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1. Implementation Details

1.1. Self-supervised Pretraining

We use MoCo [2] as the contrastive learning frame-
work and S3D [3] as the feature extractor to implement
CPR. Note that MoCo is not required but is useful to
save memory usage. Therefore, it is simply a coincidence
that the baseline CoCLR [1] uses MoCo and we have ap-
plied CPR to other work not using MoCo such as IIC
as well. At pretraining stage, two fully connected layers
(FC1024→ReLU→FC128) are used as a projection head
after the global average pooling layer to obtain the embed-
ding features but the projection head is removed for the
model to perform downstream tasks. Following CoCLR we
set the momentum to 0.999, the temperature to 0.07, and
the size of the queue to 2048 on every dataset Training each
model on UCF 101 , we use ADAM as our optimizer with
an initial learning rate of 10−3 and weight decay of 10−5,
where the learning rate is multiplied by 0.1 at 300 and 350
epochs.

1.2. Action Recognition

For action recognition task, we use ADAM to optimize
the model for 500 epochs with a batch size of 16 on two
GPUs. The initial learning rate is set to 10−3, where the
learning rate is decayed by 0.1 at 400 and 450 epoch respec-
tively. The momentum is 0.9 and the weight decay is 10−3.
At evaluation stage, we follow the practice of CoCLR to
uniformly sample 32 frames from each video, perform ten-
crop to 128×128 pixels, and then average their predictions
to become the final video prediction.

*Work done as a NEC Labs intern in 2021.

2. Additional Results

2.1. Class Mining Recall (CMR)

To evaluate the overall mining quality, we further de-
fine Class Mining Recall (CMR) in Eq 1 to measure how
a model is able to successfully mine distinct true positives
from a certain class in one training epoch.

Class Mining Recall =
#Distinct TP Selected

#Total Class Instances
(1)

As shown in Figure 1, we present the full CMR in the
UCF101 classes. Closer inspection of the figure reveals that
CPR has the Top-3 classes are Diving (100%) , Pommel-
Horse (100%), and UnevenBars (100%). On the other hand,
the bottom 3 classes are Lunges (27.8%), Haircut (33.3%),
and HandstandWalking (33.3%). Furthermore, we demon-
strate video frames from these classes above to visualize
their content including human action and background.

In the overall evaluations of all 101 classes, CPR scores
higher CMR than baseline CoCLR in 48 classes while the
baseline mines better only in 20 classes. It is even in the
rest classes. Regarding the classes that the baseline has
higher CMR, it may that those positive classes highly corre-
late with a single view while CPR sometimes does not help
much after visual inspection. A further comparison of the
number of 100% CMR between both methods, CPR obtains
eight perfect CMRs across 101 classes, which exceeds two
classes compared to the baseline getting six. In addition, we
evaluate the entire performance of CPR by applying median
CMR. Our approach achieves the median CMR of 83.3%
across all the classes, which outperforms the baseline with
the median CMR of 77.8%. This outcome shows a great im-
provement with a margin of 5.5%. In summary, these em-
pirical evidence validates the effectiveness of our approach
in mining the higher quality positives than the baseline.
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Figure 1. Class Mining Recall (CMR) per action class on UCF101. There are 101 action classes which are listed in alphabetical order.
The upper bar chart covers the first 50 action classes while the lower bar chart covers the rest of the action classes. Eight action classes
appeared in bold font represent cases where CPR achieves 100% CMR. They are 1. BenchPress, 2. Billiards, 3. Diving, 4. HorseRace, 5.
FrisbeeCatch, 6. PommelHorse, 7. UnevenBars, and 8. Surfing. Note that we measure the CMR of both approaches in their last training
epoch.
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