
Generative Flows as a General Purpose Solution for Inverse Problems

José A. Chávez
San Pablo Catholic University

Peru
jose.chavez.alvarez@ucsp.edu.pe

Abstract

Due to the success of generative flows to model data
distributions, they have been explored in inverse problems.
Given a pre-trained generative flow, previous work pro-
posed to minimize the 2-norm of the latent variables as
a regularization term. The intuition behind it was to en-
sure high likelihood latent variables that produce the clos-
est restoration. However, high-likelihood latent variables
may generate unrealistic samples as we show in our exper-
iments. We therefore propose a solver to directly produce
high-likelihood reconstructions. We hypothesize that our
approach could make generative flows a general purpose
solver for inverse problems. Furthermore, we propose 1×1
coupling functions to introduce permutations in a genera-
tive flow. It has the advantage that its inverse does not re-
quire to be calculated in the generation process. Finally, we
evaluate our method for denoising, deblurring, inpainting,
and colorization. We observe a compelling improvement of
our method over prior works.

1. Introduction

With the success of generative models in the generation
of synthetic data [10, 15], prior works [2–4] explored them
for solving inverse problems in image processing. In this
approach, a generative model can be pre-trained with some
data such as medical images, faces, animals, and more [12,
20, 21]. Then, this trained model is used to find the best
restoration for an inverse problem.

In an inverse problem we aim to recover x∗ ∈ Rn from
the possible-noisy linear measurements y = Ax∗+η, where
A ∈ Rm×n is the matrix measurement and η ∈ Rm is the
noise. For instance, y would be a noisy or blurred image,
and x∗ would be the restoration of this image. So given a
generative model G : z → x, researchers [4] proposed the
following objective function

ẑ = argmin
z∈Rk

∥AG(z)− y∥2 + γ · ∥z∥2, (1)

where z ∈ Rk and x ∈ Rn. And the most typical choice
for ∥ · ∥ is the 2-norm [3, 4]. Note that the network G was
trained with similar samples than x∗, thus the intuition is to
find ẑ such that the synthetic image x̂ = G(ẑ) is close to
x∗.

Generative Adversarial Networks (GANs) have shown
great success in image synthesis [12, 18]; however they are
not invertible. Experiments in image manipulation with
GANs [1] have shown that projected images [22] are not
identical to the original ones. Thus, even if we set the iden-
tity matrix as A, and η = 0 in Equation 1; we will probably
never achieve the zero-error reconstruction (x∗ = x̂). On
the other hand, Variational Auto-Encoders (VAEs) perform
a stochastic mapping from samples to latent variables. Al-
though VAEs have an encoder, we can infer only approxi-
mately the corresponding latent variable for a given sample.

Generative flows [8] have a particular advantage among
generative models; they are invertible networks. Hence,
these models can perform the re-generation of any image—
there exists a latent variable for any image x∗ in an inverse
problem, and is unique. A sequence of bijective functions
allows the exact reconstruction of a sample with its corre-
sponding latent variable. Therefore, zero-error reconstruc-
tion is possible and easy to achieve. Authors in [2] proposed
to solve a unique inverse problem with generative flows. In
this approach, the aim is to encode the corresponding mea-
surements y from a given image x∗. Then, once the model
is trained with synthetic pairs of {x∗, y}, it may estimate the
corresponding original image from some measurements y.
Note that this method recovers the original image from its
measurements once it is trained on a specific inverse prob-
lem. One must train different pairs of {x∗, y} for each task.

In contrast, GlowIP [3] explored pre-trained generative
flows for compressed sensing, denoising and inpainting. In
GlowIP, the Glow architecture [14] is trained on the CelebA
dataset [16], thus encoding a latent variable for each image
as G−1 : x → z. Once the model is trained, GlowIP per-
forms Equation 1 to solve an inverse problem. This model
does not require the knowledge of any specific inverse prob-
lem in the training process—it is only trained with images

1490

0.
0

0
.2

0.
4

0.
6

0.
8

1.
0

1.
2

1
.4

1.
6

1.
8

2
.0

Figure 1. Samples from our generative flow trained on the CelebA dataset. We generate images from an isotropic Gaussian distribution
N (0, σ2I). Each row represents a batch of 16 samples by setting a specific value for σ. Note that σ = 0 represents z = 0.

from CelebA.
Note that Equation 1 has a regularization term ∥z∥2. As

authors suggest in [3,4], the intuition behind it is to encour-
age high likelihood latent variables, because G is typically
trained with the latent distributionN (0, I). However, a high
log-likelihood in the latent representation may generate a
low likelihood sample x. Indeed, the sample x0 = G(0) is
a blurry and unlikely image in a generative flow (see Figure
1). Our hypothesis is that z must produce realistic samples
instead. Recently, researchers [19] have attempted to gen-
eralize Equation 1, they proposed a maximum a posteriori
(MAP) objective for image denoising as follows

ẑ = argmin
z∈Rk

1

2σ2
∥G(z)− y∥2 − β · log pG(G(z)), (2)

where
√
E[∥η∥2] = σ, and pG(G(z)) is the density estima-

tion by G. However, one must be careful when using den-
sity estimates from a generative flow. In the training pro-

cess, G only sees samples from its corresponding dataset.
Nevertheless, one may obtain the density estimates from
out-of-distribution samples. In fact, a generative flow may
assign a high likelihood to constant or random images [17].
Additionally, estimate pG(G(z)) involves using the gener-
ative flow in the form of G and then G−1. As the authors
suggest in [19], the hyperparameter β should be configured
to control this problem.

On the other hand, permutations represent a key process
in generative flows to handle the expressiveness of bijective
functions. The Glow architecture [14] requires invertible
1 × 1 convolutions to permute the entries of hidden fea-
ture maps. Note that this architecture requires computing
the inverse of the invertible 1 × 1 convolutions in order to
solve Equation 1 or Equation 2. Invertible 1 × 1 convolu-
tions have shown impressive performance in the generation
of synthetic high-resolution images. Nonetheless, the in-
verse of this layer has a significant cost in limited resources,
which could be avoided.

1491

In this work, we aim to explore pre-trained generative
flows as a general purpose solution for inverse problems.
The contributions are summarized in the following points:

• A solver to produce realist restorations in inverse
problems through a pre-trained generative flow. Our
approach demonstrates quantitive and qualitative im-
provement among the state-of-the-art methods in many
inverse problems.

• We introduce 1 × 1 coupling functions to permute the
channels of feature maps in a generative flow. This
permutation does not require the computation of its in-
verse during the generation of samples.

Code to implement our solver and reproduce results is
publicly available1.

2. Preliminaries
In this section, we give an overview on the generative

flow model as well as existing methods to introduce permu-
tations.

2.1. Generative flows

Generative flows can be trained by the maximum likeli-
hood using the change of variable formula

log(pX(x)) = log(pZ(z)) + log(|detJF (x)|), (3)

where F : x→ z is an invertible network that maps from a
sample x ∼ pX to the latent variable z ∼ pZ ; and JF (x) =
∂F (x)
∂x is the Jacobian of F evaluated at x. The network F

is composed of a sequence of bijections as follows

x
F1

−−−→←−−−
F−1

1

h1

F2

−−−→←−−−
F−1

2

h2 · · ·hl−1

Fl

−−−→←−−−
F−1

l

z, (4)

where F must be a transformation such that its Jacobian
determinant is computationally tractable [8]. The idea is to
choose transformations Fi whose Jacobian ∂hi

∂hi−1
represents

a triangular matrix—the determinant of a triangular matrix
is the product of its diagonal elements. Training F in Equa-
tion 3 with maximum likelihood is also known as Gaussian-
ization [6], where the dimensions in z becomes independent
and therefore

pZ(z) =

k∏
i=1

pZi(zi), (5)

where k is number of entries of z. Note that Equation 5
simplifies the maximization of the right-hand side in Equa-
tion 3. Moreover, each bijection Fi is also called coupling

1The code is available at https://github.com/jarchv/
solverip.git

layer [8], and it is a reversible triangular transformation
where its determinant is easy to compute.

2.2. Permutations in generative flows

A coupling layer leaves half of its input unchanged while
the other is modified. This expressiveness of coupling lay-
ers caused by the half unchanged can be handled with per-
mutations. In NICE [8], a swap operation exchanges the
halves of the coupling layer input, so in two consecutive
coupling layers, the entire input is modified. The Glow
model [14] implements learned invertible 1 × 1 convolu-
tions, which performs impressive results in the CelebA HQ
dataset [11]. However, as the authors said the cost of com-
puting its determinant is O(c3), where c is the number of
input channels in the invertible 1× 1 convolution. Further-
more, its inverse has a cost of O(c3). On the other hand,
Glow resizes the feature maps with squeeze layers [9]. Due
to a squeeze layer should produce the same number of ele-
ments for a given input, it increments the number of chan-
nels c that will be permuted by invertible 1 × 1 convolu-
tions. This process increases the number of parameters of
invertible 1 × 1 convolution, and consequently the cost of
computing its Jacobian determinant and its inverse.

The Glow architecture [14] is used in GlowIP [3] for in-
verse problems. Note the process of solving inverse prob-
lems in Equation 1 involves using the inverse of the net-
work. It means that GlowIP should compute the inverse of
each invertible 1× 1 convolution in the sample generation.
Moreover, training the Glow architecture to infer latent vari-
ables from images also involves computing the determinant
of this permutation layer.

3. Proposed approach
In this section, we first describe our inverse problem

solver to generate realist reconstructions, and then our pro-
posed 1× 1 coupling functions to introduce permutations.

3.1. Inverse problem solver

Once we fix our generative flow Fϕ (parametrized by ϕ)
with the CelebA dataset [16], we proceed to solve inverse
problems. Let assume that we aim to recover x∗ ∈ Rn

from possible-noisy linear measurements y = Ax∗ + η,
where A ∈ Rm×n and η ∈ Rm. Then, given a pre-trained
generative flow Fϕ : x → z , where x, z ∈ Rn, we may
rewrite Equation 3 as

log(pϕ(x)) = log(pZ(z))− log(|detJF−1
ϕ

(z)|), (6)

where log(pϕ(x)) is the log-likelikehood. Note that we re-
place the term |detJFϕ

(x)| by |detJF−1
ϕ

(z)|−1 in Equa-

tion 3. Now, JF−1
ϕ

(z) is the Jacobian of F−1
ϕ evaluated at

z.

1492

Note that the maximization of log(pZ(z)) is equivalent
to the minimization of ∥z∥2, which is proposed in [3, 4].
However, it does not ensure the maximization of the log-
likelihood log(pϕ(x))—we must maximize the Jacobian
term as well. The maximization of the right-hand side
in Equation 6 directly ensures the generation of high log-
likelihood samples x, which is what we pretend. Then, our
objective function to find the latent variable that recovers x∗

from y in an inverse problem is

ẑ = argmin
z∈Rk

{∥AG(z)− y∥1 + α · L(z)} , (7)

L(z) = − log(pZ(z)) + log(|detJF−1
ϕ

(z)|), (8)

where α > 0 is a hyperparameter. We find empirically
that our regularization term L(z) performs better with the
1-norm in Equation 7.

3.2. 1× 1 Coupling functions

Figure 2 shows our generative flow architecture. A
flow step represents a sequence of an activation normaliza-
tion [14] and a coupling layer. Inside a coupling layer, we
implement swap operations. It introduce permutations as
follow

h1, h2 = swap(split(h)), (9)

where split separates the input tensor h ∈ Rn into two
chunks h1 ∈ Rn/2 and h2 ∈ Rn/2. Note that a swap op-
eration has constant time complexity O(1). Then, we set a
convolutional neural network CNN as the coupling function,
which process the first chunk as

s, t = CNN(h1), (10)

where s and t have the dimension as h1. Inspired on
Glow [14], we perform the following affine transformation
on h2

h′
2 = h2 ⊙ sigmoid(s+ 2) + t, (11)

where sigmoid is the sigmoid function. Finally, we apply
a concat operation to obtain the output tensor h′, which
has the same dimension as the input h

h′ = concat(swap(h1, h
′
2)). (12)

Note that if we apply a swap operation in Equation 9,
then we should apply another one in Equation 12 to hold
the order of the entries in h.

Figure 2. Our generative flow architecture. Each flow step is com-
posed by an activation normalization [14] followed by our pro-
posed coupling layer. These flow steps are combined with squeeze
layers. We also split low-scale feature maps in two chunks, and
force one of the halves (hz) to directly follow pZ . The other half
continues its path until produce the 1× 1 latent variable z.

An additional permutation is performed in our genera-
tive flow architecture. Our coupling function applies 1 × 1
convolutions on 1 × 1 feature maps h. Hence, each 1 × 1
coupling function permutes all the elements of 1×1 features
maps. However, each of these coupling functions does not
require the computation of its inverse during sample gener-
ation. Finally, in the process of training our generative flow,
the Jacobian of 1×1 coupling function is not required to be
computed.

4. Experiments

This section illustrates the experimental details and
presents the comparison of our proposed solver to other
state-of-the-art methods. The performance evaluation is
split into four parts: denoising, deblurring, inpainting, and
colorization. Then, we show how realistic are samples with
different standard deviations in the latent distribution. Fi-
nally, we conduct an ablation study to compare the time
speed and memory usage when we use 1×1 coupling func-
tions and invertible 1× 1 convolution.

5. Training details and parameters settings

First, we resize to 32 × 32 resolution all images of the
CelebA dataset [16]. Then, we fix a generative flow with the
training samples. The Adam optimizer [13] is used during
the training with parameters α = 0.0001, β1 = 0.5 and
β2 = 0.999. Inspired on [9], we force half of the low-
scale feature maps to follow the latent distribution as we can
see in Figure 2. We perform squeeze layers [9] to reduce
and increase the scale of feature maps. Additionally, we set
L = 5 as the number of scales, and K = 2 as the number
of flow steps per scale. The value of K is duplicated for
scales 2 × 2 and 1 × 1—we use 14 flow steps in total. We
set the batch size as 32 and stop the training process after
100 epochs. Finally, we use 512 hidden channels for each
network CNN.

Once the model is trained, we optimize Equation 7 and

1493

Ta
rg

et
N

oi
sy

C
SG

M
G

lo
w

IP
M

A
P

B
M

3D
O

ur
s

Figure 3. Image denoising on images from the CelebA dataset. The first row is the target image x∗ and the second row is the noisy image
y, we aim to recover x∗ from y. From the 3rd-7th rows, we show results for CSGM, GlowIP, MAP, BM3D and our proposed solver. We
synthetically create noisy images with a noise level of

√
E[∥η∥2] = 0.1.

Ta
rg

et
B

lu
rr

y
C

SG
M

G
lo

w
IP

O
ur

s

Figure 4. Image deblurring on images from the CelebA dataset. The first row is the target image x∗ and the second row is the blurry image
y, we aim to recover x∗ from y. From the 3rd-5th rows, we show results for CSGM, GlowIP, and our proposed solver. We create synthetic
blurry images by applying a 3× 3 average pooling with stride 1 on targets images.

initialize the latent variable at z0 ∼ N (0, σ2I) for σ = 0.1.
In this process, we set α = 0.005, β1 = 0.9 and β2 =
0.999. We configure the batch size as 32, and after 1500
iterations we return the restored image for the respective

inverse problem. All experiments are made in an NVIDIA
GeForce GTX 750 Ti.

To compare with other methods such as CSGM [4] and
GlowIP [3], we use their initialization and objective func-

1494

Ta
rg

et
M

as
ke

d
C

SG
M

G
lo

w
IP

O
ur

s

Figure 5. Image inpainting on images from the CelebA dataset. The first row is the target image x∗ and the second row is the masked
image y, we aim to recover x∗ from y. From the 3rd-5th rows, we show results for CSGM, GlowIP, and our proposed solver. We crop a
region of images to create the masked images.

tion in our pre-trained generative flow. Note that CSGM
and GlowIP perform the same objective function (Equation
1), the unique difference is the initialization: random ini-
tialization for CSGM and zero initialization for GlowIP. We
therefore test many values for their penalization hyperpa-
rameter γ. Each value of this hyperparameter in our experi-
ments is the one that achieves the best performance for each
inverse problem. Additionally, in image denoising, we also
compare with BM3D [7] and MAP [19]. We use the PSNR
and SSIM metrics to measure the quality of restorations on
each inverse problem.

5.1. Denoising

For image denoising we use a noise level of
√

E[∥η∥2] =
0.1. Figure 3 shows that CSGM (γ = 0.1) smooths the
noisy image but can not remove all distortions. These dis-
tortions are slightly more visible in GlowIP (γ = 0.1) than
CSGM. On the other hand, MAP [19] has similar visual re-
sults to GlowIP. In MAP, we use the same initialization as
ours, and 0.0015 as the learning rate with β = 0.5—we
find empirically the best performance for this method us-
ing these settings. Our method outperforms BM3D in the
PSNR and SSIM metrics as you can see in Table 1. Indeed,
our restorations look sharper and more realistic than those
from BM3D (see Figure 3). Nonetheless, our method elim-
inates some details from the background in samples. In this
case, we set α = 0.05 in Equation 7.

5.2. Deblurring

We create synthetic blurry images by applying an aver-
age pooling in the target image x∗, and use it as the mea-
surements y. There is no significant difference between

CSGM (γ = 0.01) and GlowIP (γ = 0) in image deblurring
(see Figure 4). Both produce visual artifacts that are exac-
erbated if we increase their penalization term—CSGM and
GlowIP mitigate visual artifacts with γ = 0.01 and γ = 0
respectively. As you can see in Table 1, our method outper-
forms GlowIP and CSGM in the PSNR and SSIM metrics.
Moreover, our results look more sharp and close to the tar-
get image. Our hyperparameter α in this case is 0.02.

5.3. Inpainting

For inpainting, we mask a square in the center of the
target image and fill it with zeros. We obtain the best per-
formance in CSGM for γ = 0.01. But even so, CSGM
produces many visual artifacts. In contrast, GlowIP (γ = 0)
produces a realistic reconstruction of the black square with
few visual artifacts. As we can see in Table 1, our method
slightly outperforms GlowIP, however our visual results
look similar to those from GlowIP (see Figure 5). Ap-
parently, the log-likelihood term does not significantly im-
prove the performance. We obtain our best performance for
α = 0.002.

5.4. Colorization

In the case of the colorization problem, we average the
three channels of the target image to produce y. CSGM
(γ = 0.01) generates over-saturated images, which have
different tones than target images as we can see in Figure
6. Instead, GlowIP (γ = 0) produces washed-out images,
and similar to image deblurring, its regularization term does
not improve its performance. Our method performs the col-
orization problem, however our results are similar to those

1495

Table 1. Average PSNR(dB) and SSIM for CSGM, GlowIP, MAP, BM3D and our method. We evaluate on inverse problems such as
denoising, deblurring, inpainting and colorization. Each numerical measurement is the average over 192 samples.

Method Denoising Deblurring Inpainting Colorization

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CSGM [4] 37.41 0.897 37.17 0.883 36.39 0.839 34.71 0.897
GlowIP [3] 37.21 0.894 35.82 0.867 37.81 0.903 35.79 0.937
MAP [19] 37.35 0.898 − − − − − −
BM3D [7] 37.65 0.905 − − − − − −
Ours 37.72 0.918 39.72 0.963 37.97 0.913 35.72 0.940

Ta
rg

et
G

ra
y

C
SG

M
G

lo
w

IP
O

ur
s

Figure 6. Image colorization on images from the CelebA dataset. The first row is the target image x∗ and the second row is the grayscale
image y, we aim to recover x∗ from y. From the 3rd-5th rows, we show results for CSGM, GlowIP, and our proposed solver. We create
grayscale images by averaging the channels of the target images.

from GlowIP. In this case, our solver does not achieve a sig-
nificant improvement over state-of-the-art methods. Table 1
shows our results for α = 0.02.

5.5. Additional experiments

Due to our generative flow is trained with a latent dis-
tribution N (0, I), we must use this distribution to produce
synthetic samples. Hence, we experiment with different
standard deviations of the latent distribution. Given a la-
tent variables z ∼ N (0, σ2I), we sample for many values
of σ as you can see in Figure 1. Our experiments show that
if we set z0 = 0, the sample F−1(z0) = x0 is a blurry and
unrealistic image. As we increase the standard deviation
in the latent variables, we generate high likelihood samples,
however we also introduce visual artifacts. Our experiments
show that latent variables with a σ in [0.8, 1.2] produce the
most realistic samples.

As you can see in Figure 1, high likelihood latent vari-
ables do not ensure realistic samples. Both CSGM and
GlowIP have problems in image denoising and image de-

blurring. In the case of inpainting, all methods (includ-
ing ours) can not perform the reconstruction of non-frontal
images. Maybe, a deeper generative flow could generate
more realistic restorations—we perform a shallow genera-
tive flow for our experiments. An analysis of continuous
normalizing flows [5] as a pre-trained model is beyond the
scope of this work.

5.6. Ablation study

We conduct an ablation study to verify the computational
cost on the generation process. As we mentioned before,
solving inverse problems implicates using the inverse of our
network. Thus, we compare two configurations of our ar-
chitecture. The first one introduces permutations with in-
vertible 1 × 1 convolutions; we follow the configuration of
Glow [14] with three different scales (L = 3). In this con-
figuration, each flow step is a sequence of activation nor-
malization, invertible 1× 1 convolution and coupling layer.
The second architecture employs our 1 × 1 coupling func-
tions for permutations. Both configurations set 14 as the

1496

Table 2. We compare two architectures with respect to the number
of parameters and time speed measured using milliseconds. We
configure the first one with invertible 1 × 1 convolutions, and the
second one with our proposed 1 × 1 coupling functions. The nu-
merical measurements for time speed show the mean and standard
deviation over 1500 iterations and 128 samples.

Method Time (ms) # of parameters

Inv. 1× 1 Conv. [14] 10.86± 0.18 33.8M
Ours 4.46± 0.03 32.7M

total number of flow steps.
Table 2 proves that our method is faster than invertible

1 × 1 convolutions in the generation process. It is worth
mentioning that, on average, our generation time is about
6.4ms less than the other configuration. Note that both ar-
chitectures have a similar amount of parameters. Neverthe-
less, invertible 1 × 1 convolutions require the computation
of its inverse in Equation 7. This process increases the time
needed to generate a sample.

6. Discussion
We demonstrate that our solver improves the perfor-

mance at denoising, deblurring and inpainting in low-
resolution images from the CelebA dataset [16]. Indeed,
our reconstructions are the sharpest and closest to the origi-
nal image. Furthermore, we introduce 1× 1 coupling func-
tions to save computational time in the generation process
of generative flows. Our method ensures the generation of
high likelihood samples, which results in sharp and realis-
tic restorations in inverse problems. Our experiments sug-
gest that generative flows can be a general purpose solution
for inverse problems. Note that we use the same network
for each inverse problem, we do not need to re-train a new
network for each task. A future direction is to evaluate our
method on high-resolution images and real-world examples.

References
[1] Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter

Wonka. Styleflow: Attribute-conditioned exploration of
stylegan-generated images using conditional continuous nor-
malizing flows. ACM Trans. Graph., 40(3), May 2021. 1

[2] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich
Köthe. Analyzing inverse problems with invertible neural
networks. In International Conference on Learning Repre-
sentations, 2019. 1

[3] Muhammad Asim, Max Daniels, Oscar Leong, Ali Ahmed,
and Paul Hand. Invertible generative models for inverse
problems: mitigating representation error and dataset bias.
In Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
pages 399–409. PMLR, 13–18 Jul 2020. 1, 2, 3, 4, 5, 7

[4] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Di-
makis. Compressed sensing using generative models. In
International Conference on Machine Learning, pages 537–
546. PMLR, 2017. 1, 2, 4, 5, 7

[5] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. 7

[6] Scott Chen and Ramesh Gopinath. Gaussianization. In T.
Leen, T. Dietterich, and V. Tresp, editors, Advances in Neu-
ral Information Processing Systems, volume 13. MIT Press,
2000. 3

[7] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on image
processing, 16(8):2080–2095, 2007. 6, 7

[8] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014. 1, 3

[9] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. In International Confer-
ence on Learning Representations 2017 (Conference Track),
2017. 3, 4

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014. 1

[11] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 3

[12] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 1

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 4

[14] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. 1, 2, 3,
4, 7, 8

[15] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014. 1

[16] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
the IEEE international conference on computer vision, pages
3730–3738, 2015. 1, 3, 4, 8

1497

[17] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Di-
lan Gorur, and Balaji Lakshminarayanan. Do deep gener-
ative models know what they don’t know? arXiv preprint
arXiv:1810.09136, 2018. 2

[18] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. arXiv preprint
arXiv:2202.00273, 2022. 1

[19] Jay Whang, Qi Lei, and Alex Dimakis. Solving inverse prob-
lems with a flow-based noise model. In International Con-
ference on Machine Learning, pages 11146–11157. PMLR,
2021. 2, 6, 7

[20] Yan Wu, Jeff Donahue, David Balduzzi, Karen Si-
monyan, and Timothy Lillicrap. Logan: Latent optimi-
sation for generative adversarial networks. arXiv preprint
arXiv:1912.00953, 2019. 1

[21] Xin Yi, Ekta Walia, and Paul Babyn. Generative adversar-
ial network in medical imaging: A review. Medical Image
Analysis, 58:101552, 2019. 1

[22] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
Alexei A. Efros. Generative visual manipulation on the natu-
ral image manifold. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling, editors, Computer Vision – ECCV 2016,
pages 597–613, Cham, 2016. Springer International Publish-
ing. 1

1498

