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Figure 1. Example of uncertainty disentanglement in toy regres-
sion of a sinusoid, produced using an ensemble of 15 neural net-
works, with standard deviation being computed across the en-
semble predictions. Predictive uncertainty is decomposed into
aleatoric and epistemic uncertainty, where aleatoric is Gaussian
noise added to the data, and epistemic is higher in out of distribu-
tion inputs (indicated by the dashed barsxtor S andx > ).

tion (segmentation, object detection), it is helpful to sepa-
rate data uncertainty from model uncertainty, for purposes
of out-of-distribution detection, and to ignore outliers and

noise. Figurel shows an example of disentangled uncer-

tainties for a toy regression example.

There are methods to disentangle aleatoric and epistemic
uncertainty for some machine learning modélg[20]. For
deep neural networks, Kendall and Gdl4] de“ne a gen-
eral disentangling model, but it is mostly de“ned for a base

2], model using MC-Dropout9]. In this paper, we general-
ranging from Computer Vision1] to Robotics #], Nat- ize this formulation to allow disentanglement across mul-
ural Language Processing][ and some Medical applica- tiple methods of uncertainty estimation (Like Ensembles,
tions [2]. Use cases involving human subjects usually re- Flipout, etc).
quire some safety constraints and, in general, this means We make an experimental comparison between different
a model should produce reasonable estimates of its con“-uncertainty quanti“cation methods relative to their capacity
dence or uncertainty when making predictions. for disentangling aleatoric and epistemic uncertainty. We

There are two kinds of uncertaint§,[L2,14]: aleatoric or tested those techniques in regression and classi“cation tasks
data uncertainty, and epistemic or model uncertainty. These(on the FER+ dataset), and explore the interaction between
uncertainties are usually combined and predicted as a sinboth sources of uncertainty.
gle value, called predictive uncertaini§][ Recovering the Overall, we “nd that for the purpose of disentangling,
two components of uncertainty is helpful for certain ap- aleatoric and epistemic uncertainty do interact, which is un-
plications. For example, in active learning, epistemic un- expected, as only epistemic uncertainty should interact with
certainty can guide the selection of samples to label, butthe model, and not aleatoric uncertainty. In particular with
aleatoric uncertainty should be ignored. In robot percep- Flipout, outputting only aleatoric uncertainty and zero epis-
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improves both aleatoric and epistemic uncertainty quanti*- ©  Z .
cation, while Seitzer et al. had explored only its use for @ &
aleatoric uncertainty. T2 I I I I I I
The contributions of this paper are a generalization =
of methods to disentangle aleatoric and epistemic uncer- >
tainty produced by a machine learning model across dif- = gg:
ferent uncertainty quanti“cation methods, which were orig- &' S 04
inally proposed by Kendall and GalL4] but only for MC- = § 0.2 — I
Dropout; and a comparison between dropout, dropconnect, 8 OL
ensembles, and "ipout, about their disentangling quality !- Class Class Class

across a regression and classi“cation tasks. We also ex-

plorefsetttllng the numberdqf s?rr]nplzzl_nltgg samplllngtsoft- Figure 2. Visualizations of binary probability distributions pro-
max un.c lon, recommin I!’lg e use= ?am!o esto duced by sampling softmax with different logit Gaussian distribu-
prevent incorrect classi“cation due to approximation error. tionsN (1, 2) with given mearu and standard deviation

2. Related Work

As we mentioned before, separating the total uncertaintyuse_s sequential drawings. from a st'ochastic distributiqn to
into its epistemic and aleatoric components is necessaryEStimate the exact posterior); a review of these techniques
for speci‘c applications. There are some approaches forcan be found indj.
achieving this proces4p]. Depeweg et al.q] presented a
method for measuring the total and aleatoric uncertainties,3. Uncertainty Disentanglement
and then they calculated the epistemic element by subtract-
ing those values. Nevertheless, they tested their proposal
only in regression and reinforcement learning tasks. Alter-
natively, Kendall and Galll4] developed another approach
for independently calculating both uncertainty components
using MC-Dropout. The authors tested their method at re-
gression and classi“cation problems. In this work we ex-
pand this disentanglement method to consider other uncer-

Many uncertainty quanti“cation methods can be catego-
rized into sampling-based and ensemble-based, where en-
sembling can be seen conceptually as a way of sampling. In
this section we generalize the method proposed by Kendall
and Gall fL4].

3.1. Regression

tainty quanti“cation methods. Assume we have a model with uncertainty that outputs
On the other hand, we cannot know the exact probabil- two quantities: the meap; (x) and variance ?(x), where
ity distribution of the inputs that will be given to the trained i  [1,M ] is an index for different samples or ensembles.

model. Hence, quantify its uncertainty, we pass it samplesFor the purpose of uncertainty quantication, we usually
from the training datasete. following the Empirical Risk ~ sample weights from a weight distribution  p( |x,y),
Minimization (ERM) principle R1]. The most common  which produce different predictions fprand 2, that corre-
sampling methods are: Monte Carlo Dropo8it9] (which spond to samples of the (approximate) predictive posterior
turns off some activations at each sample passing to esti-distribution of the model.

mate the prediction uncertainty), Monte Carlo DropCon-  These samples are usually combined into a single Gaus-
nect [L7] (which turns off weights instead of activations, sjan mixture distributiom(y | x) using:

and whose authors reported it to be capable of achieving

better results than MC DropoutT]), estimation with deep py|x) N (u (x), 2(x)) (1)
ensembles6, 18] (which blends the predictions from net- s

works with different weight initializations taken from the W)= M=" i(x) @
same probability distribution), Flipout-based variational in- o .

ference R2] (which samples weight perturbations inside a ()= M3t (2()+ pE() S A(x) (3

mini-batch), and Markov Chain Monte Carl@4] (which [



Kendall and Gal 14] proposed to make a custom Softmax
activation layer that models logizswith uncertainty (Gaus-
sian mean and variance), and uses sampling (Witkam-
ples) to pass the Gaussian logit distributithrough the
softmax activation to produggy|x). We call this function
thesampling softmax functiofieq 6 and?).

zi N (U(x), *(x)) (6)
pylx)= N softmaxz) | [LN] (7)
i
Then at inference time, we again assume that the uncer-
tainty method uses sampling through forwarding passes or
ensembling a model on theaxis (withi  [1,M]). Then,

aleatoric %, and epistemic épi uncertainty logits can be
computed

Re(X) = Ei[ 7(X)] 2y(x) = Van[w(x)]. (8)

Note that these are logits, not probabilities. Passing each
corresponding logit through a softmax function can produce
probabilities, from where entropy is a possible metric to ob-
tain a scalar uncertainty measure:

Paie(y|x) = samplingsoftmaxp(x), Ze(x))
Hae(y[X) = entropy(paie (YIX))
Pepi(Y|X) = samplingsoftmaxu(x), Eu(X))
Hepi(yIx) = entropy(pepi (Y[X))

Where p(x) = M°>! . p(x) is the predictive mean
and entropy is the standard Shannon entropy de“ned as
entropyp) = S | p; logp;.

It should be noted that unlike the case of regression, in
classi“cation, disentangling uncertainties and transforming
them into probabilities does not mean that epistemic and
aleatoric probabilities or entropy will sum to the predictive
probabilities or entropy. Only the logits can be summed to
obtain predictive logits.

19] has Figureg shqws the be.ha\'/ior' of _the sampling softmgx
been proposed to minimize these issues: funct|or_1 Wl_tr_l dlfferer_1t logit distributions. The behavior is
not so intuitive, particularly when the means of both logit
L snwe (Yo, Xn) = sto 2 ) Ly (Vs Xn).  (5) distributions are the same. When the means are different,
the logit variances play a more signi“cant role and affect
Where stof) is the stop gradient operation, that pre- the “nal probabilities. Figure8 shows the computational
vents gradients from "owing through the operation inside graph of this function.
the parenthesis. This loss makes the predicted variance act )
as a weight for each data point, putting more weight into 3-3- Tuning the Number of Samples
larger variances. The parametercontrols the strength of Kendall and Gal{4] do not provide information on how
this weighting. the number of sample for the sampling softmax func-
tion should be selected. This parameter controls a trade-off
between computational performance and error in the esti-
In classi“cation problems, it is slightly more dif‘cult mated probabilities. We evaluate this parameter by estimat-
to separately model aleatoric and epistemic uncertainty.ing the L2 error betweeN = 100000and a variable value

3.2. Classi“cation



.

copies of the same architecture (with different instances of
a random weight initialization) and then combining their
outputs, which usually produces a better model. Lakshmi-
AN narayanan]6] demonstrated that ensembles also have good
PTRNL s el i Lo uncertainty quanti“cation properties. We use an ensemble
of M =5 neural networks.

Flipout. Flipout-based variational inference is a popu-
lar method which models weights as an approximate Gaus-
sian distribution 8], where the kernel and bias matrices are
Gaussian distributed. This process generates a stochastic
model. Flipout P2] is used to reduce the training process
variance, improving learning stability and performance. We
use Flipout in multiple layers with a disabled prior, and bi-

4. We also compute ~ 2S€S are scalars instead of distributions.

the chance of producing a misclassi“cation due to sampling ~ FOr évaluation we tak®l = 20 forward passes of each

x N ([10.0,0.0],[10.0, 10.0])
x N ([100.0,0.0], [100.0, 10.0])

error in Figure5. From these results, at least = 100 method. After that, we compute the mean of probabilities
samples are required to obtain zero classi“cation error. for classi“cation, and the mean and standard deviation for

regression, both across forward pass samples. The sampling
4. Experimental Comparison softmax layer usebll = 100 samples for the classi“cation

task. As baseline, we also train a neural network without

In this section, we compare different uncertainty estima- epistemic uncertainty quanti“cation, which we denote as
tion methods in terms of their ability to disentangle aleatoric Classical NN. For the regression setting this network uses
from epistemic uncertainty. a mean and variance output heads, to be able to estimate

) aleatoric uncertainty.
4.1. Uncertainty Methods

MC-Dropout. Dropout sets random activations in a 4.2. Toy Regression

layer to zero, and it is intended as a regularizer thatis only  \We “rst evaluate a simple regression problem, generating

applied during training. MC-Dropou®] enables the acti-  a dataset by sampling the following function:

vation drop during test/inference time, and the model be-

comes stochastic, where each forward pass produces one

sample from the Bayesian posterior distributi®h We use

dropout layers with a drop probability= 0.25. Where 1, » N (0,0.3). This function has both
MC-DropConnect. DropConnect is conceptually simi- homoscedatic ¢) and heteroscedaticy() aleatoric uncer-

lar to Dropout, randomly dropping weights to zero instead tainty, and a model has to estimate both. We produce

of activations, with a similar regularization effect. MC- 1000 samples fox [0,10] as a training set, and an

DropConnect enables dropping weights at inference time,out-of-distribution dataset is built with 200 samples for

which also produces samples from the Bayesian posteriorx  [10, 15].

distribution [L7]. We use DropConnect layers with drop We train models using the Gaussian NLL (Bgand -

probabilityp = 0.10. Gaussian NLL (Edp) with = 0.5. These results are avail-
Ensembles Ensembles consist of training multiple able in Figures$ and7. The training data that was used to

f(x)=xsin(x)+ 1x+ (9)


















