
Guided Deep Metric Learning

Jorge Gonzalez-Zapata1, Ivan Reyes-Amezcua1, Daniel Flores-Araiza2, Mauricio Mendez-Ruiz2,

Gilberto Ochoa-Ruiz2, Andres Mendez-Vazquez1

1CINVESTAV Unidad Guadalajara, Mexico
2Tecnológico de Monterrey, School of Engineering and Sciences, Mexico

jorge.gonzalezzapata@cinvestav.mx, gilberto.ochoa@tec.mx, andres.mendez@cinvestav.mx

Abstract

Deep Metric Learning (DML) methods have been proven
relevant for visual similarity learning. However, they
sometimes lack generalization properties because they are
trained often using an inappropriate sample selection strat-
egy or due to the difficulty of the dataset caused by a dis-
tributional shift in the data. These represent a significant
drawback when attempting to learn the underlying data
manifold. Therefore, there is a pressing need to develop
better ways of obtaining generalization and representation
of the underlying manifold. In this paper, we propose a
novel approach to DML that we call Guided Deep Metric
Learning, a novel architecture oriented to learning more
compact clusters, improving generalization under distribu-
tional shifts in DML. This novel architecture consists of
two independent models: A multi-branch master model, in-
spired from a Few-Shot Learning (FSL) perspective, gen-
erates a reduced hypothesis space based on prior knowl-
edge from labeled data, which guides or regularizes the
decision boundary of a student model during training un-
der an offline knowledge distillation scheme. Experiments
have shown that the proposed method is capable of a better
manifold generalization and representation to up to 40%
improvement (Recall@1, CIFAR10), using guidelines sug-
gested by Musgrave et al. to perform a more fair and real-
istic comparison, which is currently absent in the literature.

1. Introduction

DML has proven to be a relevant topic given its strategy
of acting directly on the resulting embedding distances to
capture the semantic similarity of the data, using the robust-
ness of deep learning models. Over time, DML methods
have been integrated to task such as zero-shot [23,29], few-
shot [35, 36] and self-supervised learning [16, 22, 28].

Baseline DML methods have a variety of proposals with
different loss functions [8,17]. However, pair or triplet sam-
ples imply high complexity time in the training process.
Thus, were introduced sample mining strategies [13, 17].
Still, these strategies do not generalize well to all architec-
tures and can be counterproductive depending on the nature
of the data or architecture [25, 40]. In addition, the experi-
ments realized in [30] and [25] indicate overall flaws in the
experimental setups in DML that lead to unfair comparison.

Most Machine Learning (ML) models usually assume
that the train and test data are drawn from the same dis-
tribution (i.i.d. assumption). However, in a realistic sce-
nario, distributional shifts between the train and test set can
occur, where the test distribution is unknown and diverges
from the train distribution. Precisely, Out-Of-Distribution
(OOD) generalization address this problem [31].

While there is still a vague definition of OOD in the lit-
erature and characterization of distributional shift is still an
open problem [31], we have opted to use these concepts us-
ing several references [19,23,31,42] that remain congruent
in certain properties. For example, the distributional shifts
can be caused by semantic shift (or label shift), in which
the OOD samples belong to new classes, or by covariate
shift, where the distribution of the data changes between the
train and test scenarios while keeping the same labels. Our
proposal focuses on solving for covariate shift.

Among the causes of covariate shift are included prob-
lems related to domain generalization, i.e., when the train
and test domains are disjoint but still share the same labels.
As well as by problems related to sub-population shift, i.e.,
when the train and test domains are the same, but their pro-
portions are different. Ideally, a DML model learns an em-
bedding space that generalizes well enough within the train
data distribution, known as In-Distribution (ID), avoiding
vulnerabilities to data difficulty (unspecific covariate shift).
Some methods make use of diverse concepts such as knowl-
edge distillation [10, 18, 29] and consider a probable distri-
butional shift in the data [9, 23] to improve generalization.
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For example, [23] show through exhaustive experiments
how data splitting into train and test involves different distri-
bution shifts that modify the difficulty of the data and pro-
poses few-shot DML to improve generalization upon un-
known shifts in test.

This paper presents an approach that brings together
adaptations of both Few-Shot Learning (FSL) and knowl-
edge distillation that avoids the restrictions of classification
layers. The proposal consists of two independent models:
The first one is a multi-branch master model, called GEM-
INI, that exploits local and global information to generate
a reduced hypothesis space based on prior knowledge from
the source labeled dataset in the form of triplet samples.
This model represents a fast-convergence compact model,
with negligible train time cost and no change in test time
cost, avoiding problems of large teacher networks and time
consumption [10]. Its architecture is an analogy to strate-
gies based on parameter sharing in FSL [39]. The second
model, a deep learning model, is a student model that learns
an adequate embedding function guided by the mentioned
reduced hypothesis space by using a similarity function
s(·, ·), following the teacher-student concept from knowl-
edge distillation [10, 14]. Exploiting the tractability of the
features space low-dimensionality to regularize the student
decision bounds (Figure 1).

To test our proposal, we have followed some of the
guidelines proposed by [25] to design an experimental pro-
tocol that allows us to compare different models under equal
conditions as much as possible. Our proposal demostrate
the following key contributions:

• The experiments empirically show that the quality of
the GEMINI embedding space is reliable given the
consistency of the results with a random sample selec-
tion, reducing the dependence on the not-so-reliable
sample mining strategies.

• Following [23], we further show that FSL adaptations
in DML improve generalization with learning circum-
stances hindered by distributional shifts.

• The evaluation metrics suggest that our proposal can
obtain better-delimited embedding spaces with com-
pact clusters than with the compared models, giving
less uncertainty between ID and OOD data.

• The performance in low-dimensional (two-
dimensional) embeddings positions the proposed
model as useful for data visualization.

2. Related works
Deep Metric Learning. Usually, there are two fundamental
DML models considered in the literature: The former is the
siamese network (contrastive loss) [7, 12], a method based

Figure 1. Block diagram of our proposal. The reduced hypothesis
space generated a priori by the GEMINI model is used to guide
the training of the deep learning model.

on pairwise samples, which encourages small positive pair-
wise distances and negative pairwise distances above a cer-
tain margin. The latter is the triplet network (triplet loss)
[15] that considers three types of samples: positive, nega-
tive, and an anchor. In this case, the distance between the
anchor-negative samples should be greater than the distance
between the anchor-positive samples by at least a margin.
The triplet network improves over the siamese network by
using intra-class and inter-class relationships [25], allow-
ing a better fit to the variance differences between classes
and making the model less restrictive. In this way, using
these same fundamental architectures, there are a variety
of proposed loss functions, e.g., Angular loss [37], Mixed
loss [4], Margin Loss [40], Multi-similarity loss [38], N-
Pairs loss [33], among others [8, 17].

However, pairwise or triplet samples can involve high
time complexity in the training process. Hence, sample
mining strategies to identify the most informative examples
capable of increasing performance, as well as the training
speed, can be used. Nevertheless, for instance, in the case of
hard-negative mining, the siamese network generally con-
verges faster. However, the case of the triplet network of-
ten leads to problems where all samples have the same em-
bedding and produce noisy gradients [25, 40]. Meanwhile,
semi-hard negative mining is recommended for triplet net-
work over hard-negative mining to avoid the risk of over-
fitting. However, in some cases, it might converge quickly
at first, but as the number of negative examples within the
margin runs out, it drastically slows down its progress [40].
These indicate that choosing an appropriate sampling strat-
egy could be a difficult decision, as it seems to be sensitive
to the properties of the underlying dataset or when architec-
ture changes occur.

Meanwhile, new approaches have extended DML meth-
ods to other topics and have shown improvements in lever-
aging data relationships. Such is the case of Zero-Shot
Learning (ZSL) and Few-Shot Learning (FSL), paradigms
that address applications hindered by a limited number of
samples and where it uses prior knowledge to generalize
quickly [23, 39].
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The ZSL approach, where test and train classes are dis-
tinct, intends to learn representation spaces that capture and
transfer visual similarity to unseen classes [3, 23, 27, 29].
Faces the challenge of constructing a priori unknown test
distribution with an unspecified distributional shift from the
train distribution. However, arbitrarily large distributional
shifts may cause the captured knowledge from the training
data to be less significant to the test data [23], i.e., ill-posed
learned representations. In the case of FSL, where at least
a few samples of the test distribution are available during
training, improve the quality of embeddings or prototype
representations [28,32,34,36]. Specifically, in [23] has been
proven that adaptations of FSL can improve the generaliza-
tion capability of DML since even the minor additional do-
main knowledge provided helps to adjust the learned repre-
sentation space to achieve better OOD generalization (com-
monly referring to covariate shift).

Also related to our line of research, there are some
approaches following FSL methods that learn by con-
straining the hypothesis space through prior knowledge
using a parameter sharing strategy [39]. Such is the
case of fine-grained image classification [44], domain
adaptation [24], and cross-domain translation [2], where
some layers are for capturing global information and others
for local information.

Knowledge Distillation. Originally introduced as model
compression and acceleration techniques, knowledge distil-
lation refers to an approach with teacher-student architec-
ture [11, 14]. The main idea is to learn a student model
(small network) from a teacher model (large network). As
a result, it’s obtained a small network trained to learn to
replicate the behavior of the original network. This idea
evolved beyond the goal of model compression and was
subsequently used to improve performance in computer vi-
sion and language modeling tasks [10]. Specifically, in the
context of DML, the purpose is to take advantage of the
knowledge captured by the master model to learn better em-
bedding functions [5, 35, 36].

In addition, there are variants within this approach with
more specific configurations, such as Self-distillation [29,
43], where the same network acts as both teacher and stu-
dent models. As well as self-supervised learning [22, 28],
oriented to help initialize a network where there is a lack of
labeled data. In self-supervised, an initial (pretext) task is
learned by a master model using a general content dataset
(e.g., ImageNet), which provides the “supervision” to the
student model to perform the actual (downstream) task.
A common approach in self-supervised learning uses con-
trastive learning to act over the similarity between the em-
beddings of pair samples [16].

3. Method

In this section, we propose a novel architecture for the task
of deep metric learning, called Guided deep metric learn-
ing. This architecture has key concepts based on both FSL
and Knowledge distillation. This architecture consists of
two independent models (embedding functions). The first is
called GEMINI, a fast-convergence compact model, which
is in charge of generating a reduced hypothesis space based
on prior knowledge. The second one is a deep learning ar-
chitecture (specifically, a ResNet-18) used to learn the em-
bedding function guided by the hypothesis space generated
by the GEMINI model.

3.1. GEMINI Model

Analogous to parameter sharing strategies found on FSL,
the GEMINI model consists of two main parts (Figure 2).
The first component fk(·) exploits the local information of
each class, one stream layer [1,6] per class. Then, the global
fully connected component g(·) tries to exploit the global
information of local representations by sharing some pa-
rameters between the different classes, producing a unique
data representation and, thus, avoiding the strong restric-
tions of a classification layer, e.g., cross-entropy.

The model uses a triplet dataset X generated from a
training dataset Dtrain with c classes. We will use the no-
tation x(k) and x+

(k) for the anchor and positive samples of
class k and x−

(l) for the negative sample of class l, where
k ̸= l. Each sample is input to the network through its
respective stream, depending on its class. The outputs are
intermediate representations denoted by fi(x

∗
(i)) for each

class i = 1 . . . c, regardless of the sample type (∗).

fk

(
x∗
(k)

)
= hL

(k) ◦ h
L−1
(k) ◦ · · · ◦ h

1
(k)

(
x∗
(k)

)
(1)

The equation (Eq. 1) represents the layer composition per-
formed at each stream. Here, the triplets (x(k),x

+
(k),x

−
(l))

are selected in two steps: First, a permutation of length
2 (without replacement) is randomly selected from the
classes, thus selecting two respective streams. Second, two
samples of the first class (x(k),x

+
(k)) and one of the second

class (x−
(l)) are extracted from the selected permutation.

Each mini-batch contain a certain number of triplet sam-
ples, given by a hyper-parameter, of one permutation of the
classes, this is denoted by Xb where b = 1, . . . , |c|!

(|c|−2)! .
This means that, given that there are only two different
classes in each mini-batch, only two stream are used (ac-
tivated) in each mini-batch. Thus, the activation of the
streams are control by the given indicator function 1ij ,
where i and j are the stream index and the sample class
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Figure 2. Complete Architecture. First, a) The GEMINI model is trained using the triplet data samples Xtrain generated from the original
train dataset Dtrain. Then, we acquire the embeddings of the respective train dataset Dtrain from the reduced hypothesis space generated.
Second, b) The GEMINI’s low-dimensional embeddings guide the training of the ResNet through a similarity measure S(·, ·) in this
low-dimensional space, comparing the distance between the respective embeddings. The discrepancy provides feedback for the ResNet
parameters.

respectively,

1ij =
{

1, if i = j
0, Otherwise (2)

In order that, during the training process, the following con-
dition is enforced,

1ij · ||fi(x(j))−fi(x+
(j))|| < ϵ, ∀

(
x(j),x

+
(j)

)
∈ Xb (3)

1il · fi(x−
(l)), ∀x

−
(l) ∈ Xb (4)

where ϵ is a small positive number. This is the expected be-
haviour in each update of the model parameters after each
mini-batch, in accordance with the proposed cost function
(Eq. 5). However, once they passed through the local com-
ponent fk(·), they all pass through the global component
g(·) where the samples in the mini-batch share the layer pa-
rameters. The embedded representation of the network is
denoted by g(x∗

(i)) = g(fi(x
∗
(i))). Thus, once the interme-

diate and final representations are obtained for each sample
in the triplet sample, both components of the network are

coupled through the proposed cost function (Eq. 5).

L (f, g, d, β,M) =
1

|Xb|
∑

(
x(k),x

+
(k)

,x−
(l)

)
∈Xb

β · d
(
fk

(
x(k)

)
, fk

(
x+
(k)

))
+ ...

(1− β)
[
M − d

(
g
(
x(k)

)
, g

(
x−
(l)

))]
+

(5)

where the term β ∈ [0, 1] is a weighting parameter, the term
[x]+ = max(0, x) is the hinge loss, and M is a margin.
The first term of the cost function evaluates the closeness of
the similar samples, using the local information of the class
to emphasize the closeness of the intermediate representa-
tions.

Note that using this first term alone may certainly lead
to a trivial solution, i.e., a mapping of all points to a sin-
gle point in the embedded space. To prevent this type of
solution, a second term has been added which sets away
points belonging to different classes. Thus, as the training
progress, only the pairs that satisfy d(g(x(k)), g(x

−
(l))) <

M will produce a cost value. In this way, the first term
minimizes intra-class distances, and the second term pre-
vents trivial solutions by maximizing the distances between
classes, inter-class distances.

The term M can be defined as M =
d(g(x(k)), g(x

+
(k))) + m, where m is a margin value.

1484



This makes the second term of the cost function resembles
the triplet loss function, but with an added term that keeps
the similar samples together using the local information.
To balance both effects in the loss function there is a β term
which, experimentally, its value is usually small (≈ 0.005),
but significant to improve the resulting reduced hypothesis
space.

Algorithm 1 GEMINI Model

Input: original training set Dtrain = {(xi, yi)}Ntrain
i=1

batch size Nbatch

number of classes C
output dimension size OutputSize
number of epochs Nepochs

weighting parameter β
margin value parameter m

Output: reduced hypothesis space embeddings Ẑ
1: Xtrain ←MakeTripletSamples (Dtrain, Nbatch)
2: f ← [f1, · · · , fC ]
3: g ← FullyConnected(OutputSize)
4: for i← 1 to Nepochs do
5: for each {(x(k), x

+
(k), x

−
(l)), (k, l)}

Nbatch
i=1 ∈ Xtrain

do
6: a← fk(x(k))

7: p← fk(x
+
(k))

8: anchor ← g(a)
9: positive← g(p)

10: negative← g(fl(x
−
(l)))

11: loss ← β · ||a − p|| + (1 − β)(||anchor −
positive||+m− ||anchor − negative||)

12: GEMINI.gradient.step(loss)
13: Ẑ ← GEMINI(Dtrain)

The model works by decreasing the distances between an-
chor and positive samples and, simultaneously, increasing
the distance between anchor and negative samples (Figure
1). Rather than engaging with sample mining techniques,
which, as mentioned before, have been shown not to work
well for all possible scenarios, restricting the generality. An
alternative approach arises when the cost function (Eq. 5)
is more generalized with a small change in the second term
(Eq. 6). [

M − d
(
g
(
x(k)

)
,x−

(l)

)]
+

(6)

In this rewriting of the second term, the transformation
g(x−

(l)) is changed by x−
(l). This implies that the input x−

(l),
in this generalization, can be interpreted as a simple vector
that imposes a limitation or restriction on the system. These
constraints can be samples from another class, proposed by
the user or even coming from another model. Thus, it can
be considered that the model can shape the distribution of

each class according to these specific points.

3.2. Complete Architecture

The complete architecture follows the offline knowledge
distillation guidelines. In our proposal, the student network
is a deep learning model of choice; in this case, we opted
for the PyTorch ResNet-18 implementation. We say that
this model is “guided” to replicate the behavior of the mas-
ter network (GEMINI model).

This approach has the advantage that GEMINI has al-
ready searched the space and arrived at a hypothesis space
constrained by prior knowledge. With such a reduced hy-
pothesis space, the ResNet model is expected to need fewer
samples to converge to a suitable hypothesis, closer to the
optimum, and have a lower risk of overfitting. Both models
are coupled by a similarity function, s(·, ·), which measures
the deviation of the ResNet hypothesis from the reduced hy-
pothesis space (Figure 2).

The complete architecture is described in two steps:
First, acquire the low-dimensionality embeddings of the re-
duced hypothesis space ẑi ∈ Z ⊆ Rm corresponding to
each sample in the original training dataset xi ∈ Dtrain ⊆
Rd where m ≪ d, from a previously trained GEMINI
model. Second, the ResNet model takes as input the orig-
inal training dataset Dtrain, directly embedding each sam-
ple xi ∈ Dtrain into a lower-dimensional space zi ∈ Z
without a classification layer. The resulting embeddings
zi are compared with the ones obtained from the GEM-
INI model ẑi through a similarity measure s(zi, ẑi) in the
low-dimensionality space Z ⊆ Rm. Our chosen similarity
measure is the l2-distance. The discrepancy is then used as
feedback for updating the ResNet parameters.

Algorithm 2 Knowledge Distillation General Model

Input: original training set Dtrain = {(xi, yi)}Ntrain
i=1

GEMINI’s reduced hypothesis space embed-
dings Ẑ

similarity function S(·,·)
number of epochs Nepochs

batch size Nbatch

Output: low-dimensionality embeddings Z

1: Xtrain ←
(
Dtrain, Ẑ

)
2: Z ← ∅
3: for i← 1 to Nepochs do
4: for each {(x, ẑ)}Nbatch

i=1 ∈ Xtrain do
5: z ← ResNet.forward(x)
6: loss← s(z, ẑ)
7: ResNet.gradient.step(loss)
8: Z ← ResNet(Xtrain)
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4. Results
This section evaluates, analyzes, and compares the perfor-
mance of our proposed method with other approaches. The
evaluation of the performance follows a few guidelines sug-
gested by [25] to perform a more fair and realistic compari-
son. To claim that an algorithm outperforms other methods,
the conditions to which the models compare must remain
as similar as possible. The rationale for this approach is
to ensure that it is the algorithm (not any external design
choices) the one improving performance. Therefore, the
designed experimental setup keeps consistency in param-
eter choices and avoids some commonly used techniques
that could interfere with the results. For example, the use of
different pre-trained network architectures (leading to dif-
ferences in initial accuracies), the choice of the data aug-
mentation strategy, and choice of the optimizer (e.g., SGD,
Adam, RMSprop), among other design choices that remain
inconsistent (variable) throughout the literature.

4.1. Experimental setup

All of the experiments have been implemented using Python
3.8 and Pytorch 1.6 on an NVIDIA RTX 3060 super 12 GB.
In addition, no data augmentation nor pre-processing (be-
sides global normalization to zero mean and unit variance)
were applied. For all the networks, the dimensionality of
the output embedding space is two, gradient clipping with
a factor of 0.1 and a weight decay with a decay factor of
0.0001. Further, the backbone of all networks (including
our proposed method) is a ResNet-18, where the batches
were constructed randomly (assuming a uniform distribu-
tion) without any sample miner. We used the repository
by [26] for some losses, reducers, and DML metrics.

The networks to be compared have been trained with a
learning range of 0.1-0.5, using an SGD optimizer and a
batch size range of 32-512 samples. In the specific case of
our proposed model, the GEMINI model has been trained at
a learning rate of 0.001, margin value of 3.0, SGD optimizer
with a batch size range of 32-64 triplet samples, and takes
between 10 to 15 epochs to converge to a satisfactory solu-
tion. The complementary deep learning model (ResNet-18)
has been trained at a learning rate of 0.1, SGD optimizer,
and a batch size range of 32-128 samples.1

For base performance comparison purposes, we consid-
ered the baseline models: Siamese and Triplet network,
described in section 2. Additionally, recent models such
as Multi-Similarity Loss [38] and Margin Loss [40] were
considered. The metrics to evaluate the performance of
all architectures were the following: Recall@K, F1-score,
and Normalized Mutual Information (NMI). In addition, we
have used the metrics proposed by [25]: R-Precision (RP)
and Mean Average Precision at R (MAP@R). All these

1Our source code is available at https://github.com/G-DML.

metrics were obtained using the kNN classifier (k = 1)
of scikit-learn in the test embedding space (specifically,
ResNet-18 output, the student model in our proposal).

The experiments were on well-known datasets: MNIST
[21], Fashion-MNIST [41], and CIFAR10 [20]. We
chose these because they are easily comparable benchmark
datasets. Tables 1-3 show the mean performance across
training runs with a 95% confidence interval. The bold type
represents the best result.

Model Recall@1 F-score NMI RP MAP@1
Siamese 98.27 ± 0.10 98.27 ± 0.10 95.16 ± 1.83 97.88 ± 0.16 97.73 ± 0.17

Triplet 97.71 ± 0.10 97.71 ± 0.10 90.98 ± 1.40 96.6 ± 0.10 96.02 ± 0.12
Margin 98.81 ± 0.25 98.81 ± 0.25 91.56 ± 1.90 95.08 ± 2.88 96.17 ± 1.87

MultiSim 98.58 ± 0.19 98.58 ± 0.19 90.54 ± 1.96 91.28 ± 1.19 90.12 ± 1.35
Ours 99.00 ± 0.18 99.00 ± 0.18 92.08 ± 1.80 98.56 ± 0.80 98.38 ± 1.00

Table 1. Performance on MNIST

Model Recall@1 F-score NMI RP MAP@1
Siamese 84.03 ± 0.58 84.03 ± 5.12 75.42 ± 0.54 80.55 ± 0.98 75.00 ± 1.29

Triplet 83.86 ± 0.20 83.90 ± 0.21 75.64 ± 1.05 78.69 ± 0.23 72.07 ± 0.28
Margin 87.75 ± 0.77 87.76 ± 0.77 79.28 ± 1.26 83.40 ± 2.66 79.91 ± 3.59

MultiSim 90.33 ± 0.29 90.35 ± 0.28 77.30 ± 1.24 80.58 ± 1.56 77.27 ± 1.93
Ours 91.93 ± 0.18 91.91 ± 0.17 79.42 ± 1.66 89.06 ± 0.64 87.93 ± 0.66

Table 2. Performance on Fashion-MNIST

Model Recall@1 F-score NMI RP MAP@1
Siamese 25.32 ± 1.53 25.96 ± 1.02 25.17 ± 0.99 24.22 ± 1.07 11.76 ± 4.73

Triplet 41.93 ± 0.93 42.12 ± 0.95 39.43 ± 0.71 36.65 ± 0.88 20.03 ± 1.02
Margin 55.71 ± 5.81 55.86 ± 5.84 45.15 ± 2.65 40.90 ± 3.00 24.73 ± 3.40

MultiSim 56.65 ± 6.15 57.04 ± 6.22 47.51 ± 4.98 47.72 ± 5.96 36.04 ± 7.31
Ours 80.11 ± 0.72 80.09 ± 0.72 61.36 ± 2.31 75.98 ± 0.98 73.93 ± 1.03

Table 3. Performance on CIFAR10

Given an average performance of 10 experiments for the
proposed method and the other methods. As shown, in gen-
eral, our proposal is superior to the others. MNIST (Ta-
ble 1) shows on average a marginal improvement. Com-
pared to Margin loss our proposal improves by 0.19% in Re-
call@1, and up to 1.3% with respect to the Triplet network.
In Fashion-MNIST (Table 2), compared to Multi-similarity
loss our proposal improves by 1.7% and up to 9.6% in Re-
call@1 compared to the Triplet network. Finally, in CI-
FAR10 (Table 3) there is a clear significant improvement.
Compared to Multi-similarity loss, there is an improvement
of about 40% in Recall@1 and about 3 times better com-
pared to the Siamese network.

In addition to better performance, our proposal con-
sistently demonstrates stable performances (narrow confi-
dence intervals) during the different datasets. Meanwhile,
the other models showed more unstable performances, es-
pecially in the most difficult dataset (Table 3). Thus, our
proposal can be considered, in general, less sensitive to
datasets with certain difficulty (distributional shift).
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Figure 3. Embedding spaces using the MNIST dataset.

Figure 4. Embedding spaces using the Fashion-MNIST dataset.

Figure 5. Embedding spaces using the CIFAR10 dataset.

The choice of the two-dimensional embedding size was
motivated to push the proposed method to a more restrictive
condition, such as producing low-dimensional outputs, and
consequently, to its potential for tasks such as data visual-
ization or more data insight.

In order to provide more information, figures 3-5 show
the test set in the embedding spaces learned by the different
methods and data sets. We can generally observe that our
proposal achieves better compactness and separation of the
different classes on the different datasets. It is appreciated
particularly in the most difficult dataset (Figure 5).

5. Conclusions
In this paper, we analyze Deep Metric Learning (DML)
models for embedding learning, the relationships and im-
plementations that connect them to Few-Shot Learning
(FSL), and how some models found in FSL have an archi-
tecture analogous to knowledge distillation with a change in
their approach.

We proposed a DML model that integrates FSL and
knowledge distillation concepts to develop an architecture
that uses local and global information for better manifold
generalization and data representation capabilities, provid-
ing better performance and stability compared to the com-
pared methods. It also demonstrates that FSL adaptations
boost generalization performance in DML models but also
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meaningful embeddings can be learned without a strict sam-
ple selection phase.

Our approach and the models to which it was compared
have been implemented in a careful experimental setup.
Seeking the conditions were as similar as possible to avoid
unfair comparisons, and we have used metrics that pro-
vide a completer picture of the generated embedding space.
Though our results were based only on simple datasets, we
will perform additional experiments on more closely related
datasets with DML or FSL methods and out-of-distribution
generalization metrics to further verify the performance.
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