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In this supplementary material, we first describe the
algorithm for spectral clustering (Sec. A). Then, we
briefly review the overall structures of the convolution-
and transformer-based image encoders and how we extract
dense features to which the spectral clustering is applied
from each type of encoder (Sec. B). The evaluation metrics
are described in Sec. C, and the full results for the compar-
ison between k-means and spectral clustering with differ-
ent cluster numbers, i.e., k = {2, 3, 4} on the three main
saliency benchmarks are shown in Sec. D. Lastly, we de-
scribe typical failure cases of our model in Sec. E.

A. Normalised spectral clustering algorithm

Here, we describe the normalised spectral clustering al-
gorithm used to generate pseudo-masks for our model in
Alg. 1.

ALGORITHM 1 Normalised spectral clustering [8, 11]
Input: An adjacency matrix W ∈ RN×N , the number of clus-
ters k to be constructed.

1: Compute the degree matrix D with W.
2: Compute the unnormalised Laplacian L using W and D us-

ing Eqn. 3.
3: Compute the first k generalised eigenvectors u1, . . . ,uk of

the generalised eigen problem Lu = λDu.
4: Let U ∈ RN×k be the matrix containing the vectors

u1, . . . ,uk as the columns.
5: For i = 1, . . . , N , let yi ∈ Rk be the vector corresponding

to the i-th row of U.
6: Cluster the vectors {yi | i = 1, ..., N} ∈ RN×k with k-

means into clusters C1, . . . , Ck.
Output: Clusters C = {C1, . . . , Ck}

Note that the adjacency matrix W is computed using
Eqn. 2 of the main paper, given the dense features from a
visual encoder described next.

B. Visual encoder
Our approach utilises image representations learned by

either convolution-based or transformer-based architectures
to which spectral clustering will be applied. Here, we first
briefly review how these feature representations are com-
puted with each model.

B.1. Convolution-based visual encoder

Convolutional neural networks (CNNs) for image repre-
sentations, denoted by ΦCNN, consist of a series of 2D con-
volutional layers and non-linear activation functions which
operate on an image in a sliding window fashion. Specif-
ically, given an image I ∈ RH×W×3, the CNNs outputs
dense feature maps FCNN ∈ Rh×w×D where h=H

s and
w=W

s with s denoting the total stride of the network and
D denotes the dimensionality of the features. That is,

FCNN = ΦCNN(I) ∈ Rh×w×D (1)

where the parameters for the CNNs are omitted for simplic-
ity.

B.2. Transformer-based visual encoder

In the recent literature, Transformer-based architectures
have shown tremendous success in the computer vision
community, including ViT [4], DeiT [13], T2T-ViT [18],
and BEiT[1]. Generally speaking, these architectures con-
sist of three components, namely, tokeniser (ΦTK), linear
projection (ΦLP), and transformer encoder (ΦTE):

FTransformer = ΦTE ◦ ΦLP ◦ ΦTK(I) ∈ Rh×w×D (2)

where FTransformer denotes the dense features from a
transformer-based encoder.

Tokeniser. Given an image as input, i.e. I ∈ RH×W×3, the
image is first divided by a tokeniser into non-overlapping
patches of a fixed size P × P , ending up N patches per
frame, i.e. N = HW

P 2 :

ΦTK(I) = {xi | xi = ΦTK(I)i ∈ R3P 2

, i = 1, ..., N} (3)



Model Arch. Cluster.
DUT-OMRON [17] DUTS-TE [15] ECSSD [12]

k=2 k=3 k=4 avg. k=2 k=3 k=4 avg. k=2 k=3 k=4 avg.
Fully-supervised features

ResNet [6] ResNet50 k-means .311 .346 .355 .337 .345 .358 .360 .354 .461 .445 .425 .444
ResNet [6] ResNet50 spectral .258 .326 .346 .310 .297 .341 .343 .327 .424 .454 .432 .437

ViT [4] ViT-S/16 k-means .335 .406 .440 .394 .349 .423 .460 .411 .505 .560 .562 .542
ViT [4] ViT-S/16 spectral .268 .392 .481 .380 .260 .428 .511 .400 .402 .613 .637 .551

Self-supervised features
MoCov2 [5] ResNet50 k-means .334 .387 .403 .375 .401 .423 .422 .415 .507 .511 .481 .500
MoCov2 [5] ResNet50 spectral .311 .399 .453 .387 .403 .464 .496 .454 .602 .642 .638 .627
SwAV [2] ResNet50 k-means .356 .412 .429 .399 .415 .456 .462 .444 .548 .552 .526 .542
SwAV [2] ResNet50 spectral .346 .407 .450 .401 .412 .473 .488 .458 .594 .606 .569 .590
DINO [3] ViT-S/8 k-means .299 .381 .427 .369 .299 .385 .447 .377 .497 .566 .591 .551
DINO [3] ViT-S/8 spectral .315 .417 .463 .398 .311 .435 .486 .411 .527 .616 .618 .587
DINO [3] ViT-S/16 k-means .314 .391 .426 .377 .325 .407 .444 .392 .507 .557 .560 .541
DINO [3] ViT-S/16 spectral .310 .413 .459 .394 .324 .445 .483 .417 .528 .609. .596 .577

Table 1: Comparison between k-means algorithm and spectral clustering with three different cluster sizes k on the three
benchmarks. IoU between a ground-truth mask and the closest prediction among k predicted masks is considered. On the
fourth column of each benchmark, we report the average of the results from the different k. The higher average scores of
k-means and spectral clusterings within the same model are in bold.

where xi denotes the ith patch.

Linear projection. Once tokenised, each patch from the
image is fed through a linear layer ΦLP and projected into a
vector (a.k.a. token):

zi = ΦLP(xi) + PEi ∈ RD

where xi ∈ R3P 2

refers to the ith patch, and its corre-
sponding learnable positional embeddings PEi ∈ RD are
added to the patch token ΦLP(xi) ∈ RD. Then, the N
augmented patch tokens are concatenated altogether with a
class token [CLS]∈ RD, producing the final input form of
R(N+1)×D to a sequence of transformer layers, described
in the following.

Transformer encoder. A transformer encoder is composed
of multiple transformer layers, each of which is subdi-
vided into a self-attention layer and multi-layer perceptrons
(MLPs). The self-attention layer contains three learnable
linear layers, each of which takes the input tokens and out-
puts either key K, value V , or query Q of the same di-
mensionality as the input tokens, i.e., R(N+1)×D.1 Then,
the self-attention layer outputs softmax(QKT

√
D

, dim=-

1)V ∈ R(N+1)×D.2 The outputs of the attention layer are
fed to the following MLPs, which are composed of two lin-
ear layers with a non-linear activation between them and
output tokens with their shape preserved.

1In practice, we use a single linear layer which maps the D dimension
of the input tokens to 3×D and equally splits them into Q, K, and V .

2Here, we consider the single head case for simplicity. For more details,
please refer to the original paper [14].

Note that, as all transformer layers constituting the
transformer encoder share the identical architecture, the
final outputs from the ViT have the same shape as the input
tokens, i.e., R(N+1)×D. For image classification task, only
the [CLS] ∈ RD is taken from the outputs and fed to a
linear classifier. In our work, however, we consider the
patch tokens FTransformer ∈ RN×D which are reshaped to
Rh×w×D where h and w equal H

P × W
P . It is worth noting

that, the patch size P plays the role of total stride as in the
CNNs.

C. Descriptions of evaluation metrics
In the following, we describe the metrics used for evalu-

ation:

• Fβ [10] is the harmonic mean of precision and recall
between a ground-truth G ∈ {0, 1}H×W and a bina-
rised mask M ∈ {0, 1}H×W :

Fβ =
(1 + β2)Precision × Recall

β2Precision + Recall
, (4)

where β2 denotes a weight of precision.3 Following
previous work [16, 9, 19, 7], we set β2 to 0.3, putting
more weight on precision. We use Fβ to compute the
maximal-Fβ , described next.

• maximal-Fβ (maxFβ) is a maximum score of Fβ

among multiple masks binarised with different thresh-

3Precision= tp
tp+fp

and Recall = tp
tp+fn

where tp, fp, and fn rep-
resent true-positive, false-positive, and false-negative, respectively.



Figure 1: Sample visualisations for typical prediction failures from our model on the DUT-OMRON [17] and DUTS-TE [15]
benchmarks. From left to right, input image, ground-truth mask, a pseudo-mask, and a predicted mask by our model are
shown. The respective salient regions are highlighted in red. Best viewed in colour. Please zoom in for details.

olds. Specifically, given a non-binarised mask predic-
tion with its value between [0, 255], it computes Fβ

from 255 binarised masks, each of which is thresh-
olded by an integer among {0, ..., 254} and takes the
maximum Fβ value for the result.

• Intersection-over-union (IoU) is the size of overlapped
foreground regions between a ground-truth G and a bi-
narised mask prediction M divided by the total size of
foreground regions from G and M .

• Accuracy (Acc) is a metric that measures pixel-wise
accuracy based on a ground-truth mask G and a bina-
rised mask prediction M :

Acc =
1

H ×W

H∑
i=1

W∑
j=1

δGij ,Mij (5)

where δ denotes the Kroneker-delta.

D. Comparison between k-means and spectral
clustering

In Sec. 4.3 of the main paper, we show the performance
of k-means and spectral clustering applied to different ar-
chitectures (i.e., ResNet50 and ViT-S/{8, 16}) and fea-
tures (i.e., fully- and self-superivsed features) averaged over
k={2, 3, 4} on the three saliency datasets. Here, we show
the full results for each k in Tab. 1. For the description,
please refer to Sec. 4.3 of the main paper.

E. Visualisation of failure cases
In Fig. 1, we visualise some failure predictions from

our model on the DUT-OMRON [17] and DUTS-TE [15]
datasets.

We notice there are two typical failure cases. First, when
a salient object is of small scale, the model tends to under-
segment it and prefers the large salient object. For instance,
as shown by the top left example in Fig 1, the whole bed
is segmented, rather than the pillow; Second, when there
are more than one salient region in the image, our model
may only segment one of them. For example, as shown by
the middle right example in Fig 1, both screen and seats
can be thought of as a salient region while the model only
highlights only the latter. We conjecture that these cases
are caused by a bias of the dataset (i.e., DUTS-TR [15])
on which the model is trained. That is, the training images
likely to contain large salient regions composed of either an
object or objects sharing a semantic meaning, thus discour-
aging the model from predicting a small salient region or
more than one object with different semantics even if all the
objects can be regarded salient.
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