
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement

Matias Valdenegro-Toro
Department of AI, Bernoulli Institute

University of Groningen
m.a.valdenegro.toro@rug.nl

Daniel Saromo Mori
Arti“cial Intelligence Research Group
Ponti“cal Catholic University of Peru

daniel.saromo@pucp.pe

Abstract

Neural networks are ubiquitous in many tasks, but trust-
ing their predictions is an open issue. Uncertainty quanti“-
cation is required for many applications, and disentangled
aleatoric and epistemic uncertainties are best. In this paper,
we generalize methods to produce disentangled uncertain-
ties to work with different uncertainty quanti“cation meth-
ods, and evaluate their capability to produce disentangled
uncertainties. Our results show that: there is an interac-
tion between learning aleatoric and epistemic uncertainty,
which is unexpected and violates assumptions on aleatoric
uncertainty, some methods like Flipout produce zero epis-
temic uncertainty, aleatoric uncertainty is unreliable in the
out-of-distribution setting, and Ensembles provide overall
the best disentangling quality. We also explore the error
produced by the number of samples hyper-parameter in the
sampling softmax function, recommendingN > 100 sam-
ples. We expect that our formulation and results help prac-
titioners and researchers choose uncertainty methods and
expand the use of disentangled uncertainties, as well as mo-
tivate additional research into this topic.

1. Introduction

Neural networks are state of the art for many tasks [2],
ranging from Computer Vision [13] to Robotics [4], Nat-
ural Language Processing [5], and some Medical applica-
tions [2]. Use cases involving human subjects usually re-
quire some safety constraints and, in general, this means
a model should produce reasonable estimates of its con“-
dence or uncertainty when making predictions.

There are two kinds of uncertainty [8,12,14]: aleatoric or
data uncertainty, and epistemic or model uncertainty. These
uncertainties are usually combined and predicted as a sin-
gle value, called predictive uncertainty [8]. Recovering the
two components of uncertainty is helpful for certain ap-
plications. For example, in active learning, epistemic un-
certainty can guide the selection of samples to label, but
aleatoric uncertainty should be ignored. In robot percep-
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Figure 1. Example of uncertainty disentanglement in toy regres-
sion of a sinusoid, produced using an ensemble of 15 neural net-
works, with standard deviation being computed across the en-
semble predictions. Predictive uncertainty is decomposed into
aleatoric and epistemic uncertainty, where aleatoric is Gaussian
noise added to the data, and epistemic is higher in out of distribu-
tion inputs (indicated by the dashed bars forx < Š � andx > � ).

tion (segmentation, object detection), it is helpful to sepa-
rate data uncertainty from model uncertainty, for purposes
of out-of-distribution detection, and to ignore outliers and
noise. Figure1 shows an example of disentangled uncer-
tainties for a toy regression example.

There are methods to disentangle aleatoric and epistemic
uncertainty for some machine learning models [6,7,20]. For
deep neural networks, Kendall and Gal. [14] de“ne a gen-
eral disentangling model, but it is mostly de“ned for a base
model using MC-Dropout [9]. In this paper, we general-
ize this formulation to allow disentanglement across mul-
tiple methods of uncertainty estimation (Like Ensembles,
Flipout, etc).

We make an experimental comparison between different
uncertainty quanti“cation methods relative to their capacity
for disentangling aleatoric and epistemic uncertainty. We
tested those techniques in regression and classi“cation tasks
(on the FER+ dataset), and explore the interaction between
both sources of uncertainty.

Overall, we “nd that for the purpose of disentangling,
aleatoric and epistemic uncertainty do interact, which is un-
expected, as only epistemic uncertainty should interact with
the model, and not aleatoric uncertainty. In particular with
Flipout, outputting only aleatoric uncertainty and zero epis-



temic uncertainty, even for out of distribution cases, which
we believe is an anomaly. We also “nd that aleatoric uncer-
tainty estimation is unreliable in out-of-distribution settings,
particularly for regression, with constant aleatoric variances
being output by a model. Our results show that Ensembles
have the best uncertainty and disentangling behavior for
both classi“cation and regression, and the� -NLL loss [19]
improves both aleatoric and epistemic uncertainty quanti“-
cation, while Seitzer et al. had explored only its use for
aleatoric uncertainty.

The contributions of this paper are a generalization
of methods to disentangle aleatoric and epistemic uncer-
tainty produced by a machine learning model across dif-
ferent uncertainty quanti“cation methods, which were orig-
inally proposed by Kendall and Gal. [14] but only for MC-
Dropout; and a comparison between dropout, dropconnect,
ensembles, and ”ipout, about their disentangling quality
across a regression and classi“cation tasks. We also ex-
plore setting the number of samples in the sampling soft-
max function, recommending the useN = 100 samples to
prevent incorrect classi“cation due to approximation error.

2. Related Work

As we mentioned before, separating the total uncertainty
into its epistemic and aleatoric components is necessary
for speci“c applications. There are some approaches for
achieving this process [12]. Depeweg et al. [7] presented a
method for measuring the total and aleatoric uncertainties,
and then they calculated the epistemic element by subtract-
ing those values. Nevertheless, they tested their proposal
only in regression and reinforcement learning tasks. Alter-
natively, Kendall and Gal [14] developed another approach
for independently calculating both uncertainty components
using MC-Dropout. The authors tested their method at re-
gression and classi“cation problems. In this work we ex-
pand this disentanglement method to consider other uncer-
tainty quanti“cation methods.

On the other hand, we cannot know the exact probabil-
ity distribution of the inputs that will be given to the trained
model. Hence, quantify its uncertainty, we pass it samples
from the training dataset,i.e. following the Empirical Risk
Minimization (ERM) principle [21]. The most common
sampling methods are: Monte Carlo Dropout [8,9] (which
turns off some activations at each sample passing to esti-
mate the prediction uncertainty), Monte Carlo DropCon-
nect [17] (which turns off weights instead of activations,
and whose authors reported it to be capable of achieving
better results than MC Dropout [17]), estimation with deep
ensembles [16,18] (which blends the predictions from net-
works with different weight initializations taken from the
same probability distribution), Flipout-based variational in-
ference [22] (which samples weight perturbations inside a
mini-batch), and Markov Chain Monte Carlo [15] (which
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Figure 2. Visualizations of binary probability distributions pro-
duced by sampling softmax with different logit Gaussian distribu-
tionsN (µ, � 2) with given meanµ and standard deviation� .

uses sequential drawings from a stochastic distribution to
estimate the exact posterior); a review of these techniques
can be found in [1].

3. Uncertainty Disentanglement

Many uncertainty quanti“cation methods can be catego-
rized into sampling-based and ensemble-based, where en-
sembling can be seen conceptually as a way of sampling. In
this section we generalize the method proposed by Kendall
and Gall [14].

3.1. Regression

Assume we have a model with uncertainty that outputs
two quantities: the meanµi (x) and variance� 2

i (x), where
i � [1, M ] is an index for different samples or ensembles.
For the purpose of uncertainty quanti“cation, we usually
sample weights from a weight distribution� � p(� |x , y),
which produce different predictions forµ and� 2, that corre-
spond to samples of the (approximate) predictive posterior
distribution of the model.

These samples are usually combined into a single Gaus-
sian mixture distributionp(y | x) using:

p(y | x) � N (µ� (x), � 2
� (x)) (1)

µ� (x) = M Š 1
�

i

µi (x) (2)

� 2
� (x) = M Š 1

�

i

(� 2
i (x) + µ2

i (x)) Š µ2
� (x) (3)
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Figure 3. Computational graph for the sampling softmax function,
showing the two fully connected layers that produce logit mean
and variance, and how they relate to the “nal probabilities through
the sampling softmax function.

For the predictive variance� 2
� (x), this can be decom-

posed into aleatoric and epistemic uncertainty, by rewriting
as:

� 2
� (x) = M Š 1

�

i

� 2
i (x) + M Š 1

�

i

µ2
i (x) Š µ2

� (x)

= Ei [� 2
i (x)] + Ei [µ2

i (x)] Š Ei [µi (x)]2

= Ei [� 2
i (x)]

� �� �
Aleatoric Uncertainty

+ Vari [µi (x)]
� �� �

Epistemic Uncertainty

This derivation indicates that across forward pass sam-
ples, the mean of the variances represents aleatoric uncer-
tainty, while the variance of the means corresponds to epis-
temic uncertainty. Also, this formulation can be derived by
using the law of total variance.

The variance heads� 2(x) of a model can be trained us-
ing the Gaussian negative log-likelihood loss for a sample
indexed byn with input xn and labelyn :

L NLL (yn , xn ) =
log � 2

i (xn )
2

+
(µi (xn ) Š yn )2

2� 2
i (xn )

. (4)

This loss is also called variance attenuation. Neverthe-
less, this loss is known to have issues underestimating the
variance head. Hence, an alternative called� -NLL [ 19] has
been proposed to minimize these issues:

L � Š NLL (yn , xn ) = stop(� 2� ) L NLL (yn , xn ). (5)

Where stop() is the stop gradient operation, that pre-
vents gradients from ”owing through the operation inside
the parenthesis. This loss makes the predicted variance act
as a weight for each data point, putting more weight into
larger variances. The parameter� controls the strength of
this weighting.

3.2. Classi“cation

In classi“cation problems, it is slightly more dif“cult
to separately model aleatoric and epistemic uncertainty.

Kendall and Gal [14] proposed to make a custom Softmax
activation layer that models logitsz with uncertainty (Gaus-
sian mean and variance), and uses sampling (withN sam-
ples) to pass the Gaussian logit distribution�z through the
softmax activation to producep(y|x). We call this function
thesampling softmax function(Eq6 and7).

�zj � N (µ(x), � 2(x)) (6)

p(y|x) = N Š 1
�

j

softmax(�zj ) j � [1, N ] (7)

Then at inference time, we again assume that the uncer-
tainty method uses sampling through forwarding passes or
ensembling a model on thei axis (with i � [1, M ]). Then,
aleatoric� 2

Ale and epistemic� 2
Epi uncertainty logits can be

computed

� 2
Ale(x) = Ei [� 2

i (x)] � 2
Epi(x) = Vari [µi (x)]. (8)

Note that these are logits, not probabilities. Passing each
corresponding logit through a softmax function can produce
probabilities, from where entropy is a possible metric to ob-
tain a scalar uncertainty measure:

pAle(y|x) = samplingsoftmax(µ(x), � 2
Ale(x))

HAle(y|x) = entropy(pAle (y|x))

pEpi(y|x) = samplingsoftmax(µ(x), � 2
Epi(x))

HEpi(y|x) = entropy(pEpi (y|x))

Where µ(x) = M Š 1 �
i µi (x) is the predictive mean

and entropy is the standard Shannon entropy de“ned as
entropy(p) = Š

�
i pi logpi .

It should be noted that unlike the case of regression, in
classi“cation, disentangling uncertainties and transforming
them into probabilities does not mean that epistemic and
aleatoric probabilities or entropy will sum to the predictive
probabilities or entropy. Only the logits can be summed to
obtain predictive logits.

Figure 2 shows the behavior of the sampling softmax
function with different logit distributions. The behavior is
not so intuitive, particularly when the means of both logit
distributions are the same. When the means are different,
the logit variances play a more signi“cant role and affect
the “nal probabilities. Figure3 shows the computational
graph of this function.

3.3. Tuning the Number of Samples

Kendall and Gal [14] do not provide information on how
the number of samplesN for the sampling softmax func-
tion should be selected. This parameter controls a trade-off
between computational performance and error in the esti-
mated probabilities. We evaluate this parameter by estimat-
ing the L2 error betweenN = 100000and a variable value
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Figure 4. Error produced by different number of samples through the sampling softmax function, measured as L2 distance between
probabilities with given number of samples and the best approximation, with three different Gaussian logit distributions. Shaded areas
represent one-� error bars.
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Figure 5. Probability of misclassi“cation produced by different
number of samples through the sampling softmax function and
the best approximation, with two different Gaussian logit distri-
butions.

of N . These results are shown in Figure4. We also compute
the chance of producing a misclassi“cation due to sampling
error in Figure5. From these results, at leastN = 100
samples are required to obtain zero classi“cation error.

4. Experimental Comparison

In this section, we compare different uncertainty estima-
tion methods in terms of their ability to disentangle aleatoric
from epistemic uncertainty.

4.1. Uncertainty Methods

MC-Dropout . Dropout sets random activations in a
layer to zero, and it is intended as a regularizer that is only
applied during training. MC-Dropout [9] enables the acti-
vation drop during test/inference time, and the model be-
comes stochastic, where each forward pass produces one
sample from the Bayesian posterior distribution [9]. We use
dropout layers with a drop probabilityp = 0 .25.

MC-DropConnect. DropConnect is conceptually simi-
lar to Dropout, randomly dropping weights to zero instead
of activations, with a similar regularization effect. MC-
DropConnect enables dropping weights at inference time,
which also produces samples from the Bayesian posterior
distribution [17]. We use DropConnect layers with drop
probabilityp = 0 .10.

Ensembles. Ensembles consist of training multiple

copies of the same architecture (with different instances of
a random weight initialization) and then combining their
outputs, which usually produces a better model. Lakshmi-
narayanan [16] demonstrated that ensembles also have good
uncertainty quanti“cation properties. We use an ensemble
of M = 5 neural networks.

Flipout . Flipout-based variational inference is a popu-
lar method which models weights as an approximate Gaus-
sian distribution [3], where the kernel and bias matrices are
Gaussian distributed. This process generates a stochastic
model. Flipout [22] is used to reduce the training process
variance, improving learning stability and performance. We
use Flipout in multiple layers with a disabled prior, and bi-
ases are scalars instead of distributions.

For evaluation we takeM = 20 forward passes of each
method. After that, we compute the mean of probabilities
for classi“cation, and the mean and standard deviation for
regression, both across forward pass samples. The sampling
softmax layer usesN = 100 samples for the classi“cation
task. As baseline, we also train a neural network without
epistemic uncertainty quanti“cation, which we denote as
Classical NN. For the regression setting this network uses
a mean and variance output heads, to be able to estimate
aleatoric uncertainty.

4.2. Toy Regression

We “rst evaluate a simple regression problem, generating
a dataset by sampling the following function:

f (x) = x sin(x) + � 1x + � 2 (9)

Where � 1, � 2 � N (0, 0.3). This function has both
homoscedatic (� 2) and heteroscedatic (� 1) aleatoric uncer-
tainty, and a model has to estimate both. We produce
1000 samples forx � [0, 10] as a training set, and an
out-of-distribution dataset is built with 200 samples for
x � [10, 15].

We train models using the Gaussian NLL (Eq4) and� -
Gaussian NLL (Eq5) with � = 0 .5. These results are avail-
able in Figures6 and7. The training data that was used to












