNets	MatchingNets	Ours
1	65.17 \pm 0.8	64.77 \pm 0.9	70.85 \pm 0.8
2	76.22 \pm 0.7	70.90 \pm 0.8	77.16 \pm 0.6
5	84.34 \pm 0.5	77.36 \pm 0.6	84.73 \pm 0.4
CUB			
# of Shots	ProtoNets	MatchingNets	Ours
1	71.00 \pm 1.0	71.77 \pm 1.0	80.00 \pm 0.8
2	82.23 \pm 0.9	77.68 \pm 0.9	84.04 \pm 0.6
5	89.47 \pm 0.7	85.54 \pm 0.8	90.51 \pm 0.6
Fungi			
# of Shots	ProtoNets	MatchingNets	Ours
1	57.26 \pm 1.3	57.97 \pm 1.3	50.24 \pm 1.1
2	68.11 \pm 1.1	66.64 \pm 1.2	65.98 \pm 1.1
5	77.78 \pm 1.1	76.18 \pm 1.0	71.49 \pm 1.2

Table 2: Comparing the performance of our method with ProtoNets and MatchingNets, all using EsViT backbones pre-trained on Imagenet1k.

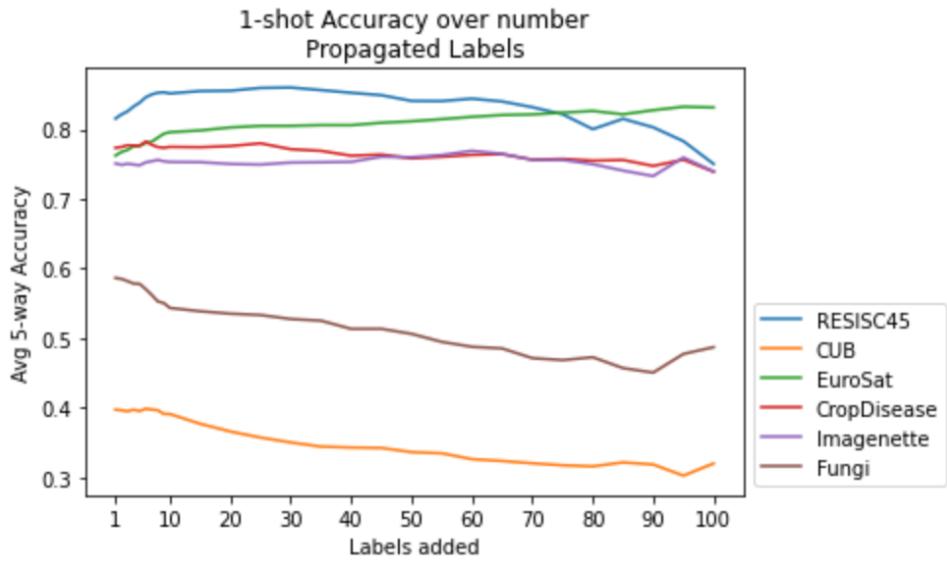


Figure 1: Dependence of 5-way, 1-shot accuracy on number of labels added using our label propagation.

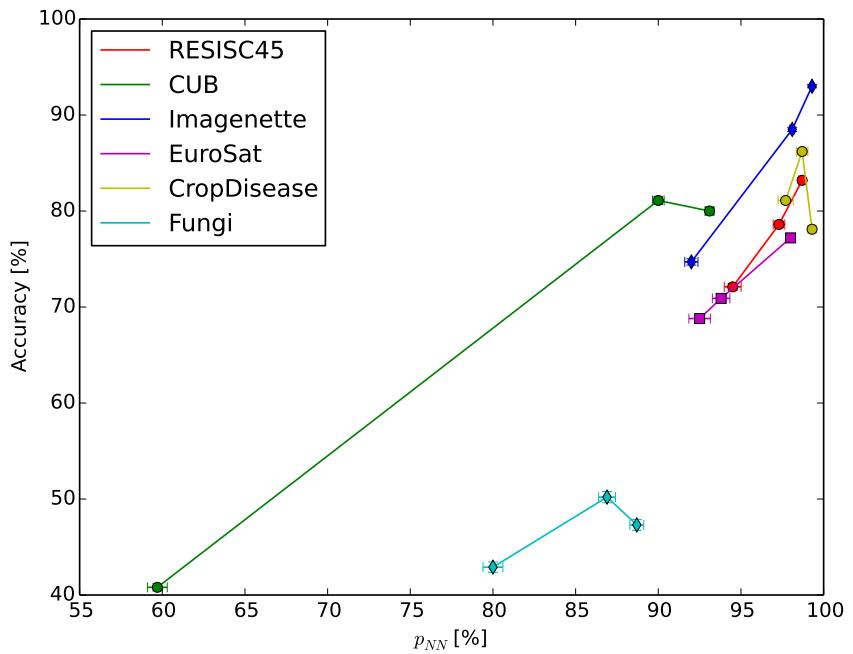


Figure 2: Accuracy for 1-shot learning vs probability that nearest-neighbors are in the same class, p_{NN} (mean \pm SE). Each data point corresponds to a different dataset and backbone.

Dataset	Pretraining	Linear	LP+Linear	LP+KPCA
NWPU-RESISC45	EsViT	75.93 \pm 0.6	80.31 \pm 0.6	83.18 \pm 0.6
	Pretrained ResNet18	63.29 \pm 0.6	71.4 \pm 0.7	72.09 \pm 0.7
EuroSat	EsViT	69.13 \pm 0.5	72.62 \pm 0.5	77.2 \pm 0.5
	Pretrained ResNet18	56.78 \pm 0.6	66.79 \pm 0.7	68.77 \pm 0.7
CropDisease	EsViT	74.9 \pm 0.8	75.77 \pm 0.8	78.11 \pm 0.8
	Pretrained ResNet18	72.56 \pm 0.7	80.96 \pm 0.7	81.12 \pm 0.7
Fungi	EsViT	57.11 \pm 1.0	50.61 \pm 1.0	47.26 \pm 1.1
	Pretrained ResNet18	48.76 \pm 0.9	43.41 \pm 1.0	42.87 \pm 1.1
Imagenette	EsViT	71.78 \pm 0.7	72.69 \pm 0.7	74.73 \pm 0.6
	Pretrained ResNet18	83.68 \pm 0.4	89.74 \pm 0.4	88.54 \pm 0.4
CUB	EsViT	41.63 \pm 0.6	39.79 \pm 0.7	40.8 \pm 0.7
	Pretrained ResNet18	68.65 \pm 0.7	78.93 \pm 0.8	81.08 \pm 0.8

Table 3: 5-way, 1-shot performance of linear fine-tuning (Linear), label propagation + linear fine-tuning (LP+Linear), and label propagation + KPCA (LP+KPCA) (ours).

Dataset	Pretraining	Linear	LP+Linear	LP+KPCA
NWPU-RESISC45	EsViT	83.57 \pm 0.5	85.12 \pm 0.4	87.06 \pm 0.5
	Pretrained ResNet18	73.39 \pm 0.5	76.84 \pm 0.6	77.1 \pm 0.6
EuroSat	EsViT	78.01 \pm 0.4	79.1 \pm 0.4	83.4 \pm 0.4
	Pretrained ResNet18	69.68 \pm 0.5	73.52 \pm 0.5	74.53 \pm 0.6
CropDisease	EsViT	83.1 \pm 0.7	83.41 \pm 0.7	85.2 \pm 0.7
	Pretrained ResNet18	82.81 \pm 0.5	85.71 \pm 0.5	86.0 \pm 0.6
Fungi	EsViT	66.25 \pm 0.9	64.44 \pm 1.1	68.18 \pm 1.4
	Pretrained ResNet18	58.24 \pm 1.0	53.22 \pm 1.0	56.93 \pm 1.3
Imagenette	EsViT	79.05 \pm 0.5	80.15 \pm 0.5	81.12 \pm 0.4
	Pretrained ResNet18	92.03 \pm 0.3	93.13 \pm 0.2	92.29 \pm 0.3
CUB	EsViT	45.87 \pm 0.6	45.59 \pm 0.7	46.44 \pm 0.9
	Pretrained ResNet18	79.01 \pm 0.6	83.34 \pm 0.6	83.77 \pm 0.7

Table 4: 5-way, 2-shot performance.

Dataset	Pretraining	Linear	LP+Linear	LP+KPCA
NWPU-RESISC45	EsViT	90.6 \pm 0.3	90.37 \pm 0.3	92.07 \pm 0.4
	Pretrained ResNet18	83.9 \pm 0.4	84.45 \pm 0.4	84.82 \pm 0.5
EuroSat	EsViT	88.13 \pm 0.3	87.88 \pm 0.3	90.44 \pm 0.3
	Pretrained ResNet18	80.96 \pm 0.4	81.3 \pm 0.4	82.54 \pm 0.4
CropDisease	EsViT	91.28 \pm 0.4	91.4 \pm 0.4	92.82 \pm 0.4
	Pretrained ResNet18	91.43 \pm 0.4	91.65 \pm 0.4	92.79 \pm 0.4
Fungi	EsViT	77.85 \pm 0.8	75.22 \pm 1.0	74.29 \pm 1.3
	Pretrained ResNet18	69.79 \pm 0.9	63.77 \pm 1.0	64.21 \pm 1.3
Imagenette	EsViT	84.89 \pm 0.3	85.12 \pm 0.3	84.9 \pm 0.4
	Pretrained ResNet18	96.15 \pm 0.1	96.2 \pm 0.1	95.97 \pm 0.2
CUB	EsViT	54.05 \pm 0.6	53.62 \pm 0.6	53.59 \pm 1.0
	Pretrained ResNet18	88.25 \pm 0.4	88.66 \pm 0.4	89.39 \pm 0.7

Table 5: 5-way, 5-shot performance.