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Abstract

Self-supervised learning has proved to be a powerful ap-
proach to learn image representations without the need of
large labeled datasets. For underwater robotics, it is of
great interest to design computer vision algorithms to im-
prove perception capabilities such as sonar image classi-
fication. Due to the confidential nature of sonar imaging
and the difficulty to interpret sonar images, it is challeng-
ing to create public large labeled sonar datasets to train
supervised learning algorithms. In this work, we investi-
gate the potential of three self-supervised learning meth-
ods (RotNet, Denoising Autoencoders, and Jigsaw) to learn
high-quality sonar image representation without the need of
human labels. We present pre-training and transfer learn-
ing results on real-life sonar image datasets. Our results
indicate that self-supervised pre-training yields classifica-
tion performance comparable to supervised pre-training in
a few-shot transfer learning setup across all three methods.
Code and self-supervised pre-trained models are be avail-
able at agrija9/ssl-sonar-images.

1. Introduction
Machine perception in autonomous underwater systems

is considered an exceptionally challenging task due to the
unpredictability of marine environments. Factors such as
poor lighting conditions, sediments, and turbidity impact
the visual-based sensing of underwater systems and can re-
sult in failure of critical localization and exploration mis-
sions. Acoustic-based imaging provides an alternative sens-
ing modality that is unimpeded by visibility conditions and
could operate in turbid waters or complete darkness. The
main challenges faced however with acoustic sensors such
as imaging sonars are low signal-to-noise ratios and other
disturbances such as acoustic shadows, multipath interfer-
ence [32] and crosstalk noise [35].
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Figure 1. We propose to expand the capabilities of self-supervised
learning to the sonar image domain with applications to underwa-
ter robotics. Our conceptual idea of self-supervision on grayscale
sonar images follows successful established approaches where we
pretrain models on large unlabeled sonar datasets and evaluate
them using transfer learning on smaller labeled sonar datasets.

In recent years, deep neural network (DNN) architec-
tures have become more popular in underwater applications
like image enhancement [20,35], sonar object classification
[38, 40, 42], and sonar-camera image translation [18, 37].
For underwater sonar data specifically, the progress of deep
learning research has been hindered due to the lack of pub-
licly available data, which could be contributed to the costly
operations needed to collect sonar data as well as confi-
dentiality issues regarding military applications. To com-
pensate for small datasets and lack of annotated data, self-
supervised learning (SSL) [17,19,27] has become an effec-
tive technique that attempts to learn data representations by
using data itself as a supervision signal.

The main contribution of this work is the evaluation of
relevant SSL algorithms for sonar image data with appli-
cations to object classification. In Fig. 1 we illustrate our

1499

https://github.com/agrija9/ssl-sonar-images


proposed conceptual approach. We have studied three SSL
algorithms (RotNet [6], Denoising Autoencoders [41], and
Jigsaw [30]) and compared them to their supervised learn-
ing (SL) counterpart. The SSL algorithms were trained on
an experimental real-life sonar dataset, where the learned
representation quality was evaluated using a low-shot trans-
fer learning setup on another real-life test sonar dataset. Our
findings indicate that all SSL models can reach a similar
performance to that of their supervised counterparts. This
holds even when using a completely unlabeled on-the-wild
sonar dataset. We also note that unlike color image datasets,
SSL does not by itself outperform supervised learning.

These results indicate that SSL has the potential to re-
place the need for labeled sonar data without compromising
task performance and reducing the time and costs of data
labeling.

2. Related Work
Self-supervised learning (SSL) is a learning paradigm

that presents itself as a more scalable approach to pre-
train models for transfer learning with less human labeled
data [2, 3, 9, 11]. SSL can be understood as a two-step
approach: a) learning data representation from solving a
proxy or pretext task using automatically generated pseudo-
labels from raw-unlabeled data, followed by b) fine-tuning
of the learned features on the actual downstream task, i.e.
task of interest such as classification, segmentation or detec-
tion tasks, with few manually labeled data by using transfer
learning.

SSL has been mainly used in color images demonstrat-
ing not only the capability to reach same performance than
pure supervised learning methods with much less labeled
data for many tasks, but even surpassing their performance
in some cases [19]. Pretext tasks that have shown promis-
ing results in learning strong latent representations in color
images are a) generation-based methods, such as image
colorization [22, 44, 45], super-resolution [23], image de-
noising [41], in-painting [16, 31] and video prediction [33],
b) spatial context methods, such as solving the jigsaw puz-
zle [30, 36] and recognizing rotations [6], and c) temporal
context methods, such as recognizing the order of the frame
sequence [24,29]. A detailed description of the chosen pre-
text tasks widely used for color images that we believe can
be applied for sonar images are given in section 4.

Although self-supervised learning has been demon-
strated to improve performance in color images for many
downstream tasks, it has not yet been applied to sonar im-
ages to the best of our knowledge. However, a few studies
on supervised pre-training for transfer learning have been
carried out showing great potential for the use of SSL with
sonar images [38–40]. For example, [39] made a study on
the effect of the training set size by using transfer learning
in sonar image for object recognition, some of the proposed
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Figure 1: Samples from the Marine Debris Watertank
Dataset captured with the ARIS Explorer 3000 Forward
Looking Sonar.
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Figure 2. Samples of sonar images from the Watertank dataset.

architectures required only 50 samples per class to achieve
90% accuracy indicating that deep convolutional neural net-
work (deep CNN) models can generalize well to other data
distributions even with few samples per class.

3. Sonar Datasets
One of the most important things to build robust and re-

liable deep learning vision models is to test them across
different datasets in order to see how they perform against
varying data distributions. In this section, we describe
the sonar datasets we used to train and evaluate our self-
supervised learning algorithms. In particular, we used the
Marine Debris Watertank dataset in the pre-training phase
and the Marine Debris Turntable dataset to evaluate the
quality of the learned features during pre-training. Both
datasets were introduced in [40].

Marine Debris Watertank. This dataset contains a to-
tal of 2627 forward-looking sonar (FLS) images grouped
across 11 classes. This dataset was collected with an ARIS
Explorer 3000 FLS at a frequency of 3.0 MHz. The dataset
was split into three sets: 70% for training, 15% for valida-
tion and 15% for testing. We used this dataset exclusively
to pretrain the three self-supervised models proposed in this
paper. Fig. 2 shows objects sampled from this dataset.

Marine Debris Turntable. This dataset contains a to-
tal of 2471 sonar images grouped across 12 classes. This
dataset was also collected using an ARIS Explorer 3000
FLS at the highest frequency. Each object in this dataset
was placed underwater on a rotating table so that the images
for each object were captured at different angles along the z-
axis. As mentioned in [40], generating multiple views from
objects can help learn better image features since sonar im-
age properties changes with the view angle (e.g. reflections,
pose, and sensor noise). There is an intersection between
both datasets since they have some objects in common (ap-
proximately 50% of the objects). This means that they are
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Figure 1: Samples from the Marine Debris Turntable
Dataset captured with the ARIS Explorer 3000 Forward
Looking Sonar. The dataset captures different objects
located on a rotated table.

1

Figure 3. Samples of sonar images from the Turntable dataset.

not completely independent. Fig. 3 shows samples of the
objects on top of the rotating platform.

4. Sonar Image Classification
In this section, we present pre-training experiments of

three self-supervised models: RotNet [6], Denoising Au-
toencoders (DAEs) [41] and Jigsaw Puzzle [30]. Further-
more, we evaluate their generalization capacities in a few-
shot transfer learning setup for sonar image classification.
We used the Watertank dataset for pre-training and the
Turntable dataset for transfer learning. The research ques-
tion we address here is whether self-supervised pre-training
provides high-quality image features that can compete (or
be better) when compared to image features obtained via
supervised pre-training. We have chosen these methods
due to their success in applications such as image rota-
tions [5,12], image denoising [25,34,43], and jigsaw puzzle
solving [8, 26, 28].

4.1. RotNet - Learning Sonar Image Representa-
tions by Predicting Rotations

RotNet [6] learns representations by predicting rotation
angles applied to input images as opposed to predicting ac-
tual object labels. As discussed in [6], replacing human
labels with synthetically generated rotation labels can be
an alternative to learn high-quality representations without
the need for costly and time-consuming human annotations.
Refer to Appendix B for a detailed description of the base-
line models we implemented to train RotNet.

4.1.1 Pre-processing and Hyper-parameter Tuning

We followed the training procedure from [6] by applying
a total of four rotation angles {0o, 90o, 180o, 270o} to the
sonar images from the Watertank dataset, see Fig. 4. Each

{rotate 0°,                      }     
 

{rotate 90°,                   }      
 

{rotate 180°,                   } {rotate 270°,                  }     
  

Figure 4. Applying rotations to sonar images to generate various
synthetic perspectives from the same object.

Architecture Selected width w Use of w in architecture

ResNet20 32
w is set as starting number of filters,
it duplicates itself after each
residual stack (w = 2w).

MobileNet 32
Base filters are set to w, increasing
first by a factor of four (w = 4w),
then duplicating themselves.

DenseNet121 16
w is used as the number of filters
for each convolutional layer
inside each dense block

SqueezeNet 32

Base squeeze filters are set to w,
and expansion filters are set to 2w,
duplicating itself after
each fire module stack.

MiniXception 16 Stem widths are set to [w/2, w],
and block widths to [w, 2w, 4w, 8w].

Table 1. Selected w width parameter based on best performance
for all models. Table and values obtained from [40].

angle has an integer label associated to it, hence, each image
sample has the form χrotnet = (image 0o, 1), (image 90o,
2), (image 180o, 3), (image 270o, 4).

Similar to the experimental procedure from [40], we
tuned a hyper-parameter w that corresponds to the num-
ber of filters or neurons for each one of the baseline mod-
els described previously. These models were originally de-
signed and optimized to perform on standard color images,
so it is necessary to fine-tune them for grayscale sonar im-
ages. In our case, each architecture has been modified into
its shallowest variation, reducing the width parameter w in
each case. We find that 128 filters as a maximum threshold
across all architectures achieve good task performance (as
opposed to the 1024 original filters). We found, in agree-
ment with [40], that the best performing w parameters are
the ones reported in Tab. 1.

4.1.2 Self-Supervised Training on Watertank Dataset

We trained our models on an NVIDIA Tesla V100 GPU
(8GB of memory) using Keras and Tensorflow 2. Each
architecture was trained with the Adam optimizer [21], a
learning rate β = 0.001 and a total of 200 epochs (except
MobileNet with 220 epochs). All models were trained with
sonar images of size 96 × 96. During training, we applied
real-time random shifts sw, sh to each image (horizontal
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Baseline Model Rotation Accuracy (SSL) True label Accuracy (SL)

ResNet20 97.22% 96.46%

MobileNet 94.43% 98.23%

DenseNet121 95.38% 96.46%

SqueezeNet 95% 97.47%

Minixception 96.14% 96.71%

Linear SVM 76.40% 96.70%

Table 2. RotNet pre-training classification results on the test set
of the Watertank dataset. Results are shown for all baseline CNN
architectures.

and vertical), these shifts were sampled from a uniform dis-
tribution sw ∼ U(0, 0.1w) and sh ∼ U(0, 0.1h). Addition-
ally, we applied random up-down and left-right flips with
50% probability each one. We observed that normalizing
the dataset by dividing pixel values by 255 causes unstable
training, due to this, we restored to the mean subtraction
normalization as performed in [40]. The pixel mean value
of the training set is µpixel = 84.5 and normalization on each
image is given by xnormalized = x− µpixel.

Tab. 2 summarizes our training results on the Watertank
dataset. The best performing model is ResNet20 followed
by MiniXception. We provide self-supervised classification
accuracies (for rotation labels) and supervised classification
accuracies (for actual class labels). In this case, we have
been able to apply standard supervised classification since
we have the class labels from the Watertank objects.

4.1.3 Transfer Learning on Turntable Dataset

In order to evaluate the quality of the features learned
by the models from the previous section, we per-
formed transfer learning on the Turntable dataset. In
this setup, we first subsampled the training set of
the Turntable dataset to have samples-per-class (spc) ∈
[10, 20, 30, 40, 50, 80, 110, 140, 170, 200] (to resemble a
few-shot learning scheme). Thereafter, we generated em-
beddings of each subsampled training set using the pre-
trained models from above (we selected three hidden lay-
ers in each case close to the output, usually Flatten or last
ReLU/Batch Normalization layers). Lastly, we used the em-
beddings to train a support vector machine classifier (SVM)
with parameter C = 1.0 (regularization parameter) for each
spc (a total of 10 times to obtain a mean accuracy and stan-
dard deviation). Note that the SVM was not tuned though
a cross-validation approach as the goal is to show the bene-
fit SSL regardless of the performance of the model used for
transfer learning.

We decided to use the linear SVM classifier as a first test
of linear separability without having to perform further fine-
tuning for transfer learning. We quantified sample complex-

ity by recording classification accuracy on the test set of the
Turntable dataset for each pretrained model, spc and hidden
layer.

Our transfer learning results are presented in Fig. 5(a-e).
We show the accuracy curves for each model as the samples
per each class in the Turntable dataset increase. The green
lines correspond to supervised pre-training and the red lines
correspond to self-supervised pre-training. We observe that
the red (SSL) lines have a similar performance compared to
the green lines (SL) in terms of classification accuracy. Fur-
thermore, there are even cases where self-supervised pre-
training is better than supervised pre-training (e.g. Mo-
bileNet with conv-pw-11-relu layer).

These results are an important first indicator that self-
supervised pre-training can be a replacement for supervised
pre-training for sonar image classification tasks, thus re-
moving the necessity of labeling large sonar datasets man-
ually. The best self-supervised performing model (based
on accuracy) corresponds to ResNet20, activation-17 layer
with an accuracy of 96.62 ± 0.562%, which is less than
1% difference compared to the best supervised performing
model ResNet20, activation-18 layer with 97.270.60%.
Refer to Tab. 6 in Appendix C for a detailed summary of
all RotNet transfer learning evaluations.

4.2. Denoising Autoencoder - Learning Sonar Im-
age Representations by Denoising Corrupted
Inputs

The Denoising Autoencoder (DAE) [41] applies Gaus-
sian noise to input images and attempts to reconstruct the
original uncorrupted inputs in an encoding-decoding man-
ner. In the case of sonar images, this model is a good can-
didate to learn image representations while filtering noise
out; this is of particular interest since most real-life sonar
imaging scenarios consist of noisy images. Refer to Ap-
pendix D for a detailed description of the DAE architecture.
In the following sections, we present pre-training and trans-
fer learning experiments using the DAE algorithm.

4.2.1 Self-Supervised Training on Watertank Dataset

We trained the DAE with the standard Mean Squared Error
(MSE) and Mean Average Error (MAE) loss metrics. Sim-
ilar to RotNet, we implemented Adam optimizer, trained
for 200 epochs, used batch sizes of 128, and a learning
rate β = 0.001. Furthermore, we varied the code size
(dimension of the intermediate layer) in the ranges c ∈
[4, 8, 16, 32, 64, 128], with each value c producing a differ-
ent autoencoder model. This is a main parameter of the ar-
chitecture as it can have an important impact on reconstruc-
tion performance. Gaussian noise was applied to each input
image using Keras built-in Gaussian Noise Layer. The main
parameter of this noise layer is the standard deviation (σ) of
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Figure 5. Transfer learning results on the Turntable dataset for models pretrained on the Watertank dataset. Multiple selected hidden layers
and number of samples per class are presented. Red lines: self-supervised pre-training, green lines: supervised pre-training.

Figure 6. Different Gaussian noise standard deviation σ applied to
sonar images.

the noise distribution as it controls the level of corruption
applied to an image. During training, we have varied this
value to σ ∈ [0.100, 0.125, 0.150, 0.175, 0.200] to evaluate
pre-training performance in the presence of different levels

Noise Standard Deviation σ
Code Size Metric 0.125 0.150 0.175 0.200

4 MSE 0.04 0.05 0.05 0.03
MAE 0.17 0.19 0.20 0.13

8 MSE 0.05 0.04 0.03 0.05
MAE 0.19 0.18 0.13 0.19

16 MSE 0.04 0.05 0.07 0.06
MAE 0.17 0.20 0.24 0.21

32 MSE 0.03 0.05 0.04 0.04
MAE 0.15 0.20 0.19 0.18

64 MSE 0.03 0.03 0.03 0.04
MAE 0.15 0.16 0.16 0.18

128 MSE 0.02 0.03 0.03 0.04
MAE 0.12 0.16 0.14 0.17

Table 3. DAE pre-training reconstruction results on the test set of
the Watertank dataset. Results are shown for varying code sizes
and standard deviations.

of noise (see Fig. 6). In Tab. 3 we show the reconstruction
results on the test set of the Watertank dataset for varying
code sizes c and σ. From these experiments, we observed
that high code sizes (c = 64, 128) and lower σ (due to less
corruption) yield better reconstructions.
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4.2.2 Transfer Learning on Turntable Dataset

Following a similar procedure as with RotNet, we have gen-
erated image embeddings with the pretrained DAE models
and trained an SVM classifier by sub-sampling the training
set of the Turntable dataset. In this case, we only used the
encoder as a feature extractor for embedding generation, i.e.
the encoder maps the input images of size 96×96 into a 1×c
vector embedding for each code size c.

In Fig. 5(f), we show the transfer learning results for
one DAE model (σ = 0.1) and an Auto Encoder (AE)
(no denoising) and compare their performances across mul-
tiple code sizes c. We observed that there is a consider-
able gap in accuracies between DAE and AE for code size
4 (red lines). However, as we increased the code size,
accuracies increase and the gap between both models de-
creases, indicating that higher dimensions can encode the
original images more efficiently. For code size 128 for ex-
ample, DAE performed better than AE, this indicates that
adding noise as a form of random data augmentation can
improve model performance. In this case, the best perform-
ing DAE (code size 128, σ = 0.150) obtained an accuracy
of 94.49 ± 0.62%, more than 2% over the best performing
AE with 92.21 ± 0.59%. For a complete summary of our
transfer learning experiments, refer to Tab. 7 in Appendix E,
which contains results for the best performing code sizes
and all standard deviations.

4.3. Jigsaw Puzzle - Learning Sonar Image Repre-
sentations by Solving Jigsaw Puzzles

The Jigsaw algorithm [30] generates shuffled patches
from input images as a form of self-supervision. First, an
image is split into a n × n grid, yielding a total of n2 im-
age patches. Thereafter, the patches are shuffled based on
predefined permutation sets. Although there are n! possi-
ble permutation sets, this can be narrowed down as desired
(based on memory limitations). The goal of this algorithm
is to classify which permutation set has been applied to a
given input image. Refer to Appendix F for a description of
the Jigsaw architecture implemented. In the following sec-
tions, we describe technical aspects related to data genera-
tion, pre-training, and transfer learning evaluations of Jig-
saw.

4.3.1 Puzzle Data Generation

In order to generate jigsaw puzzles from the Watertank
sonar dataset, first, we split them into a 3 × 3 grid. There-
after, we shuffle the resulting image patches based on a
randomly generated permutation set, since there are 9! =
362880 possible ways to shuffle a 3× 3 image grid, we nar-
row down the possible permutation sets to ∈ [5, 10, 15, 20].
Fig. 7 shows a diagram with the described jigsaw data gen-
eration.

{puzzle,                  }

Figure 7. Jigsaw puzzle data generation. From left to right: grid
generation and shuffling of patches (2× 2 example).

Permutations Test Set Size Test Set Accuracy

5 1975 97.22%

10 3950 96.76%

15 5925 96.03%

20 7900 94.87%

Table 4. Jigsaw pre-training classification results on the test set of
the Watertank dataset. Results are shown for different permutation
sets.

To frame the Jigsaw algorithm as a classification prob-
lem, we associate an integer label to each permutation set.
In this sense, each image is shuffled according to a given
permutation order with a deterministic integer label associ-
ated to it.

4.3.2 Self-Supervised Training on Watertank Dataset

We have trained the Jigsaw model on the Watertank dataset,
the original images are of size 96× 96. After splitting them
into 3 × 3 girds, the resulting patches are of size 32 × 32.
We used a categorical cross-entropy loss for classification,
Adam optimizer, learning rate β = 0.001, batches of size
128 during 20 epochs (considerably less than RotNet and
DAE). We trained the same architecture for four permu-
tation sets {5, 10, 15, 20} applied to the dataset separately.
We summarize the pre-training results in Tab. 4. Notice that
the original dimensions of the dataset increase by the per-
mutation set size. In this case, all permutation sets yield
similar test accuracies, with 5 permutations being the best
performing one due to the fact that this is the minimum
number of permutation sets the model has to classify.

4.3.3 Transfer Learning on Turntable Dataset

For transfer learning evaluations on the Turntable dataset,
we have taken the learned weights from the feature extrac-
tor pretrained with Jigsaw. For this integration, we had to
change the input size of the feature extractor to take in-
puts of shape 96 × 96 corresponding to the actual image
dimensions from the Turntable dataset, as the original Jig-
saw model processes inputs with shapes (9, 32, 32, 1) due to
the 9 patches split. Similar to RotNet and DAE, we gener-
ate embeddings for the four pretrained Jigsaw models, one
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for each permutation set, and subsample the training set to
train an SVM classifier with parameter C = 1.0.

In Fig. 8 we show the transfer learning for low-shot clas-
sification results on each permutation set. Similar to Rot-
Net, we have taken three intermediate layers and evalu-
ated their performance. Overall, the performance of the
self-supervised pre-training curves is on par with the su-
pervised pre-training curves. Similar to RotNet and DAE,
lower samples per class (e.g. 10, 20, 30) yield higher varia-
tions, whereas higher samples per class have lower standard
deviations and make training more stable. We have ob-
served that the best performing Jigsaw model occurs with
10 permutations, dropout-1 layer with an accuracy of
96.83± 0.47%, this is less than 1% difference compared to
the best supervised performing model with dropout-1 layer
and accuracy of 97.08±0.22%,. In Tab. 8 from Appendix G
we summarize the results for all permutation sets together
with the supervised learning counterpart.

4.4. Self-Supervised Training on Wild Images

In addition to the pre-training studies on the Watertank
dataset carried out before, we have also pretrained our mod-
els on “wild‘” uncurated sonar images. As discussed in
[7], computer vision models can be more robust when pre-
trained on uncurated images, one of the main reasons be-
ing that there are no well-defined classes and object shapes
which can lead to biased results. Furthermore, characteriz-
ing the performance of our models on wild data is crucial in
order to relax the constrain of having to manually annotate
sonar datasets. For this, we collected sonar images from the
seabed of a lake and generated random patches out of them.
Fig. 9 shows the proposed regions and the extracted patches.
In total, we have generated 63,000 patches that contain dif-
ferent kinds of seabed shapes but no well-defined objects or
shapes. We split the data into 80% training, 20% testing and
trained our three proposed SSL methods with the same cor-
responding parameters described in the previous sections.
Since this dataset has no class labels, we only trained with
the synthetic labels from each self-supervised approach.

In Fig. 10 and Tab. 5 we summarize the best performing
models for Wild and Watertank data pre-training, evaluated
on the Turntable dataset (200 spc case). We observed that
RotNet Wild (SSL) has an overwhelming poor performance
due to the fact that the model struggles at identifying ro-
tations from wild objects that have no well-defined form
and shape. Aside from this approach, most methods with
Wild pre-training have a competitive performance against
Watertank pre-training (for SL and SSL). Remarkably, Jig-
saw (blue bars) with Wild pre-training performed on pair
with supervised pre-training, thus showing its potential for
broader real-life scenarios and paving the way to tackle fur-
ther tasks with sonar images and SSL approaches. In Fig. 11
from Appendix H we show further model comparisons for

Model Accuracy Difference to Baseline

Baseline SVM 95.67% –

Rotnet - Watertank SL 97.27% +1.60%
Rotnet - Watertank SSL 96.62% +0.95%
Rotnet - Wild SSL 12.71% −82.96%

AE - Watertank SL 92.22% −3.45%
DAE - Watertank SSL 94.50% −1.17%
DAE - Wild SSL 85.23% −10.44%

Jigsaw - Watertank SL 97.09% +1.42%
Jigsaw - Watertank SSL 96.84% +1.17%
Jigsaw - Wild SSL 97.02% +1.35%

Table 5. Comparison of the baseline SVM, the pre-trained models
on the Watertank sonar dataset and the Wild sonar dataset.

the case of 10, 40 and 110 spc, the behavior in these cases
is similar to 200 spc.

5. Discussion and Analysis
Across all three SSL methods, we found that, as opposed

to the spc reported in [40], we have required up to 200 spc
(all the dataset) in order to achieve accuracies higher than
90%. This has to do with the fact that our pre-training is
done on the watertank data and our transfer learning evalu-
ation is done on the turntable data (the opposite direction),
the reason behind this can be that the turntable dataset is
statistically more diverse due to the fact that rotating objects
can result in slightly different sonar images due to shadows
and thus harder to classify.

We observe that improvement of self-supervised pre-
training is more prominent for low-shot scenarios. For ex-
ample, the Jigsaw Watertank SSL and Wild SSL has an in-
creased accuracy from the baseline by around 7% for 10
spc. As we increase these samples, the variation decreases
since the baseline learns from more examples. Compared to
RotNet and Jigsaw, DAE achieved considerably lower accu-
racies, we hypothesize that this is mainly due to the fact that
this method does not increase the dataset dimensions (e.g.
RotNet increases it by 4), but rather, the dataset corrupts
only original images. Overall, the best performing model
is Jigsaw, requiring only 20 epochs to reach competitive
accuracies (against 200 epochs for RotNet and DAE). On
top of this, the feature extractor used in Jigsaw has ∼6,000
parameters, whereas RotNet and DAE contain ∼1,000,000
and ∼200,000 parameters, respectively.

Overall we believe our results show that SSL is a vi-
able alternative to pre-train neural networks for sonar im-
age classification, but unlike many results in color images,
SSL does not seem to improve over feature learning us-
ing supervised learning. It is encouraging for the marine
robotics community that SSL can be used for pre-training,
and we expect that our models and methods will be used in
practice. We will release code and all self-supervised pre-
trained models publicly once the paper is accepted.
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Figure 8. Transfer learning evaluation on the turntable dataset with the Jigsaw model. Test accuracies are reported for varying number of
permutations applied to each image in the dataset.
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Figure 9. Random patch generation from seabed sonar images: (a)
patch region proposal, (b) resulting ”wild” patches.
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Figure 10. Comparison of baseline SVM, the best performing SSL
models pretrained on the Watertank sonar dataset (with supervi-
sion and self-supervision) and the Wild sonar dataset. 200 spc
case.

6. Conclusions and Future Work

In this work we evaluate three self-supervised learning
algorithms for learning features from sonar images, using
two datasets (marine debris turntable and on the wild sonar

image patches), and evaluated them in classifying the ma-
rine debris watertank datset. These results prove that SSL
methods that are commonly used for RBG images also work
for sonar images and perform similarly.

Our results show that the performance of the evaluated
self-supervised algorithms is on par with supervised algo-
rithms for sonar image classification. We have verified ex-
perimentally that our algorithms can generate high-quality
image embeddings for classification after a pre-training and
transfer learning procedure. Across all three algorithms, the
differences between SSL and SL in the obtained accura-
cies are small (only 1-2%), this positions self-supervised
learning as a strong candidate in the absence of labeled
data. We notice that Jigsaw is the best performing SSL al-
gorithm with a best accuracy of 97.02% (surpassing Rot-
Net with 96.46% and DAE with 94.49%), we argue that
this is because this method benefits from image augmen-
tation (synthetic labels) by design, remarkably, this result
was achieved by pre-training on the wild uncurated sonar
dataset, proving the potential of SSL to avoid labeling large
sonar datasets (saving time and costs) and learning im-
age representations from a diverse set of object shapes and
forms.

We expect that our results increase the use of self-
supervised learning for feature learning in sonar images,
improving the overall autonomy and perception capabilities
of underwater vehicles.

For future work, we plan to further investigate
Transformer-based architectures for pre-training. We also
plan to deploy some of our best performing pretrained mod-
els in real-life underwater environments for object classi-
fication. Lastly, we want to investigate further SSL tech-
niques for the problem of image translation using multiple
learning modalities (sonar and camera data).
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