
Supplementary Material

In this supplementary manuscript, we showcase (i) quali-
tative comparison of final localization maps between differ-
ent weakly supervised object localization (WSOL) meth-
ods for a few query images, (ii) intuitive comparison of
GAR and LRP across different transformer backbones, iii)
comparison of the patch drop mask visualization across
the transformer blocks with respect to the base transformer
model DeiT-B, (iv) ablation of hyper-parameters chosen for
the p-ADL layer.

1. Qualitative Comparison with SOTA meth-
ods

Figure 1 shows extensive comparison of localiza-
tion maps for competing state-of-the-art (SOTA) methods
against our proposed method ViTOL-GAR with 20 ran-
domly sampled images from ImageNet dataset. We con-
sider three models to draw comparisons: a) CAM [3] based
on VGG-16 backbone, b) ADL [1] trained on ResNet-50
backbone, and c) TS-CAM [2] trained on transformer DeiT
backbone. We observe that ViTOL-GAR clearly outper-
forms competing approaches in its localization ability. Our
method generates localization maps which (a) cover the en-
tire region of the object, (b) are class dependent (e.g. Fig-
ure 1 (Row Swing, Stethoscope) Set 2) ) and (c) invariant
to background noise (e.g. Figure 1 (Row Bam Spider Set 1,
Cicada Set 2)).

2. Ablation Study
2.1. GAR and LRP for different backbones

Two attention map generation methods, GAR and LRP,
have been used in our proposed approach. From the re-
sults in main manuscript, we observe that both these meth-
ods are effective in localizing the object. In this study,
we aim to further understand differences in performance
of these methods with different backbone architectures,
namely, ViT-B, DeiT-S and DeiT-B. In Table 1, we observe
that GAR performs consistently well across all backbones.
Whereas LRP observes a drop of 1.59%, 0.78% with ViT-B
and DeiT-S backbones respectively on ImageNet dataset.

GAR uses attention maps (attention matrix) of each layer
and gradient maps corresponding to same attention map
with respect to the desired class to calculate the final lo-

ImageNet
Method ViT-B+ DeiT-S+ DeiT-B+

GAR 68.14 69.01 69.17
LRP 66.55 68.23 70.47

Table 1. GAR vs LRP for different transformer backbones:
MaxBoxAccv2 is shown for ImageNet. Superscript (+) denotes
the architectures with p-ADL layer

calization map. In addition to using these gradient maps,
LRP also generates local relevance maps which is calcu-
lated based on local gradients based on DTD principle in
each layer using chain rule. This accumulation of local rel-
evance across layers in LRP may negatively affect perfor-
mance where embeddings do not effectively represent the
regions belonging to the object. This can occur in cases
of misclassification. Thus, features from a relatively weak
classifier ViT-B may not be as representative of the correct
class as compared to a strong classifier (DeiT-B). Intuitively,
we believe this could be the reason for inconsistent per-
formance of LRP with relatively weak classifier backbones
such as ViT-B, DeiT-S as compared to DeiT-B. Moreover,
we observed that LRP takes on average≈ 2.26x more time
for running inference over GAR while providing similar lo-
calization performance.

2.2. Study of Patch Drop Mask

In ViTOL, we use the p-ADL layer to enhance the local-
ization capability. Patch drop mask and patch importance
map are two key components of the p-ADL layer. Patch
drop mask drops the most highlighted patches based on a
drop threshold parameter (λ) and forces the model to look
at less highlighted patches of the object of interest. How-
ever, only dropping the patches degrades the classification
ability. Therefore, we use a patch importance map to retain
the most highlighted patches to preserve the model’s classi-
fication ability. We choose patch importance map or patch
drop mask randomly at a chosen embedding drop rate (α).

In this study, we show that the p-ADL layer improves the
attention in each encoder block progressively. In Figure 2,
we draw a comparison between the base transformer model
against ViTOL by visualizing the drop mask of several en-
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Figure 1. Comparison with state-of-the-art methods on 20 randomly sampled images from ImageNet validation split.

coder blocks. In our experiments, we use λ = 0.9. There-
fore, we drop the patches which have an attention value that
is greater than λ times the maximum attention value. Ide-
ally, if the patch drop mask learns to drop the entire object
region, it implies that each patch in the object region at-
tains a value in the top 10% of the values in the attention
map. Our map generation mechanism uses this information
to generate a self-attention map which uniformly attends to
each patch covering the object. In Figure 2 (Row 4), we ob-

serve that the Blocks 1 to 3 progressively drop the discrimi-
native regions in the attention maps. However, from Blocks
4 and 5, the model potentially starts re-discovering the dis-
criminative patches through the patch importance map. This
behavior results in a model which is attentive to both, dis-
criminative patches, as well as other features covering en-
tire object. Thereby resulting in a good quality localization
map. Note, in Figure 2, we only show those encoder blocks
where the patch drop mask is chosen by the model.



Figure 2. Patch Drop masks: Each alternate row shows the comparison of drop masks for some randomly sampled images in p-ADL
layers of few encoder blocks. Base model refers to the pre-trained DeiT-B model. Ours is the DeiT-B model trained with p-ADL layers.
Image samples are randomly chosen from ImageNet-1k validation split.

In general, in Figure 2 we compare the patch drop mask
behavior of the base model against our method. In the base
model, the patch drop mask drops a very small portion of
the entire object. This indicates that the entire object is not
highlighted across different encoder blocks. This results

α λ MaxBoxAccv2
0.5 0.9 66.37

0.75 0.9 72.42
0.9 0.9 71.57
0.5 0.8 68.2

0.75 0.8 67.2
0.9 0.8 70.2
0.5 0.7 68.42

0.75 0.7 68.81
0.9 0.7 69.37

Table 2. Ablation of p-ADL parameters for experiments on the
CUB dataset.

in a poor localization performance. In contrast, the high-
lighted area in our method increases as the p-ADL layer
drops the most discriminative patches and forces the model
to focus on other parts of the object as well. In the encoder
block 1, the drop region does not cover most of the object
of interest. However, as the p-ADL layer drops object spe-
cific regions across different encoder blocks, the network
focuses on the other parts of the object. This enables the
model to focus on the informative pacthes of the object. In
some intermediate encoder blocks, patch importance mask
is also selected which highlights the most discriminative re-
gion. And this discriminative portion is again dropped in
subsequent encoder blocks. A similar pattern of highlight-
ing and dropping region is observed across various query
images of Figure 2. Block 11 and 12 highlights most of the
patches covering the object.

2.3. p-ADL Hyperparameters Ablation

In Table 2, we study the effect of changing different pa-
rameters of p-ADL layer. We vary the embedding drop



rate α ∈ {0.5, 0.75, 0.9} and the patch drop threshold
λ ∈ {0.7, 0.8, 0.9} to show the trend in MaxBoxAccV2
localization metric. In our work, we choose α = 0.75 and
λ = 0.9 and use them consistently for all the experiments,
as these result in the best localization score.
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