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1. Implementation
For the object detection part, we rebuild ORE [4] with

ResNet-50 [3] as the backbone network. The initial learning
rate is set to 0.01. The weight decay is 1e−4. The momen-
tum η, the margin parameter ∆ and the temperature param-
eter T are empirically set to 0.9, 15 and 1 respectively. The
unknown object and non-maximum suppression threshold
are set to 0.5 and 0.4. We train the model on three suc-
cessive tasks (i.e., T1, T2, T3 or Task-1, Task-2, Task-3),
with 8 epochs on each task. The experiments are conducted
on NVIDIA Tesla P100 4 GPUs with a batch size of 128.
For object category discovery, we select ResNet-50 [3] as
the backbone with no pre-trained weights. The network en-
codes the object instance into 256−dimension using a lin-
ear projection head in the last layer. The learning rate is
0.015 [2] with 200 epochs for each training circle.

1.1. Semantic Split

The detailed known classes and unknown classes split of
each task in MS-COCO [5], and Pascal VOC [1] are shown
in Tab. 2. The intersected classes between COCO and VOC
are treated as the known classes for the first task, Task-1.

2. Ablation study on Memory Module
This section provides an ablation study on the memory

module to show the effects of the known memory in repre-
sentation learning. The results are reported in Tab. 1. The
performance of our method with only working memory is
shown in Case I where the detected known objects at the
training phase will not be included in the representation
learning. Compared to Case II where our model is using
both working and known memory, we can see that the per-
formance of I is worse over three tasks. It shows the design
of our memory module is important for class discovery as
it allows the model to learn more generalised embedding
representations.

3. Mutual Information and Entropy
We have introduced the normalised mutual information

for clustering performance evaluation. Here, we provide

Memory Module Task-1 Task-2 Task-3

Known Unknown NMI ACC Purity NMI ACC Purity NMI ACC Purity

I ✗ ✓ 8.8 5.6 9.9 5.2 6.3 12.4 5.5 11.7 28.2

II ✓ ✓ 11.0 6.3 12.6 5.8 6.9 13.3 6.5 16.4 29.3

Table 1. Ablation Study on Memory Module.

the formulation for the two major components in the nor-
malised mutual information, which are the mutual informa-
tion (MI) and the entropy (H). Let Cl be the set of ground
truth classes, and Ĉl be the set of predicted clusters. The
MI and entropy are formulated as:

I(Cl, Ĉl) =
∑
k

∑
j

P (Clk ∩ Ĉlj) log
P (Clk ∩ Ĉlj)

P (Clk)P (Ĉlj)

H(Cl) = −
∑
k

P (Clk) logP (Clk)

H(Ĉl) = −
∑
j

P (Ĉlj) logP (Ĉlj)

(1)
where P (Clk), P (Ĉlj) and P (Clk ∩ Ĉlj) are the proba-
bilities of a object being in cluster Clk, Ĉlj and Clk ∩ Ĉlj
respectively. The probability is calculated as the number
of corresponding objects divided by the total number of in-
stances.

4. Qualitative Analysis
4.1. Open-Set Detection and Discovery Results

In Fig. 1, we visualise the OSODD predictions under
two tasks, Task-1 and Task-2. The left figure shows the
prediction in Task-1, where the zebra and giraffe class are
not introduced. The model successfully distinguishes two
unknown animals. The right figure shows the prediction
in Task-2 where the annotations of zebra and giraffe are
made available. More results are shown in Fig. 2. We have
also encountered failure cases, as shown in Fig. 3, where
the model incorrectly assigns the piazzas to two novel cat-
egories. Additionally, in the second row, there is a false
detection on person class. However, after the piazza class
get introduced in Task-3, the model makes the correct pre-
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Task-1

Airplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow
Dining table Dog Horse Motorcycle Person Potted plant Sheep Couch Train Tv

Truck Traffic light Fire hydrant Stop sign Parking meter Bench Elephant Bear Zebra Giraffe
Backpack Umbrella Handbag Tie Suitcase Microwave Oven Toaster Sink Refrigerator
Frisbee Skis Snowboard Sports ball Kite Baseball bat Baseball glove Skateboard Surfboard Tennis racket
Banana Apple Sandwich Orange Broccoli Carrot Hot dog Pizza Donut Cake

Bed Toilet Laptop Mouse Remote Keyboard Cell phone Book Clock Vase
Scissors Teddy bear Hair drier Toothbrush Wine glass Cup Fork Knife Spoon Bowl

Task-2

Airplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow
Dining table Dog Horse Motorcycle Person Potted plant Sheep Couch Train Tv

Truck Traffic light Fire hydrant Stop sign Parking meter Bench Elephant Bear Zebra Giraffe
Backpack Umbrella Handbag Tie Suitcase Microwave Oven Toaster Sink Refrigerator
Frisbee Skis Snowboard Sports ball Kite Baseball bat Baseball glove Skateboard Surfboard Tennis racket
Banana Apple Sandwich Orange Broccoli Carrot Hot dog Pizza Donut Cake

Bed Toilet Laptop Mouse Remote Keyboard Cell phone Book Clock Vase
Scissors Teddy bear Hair drier Toothbrush Wine glass Cup Fork Knife Spoon Bowl

Task-3

Airplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow
Dining table Dog Horse Motorcycle Person Potted plant Sheep Couch Train Tv

Truck Traffic light Fire hydrant Stop sign Parking meter Bench Elephant Bear Zebra Giraffe
Backpack Umbrella Handbag Tie Suitcase Microwave Oven Toaster Sink Refrigerator
Frisbee Skis Snowboard Sports ball Kite Baseball bat Baseball glove Skateboard Surfboard Tennis racket
Banana Apple Sandwich Orange Broccoli Carrot Hot dog Pizza Donut Cake

Bed Toilet Laptop Mouse Remote Keyboard Cell phone Book Clock Vase
Scissors Teddy bear Hair drier Toothbrush Wine glass Cup Fork Knife Spoon Bowl

Table 2. Semantic splits for Task-1, Task-2 and Task-3. Known classes are highlighted in blue. Unknown classes are highlighted in yellow.

dictions on all piazza instances and eliminates the ambigu-
ity of the novel categories. Two different failure cases are
shown in Fig. 4 and Fig. 5. In the first case (See Fig. 4), the
detector incorrectly classifies the unknown objects as the
known classes. In the second case (See Fig. 5), the detector
correctly finds the novel category for the unknown objects
when the labels are not available, but it does not detect the
objects when the actual class is introduced. This suggests
there is still a large space to be improved.

4.2. Object Category Discovery Results

In Fig. 6, we visualise some discovered object clusters
from the first task, Task-1. We assume that 20 classes are
known and the rest 60 classes are unknown (See ‘Task-1’
in Tab. 2). Most clusters can be quantitatively evaluated by
the ground-truth labels in the validation step. Some objects
or categories of interest are not annotated by human in the
original dataset (e.g. plate). Surprisingly, our model can
identify those un-annotated objects and cluster them to find
new novel categories (See ‘PLATE’ in Fig. 6). It is noticed
that some objects from the known class have been falsely
predicted as unknown and clustered into novel categories
(e.g. potted plant).
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Figure 1. OSODD predictions in Task-1 (Left) and Task-2 (Right). In Task-1, the model successfully localises the unknown objects and
recognise them as two different categories. In Task-2, the wild animal classes including zebra and giraffe are introduced to model, it
correctly classifies the objects into their corresponding classes.



Task 1 ⟶ Task 2Figure 2. The left column shows the results in Task-1 where only 20 classes are available. The right column shows the results in Task-2
where 20 new classes, like stop sign and fire hydrant, have been introduced to the model.



Task 2 ⟶ Task 3Figure 3. The left column shows the predictions in Task-1 where the piazzas are clustering into two novel categories. The right column
shows the predictions in Task-3 where all the piazza objects are correctly classified.



Figure 4. The left column shows the predictions in Task-1. The banana has not been introduced, the model has correctly predicted the
novel categories. The right column shows the predictions in Task-2 where the food classes are not available for the task. The model should
predict the banana into one of the novel categories, but it incorrectly classifies the unknown object into one of the known classes.

Figure 5. A failure case in open-set learning. The model successfully discovers the novel category for the kite class in Task-1 (Left).
However, after more semantic classes of labels are provided in the following task, Task-2, the model fails to localise the kites in the image.
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Figure 6. Some discovered results from object category discovery.


