
Supplementary Material

1. Analytical Proof of CFA
In this section, we mathematically derive the update

rules for the proposed CFA method. We formulate our ob-
jective function as follows:

minimizeg̃n,g̃b
1

2
||gn − g̃n||22 +

1

2
||gb − g̃b||22

subject to g̃⊤n gb ≥ 0,

g̃⊤b gn ≥ 0, (1)

where gn and gb represents the proposed gradient update for
the novel and base task, respectively. g̃n and g̃b denotes the
projected gradient update for the novel and base task, re-
spectively. If both constraints are satisfied, the update rule
will be the average of gn and gb. Otherwise, we solve the
constrained optimization problem using the method of La-
grange multipliers.

First, we reformulate the problem in the standard form
as follows:

minimizezn,zb
1

2
z⊤n zn − g⊤n zn +

1

2
z⊤b zb − g⊤b zb

subject to − z⊤n gb ≤ 0,

− z⊤b gn ≤ 0, (2)

where g̃b and g̃n are denoted as zb and zn, respectively. We
ignore the constant terms g⊤n gn and g⊤b gb. In addition, the
sign of the inequality constraints is changed. Then, the La-
grangian can be formulated as:

L(zn, zb, α1, α2) =
1

2
z⊤n zn − g⊤n zn − α1z

⊤
n gb

+
1

2
z⊤b zb − g⊤b zb − α2z

⊤
b gn, (3)

where α1 and α2 are the dual variables. To find the solu-
tion of the primal variables z∗n and z∗b , we need to find the
lower bound solution of the primal problem by computing
the solution of the dual problem:

θD(α1, α2) = min
zn,zb

L(zn, zb, α1, α2). (4)

We find z∗n and z∗b as a function of dual variables
α1 and α1, respectively, by minimizing the Lagrangian

L(zn, zb, α1, α2). This is achieved by setting its derivatives
w.r.t zn and zb to zero,

∇znL(zn, zb, α1, α2) = 0,

z∗n = gn + α1gb, (5)

∇zbL(zn, zb, α1, α2) = 0,

z∗b = gb + α2gn. (6)

Next, we can find the solution of the primal variables by
solving the dual problem. We substitute Eq. (5) and Eq. (6)
in Eq. (4). Now, the dual problem can be rewritten as:

θD(α1, α2) =
1

2
(g⊤n gn + 2α1g

⊤
n gb + α2

1g
⊤
b gb)

− g⊤n gn − 2α1g
⊤
n gb − α2

1g
⊤
b gb

+
1

2
(g⊤b gb + 2α2g

⊤
b gn + α2

2g
⊤
n gn)

− g⊤b gb − 2α2g
⊤
b gn − α2

2g
⊤
n gn

= −1

2
g⊤n gn − α1g

⊤
n gb −

1

2
α2
1g

⊤
b gb

− 1

2
g⊤b gb − α2g

⊤
b gn − 1

2
α2
2g

⊤
n gn.

Next, we find the solution α∗
1 and α∗

2 of dual problem as
follows:

∇α1θD(α1, α2) = 0,

α∗
1 = −g⊤n gb

g⊤b gb
, (7)

∇α2θD(α1, α2) = 0,

α∗
2 = −g⊤b gn

g⊤n gn
. (8)

Given the solutions of the dual problem, we can find
closed form solutions of g̃n and g̃b by substituting the dual
solutions α∗

1 Eq. (7) and α∗
2 Eq. (8) in Eq. (5) and Eq. (6),

respectively:

z∗n = gn − g⊤n gb
g⊤b gb

gb = g̃n, (9)



Figure 1. Top: Illustration of the single model inference. Bottom: A detailed overview of the ensemble model evaluation protocol
proposed by Retentive R-CNN [1].

Methods / Shots 5 shot 10 shot 30 shot
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

FRCN-ft-full [2] ‡ § 4.6 8.7 4.4 5.5 10.0 5.5 7.4 13.1 7.4
Meta-YOLO [3] - - - 5.6 12.3 4.6 9.1 19.0 7.6
Meta R-CNN [4] - - - 8.7 19.1 6.6 12.4 25.3 10.8
TFA w/ cos [5] ‡ § 7.0 13.3 6.5 9.1 17.1 8.8 12.1 22.0 12.0

Meta Det [6] - - - 7.1 14.6 6.1 11.3 21.7 8.1
FSOD [7] - - - 12.0 22.4 11.8 - - -

FsDetView [8] § 10.7 24.5 6.7 12.5 27.3 9.8 14.7 30.6 12.2
MPSR [9] ‡ 7.4 12.3 7.7 9.8 17.9 9.7 14.1 25.4 14.2

FSCE [10] ‡ § - - - 11.1 - 9.8 15.3 - 14.2
CME [11] ‡ - - - 15.1 24.6 16.4 16.9 28.0 17.8

Deformable-DETR-ft-full [12] § - - - 11.7 19.6 12.1 16.3 27.2 16.7
DeFRCN [13] 15.5 29.4 14.2 18.3 33.7 17.4 22.6 39.8 22.8

CFA-DeFRCN (Ours) 15.6 29.1 15.2 19.1 34.8 18.7 23.0 40.5 23.0

Table 1. Few-shot detection performance on MS-COCO for the novel categories. ‡ indicates methods using multi-scale features. § indicates
results averaged on multiple runs.

z∗b = gb −
g⊤b gn
g⊤n gn

gn = g̃b. (10)

After finding the closed form solution, a single update rule
can be realized as:

g̃ =
g̃n + g̃b

2
. (11)

2. Evaluation Protocols
In Fig. 1, the utilized evaluation protocols are presented.

The single model inference comprises the RPNn and DETn,

finetuned with a few-shots from the novel data, while the
backbone is kept frozen. The evaluation is conducted as
follows: (1) the image is fed to the backbone (2) the RPNn

generates proposals (3) the proposals with IoU scores lower
than a predefined threshold are omitted via a non-maximum
suppression (NMS) (4) the DETn outputs both the classifi-
cation logits clsn and bounding boxes locn, respectively (5)
finally, the final predictions are filtered via a NMS.

On the other hand, the ensemble inference model further
employs the RPNb and DETb from the base model. The in-
ference is done as follows: (1) the image is fed to the back-
bone (2) the image features are fed to both the RPNb and
RPNn to compute the objectness logits Ob and On, respec-



Figure 2. Qualitative analysis of the proposed CFA method on the MS-COCO dataset. The shown results are based on CFA w/cos finetuned
under 30-shot setting. The first three columns show success scenarios while the last two columns present the failure scenarios.

tively (3) the maximum between Ob and On is fed to NMS
along with the bounding boxes from RPNb (4) the filtered
proposals are then fed to both DETb and DETn to output the
classification logits and bounding boxes (5) after the detec-
tors’ predictions are fed separately to a NMS, a bonus of 0.1
are added to clsb (6) finally the output from both detectors
are concatenated and fed to a NMS to output the final pre-

dictions. We emphasize that we did not use the ensemble
models during finetuning (as in Retentive-RCNN [1]), but
rather we finetuned a single model and used both the base
and finetuned models during inference.
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Figure 3. Results over 10 random runs on MS-COCO under K = 5, 10, 30-shot setting. The mean and 95% confidence interval are
reported.

Methods / Shots 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

TFA w/ fc [5] 25.6±0.5 31.8±0.5 6.9±0.7 26.2±0.5 32.0±0.5 9.1±0.5 28.4±0.3 33.8±0.3 12.0±0.4
TFA w/ cos [5] 25.9±0.6 32.3±0.6 7.0±0.7 26.6±0.5 32.4±0.6 9.1±0.5 28.7±0.4 34.2±0.4 12.1±0.4

CFA w/ fc 29.1±0.3 36.2±0.3 7.7±0.6 29.9±0.3 36.7±0.2 9.6±0.6 30.8±0.2 36.6±0.2 13.6±0.3
CFA w/ cos 29.3±0.2 36.0±0.2 9.2±0.5 30.2±0.2 36.6±0.1 11.2±0.5 31.1±0.1 36.6±0.1 14.8±0.2

DeFRCN [13] 27.8±0.3 32.6±0.3 13.6±0.7 29.7±0.2 34.0±0.2 16.8±0.6 31.4±0.1 34.8±0.1 21.2±0.4
CFA-DeFRCN 28.4±0.2 32.8±0.2 15.2±0.5 30.2±0.2 34.0±0.2 18.8±0.4 31.7±0.1 34.6±0.1 23.0±0.3

Table 2. G-FSOD experimental results for 5,10,30-shot settings on MS-COCO. We report AP, bAP, nAP for all, base, and novel classes,
respectively.

3. Qualitative Results
In Fig. 2, we present qualitative results on CFA w/cos

finetuned with 30-shot setting. The first three columns show
various success scenarios while the last two columns show
different failure cases. Compared to base classes, the model
is less confident with novel categories. This can be at-
tributed to learning indiscriminative features, hence result-
ing in false positives and false negatives.

4. Additional Experiments
Comparison against FSOD baselines. To further in-

vestigate the impact of CFA on the novel classes, we com-
pare the performace of CFA-finetuned models (CFA w/fc,
CFA w/cos and CFA-DeFRCN) with FSOD models on the
challenging MS-COCO benchmark. CFA-DeFRCN outper-
forms existing approaches on the novel AP metric, although
it was trained in a G-FSOD setting which generally leads
to lower performance on the novel classes. The results are
shown in Tab. 1.

Multiple runs. We run the CFA-finetuned models (CFA
w/fc, CFA w/cos, and CFA-DeFRCN) using 10 different
seeds on MS-COCO and compare with the baselines (TFA
[5] and DeFRCN [1]). The results are shown in Tab. 2 and
Fig. 3. We use the same random seeds as TFA [5] and

Method w/E Inference Time (ms) Model Capacity

TFA w/ fc ✗ 85 60.6M
TFA w/ cos ✗ 87 60.6M
CFA w/ fc ✗ 85 60.6M

CFA w/ cos ✗ 86 60.6M
CFA-DeFRCN ✗ 147 52.7M

CFA w/ fc ✓ 211 75.4M
CFA w/ cos ✓ 211 75.4M

CFA-DeFRCN ✓ 376 105.3M

Table 3. Inference time and model capacity for different evaluation
protocols. Ensemble methods have a significant overhead com-
pared to single model. w/E denotes whether the ensemble method
is employed.

DeFRCN [13]. CFA consistently improves the overall AP
while displaying a narrower confidence interval.

5. Further Ablation Experiments
Inference time and model capacity. We study the im-

pact of the two evaluation methods (single model vs ensem-
ble model) on the inference time and number of parame-
ters during inference. Although ensemble model evaluation
achieves less forgetting, the inference time increases in av-



Model Backone RPN RoI Head AP bAP nAP

27.9 33.9 10.0
✓ 29.9 37.2 7.9

✓ 28.9 35.4 9.6
✓ ✓ 28.9 35.1 10.2

TFA w/ fc

✓ ✓ ✓ 24.1 29.0 9.1
29.6 36.0 10.4

✓ 30.3 37.4 9.3
✓ 30.8 37.8 9.6

✓ ✓ 30.8 37.6 10.5
CFA w/ fc

✓ ✓ ✓ 23.9 28.6 10.1

28.7 35.0 10.0
✓ 28.9 35.8 8.3

✓ 29.0 35.3 10.3
✓ ✓ 29.2 35.2 11.2

TFA w/ cos

✓ ✓ ✓ 24.1 28.5 10.9
29.4 35.9 9.8

✓ 28.7 35.3 8.9
✓ 30.2 36.8 10.6

✓ ✓ 30.3 36.6 11.3
CFA w/ cos

✓ ✓ ✓ 23.6 27.9 10.9

Table 4. Effect of unfreezing different components of our detec-
tion model in comparison to TFA [5]. ✓ denotes unfreezing a com-
ponent. The results are reported for MS-COCO under 10-shots.

erage by 52%. On the other hand, the number of parameters
increases by 50% in CFA w/fc (and w/cos) and by 102%
in CFA-DeFRCN, since DeFRCN unfreezes the backbone
during finetuning.

Extended ablation study. We extend the ablation stud-
ies conducted on TFA w/fc and CFA w/fc to include the
TFA w/cos and CFA w/cos. The results are presented in
Tab. 4 and Tab. 5.
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