
A. Data and Models Release
All training data used in this paper is available at https://github.com/mvaldenegro/marine-debris-

fls-datasets/ and models and source code is available at https://github.com/agrija9/ssl-sonar-
images.

B. RotNet Model Selection
In this section we describe the neural network architectures that we used for evaluating RotNet.

Similar to the work in [40], we have implemented the several CNN architectures to evaluate the performance of RotNet in
sonar images. All the described network architectures are lightweight versions that try to address memory and performance
challenges in underwater robotics:

ResNet [10]: Uses residual connections to improve gradient propagation through the network, this feature allows to design
much deeper networks. For our experiments we used a compact variant (ResNet20) which has 20 residual layers.

MobileNet [13]: It is designed to be lightweight in order to do fast inference in mobile devices. It features depthwise
separable convolutions to reduce computations (this induces a trade-off between accuracy performance and computation
performance).

DenseNet [14]: It reuses features heavily. It is composed by a set of dense convolutional blocks, where each of them is a
series of convolutional layers, and each layer takes as inputs the feature maps from the previous convolutional layers in the
same block. For our experiments, we used DenseNet121, which is the shallowest variation as described in [14].

SqueezeNet [15]: It reduces the number of parameters while maintaining competitive performance, this is achieved by
designing so called Fire modules which contain two sub-modules, one squeezes information through a bottleneck and another
one expands the amount of information. According to [15], SqueezeNet has similar performance to AlexNet on ImageNet
but with overall 50x less parameters.

MiniXception: This network is a modification to the Xception network [4] since it reduces the amount of computa-
tion needed (e.g. for facial emotion recognition [1]). Xception is a model that combines ideas from MobileNets by using
depthwise separbale convolutions.

https://github.com/mvaldenegro/marine-debris-fls-datasets/
https://github.com/mvaldenegro/marine-debris-fls-datasets/
https://github.com/agrija9/ssl-sonar-images
https://github.com/agrija9/ssl-sonar-images


C. Detailed RotNet Transfer Learning Results
In this section we show additional detailed transfer learning results with RotNet, presented in Table 6.

Test Set Accuracy

RotNet Baseline Layer 10 Samples 40 Samples 110 Samples 200 Samples

ResNet20 Self-Supervised

ResNet20 Supervised

flatten
activation 18
activation 17

flatten
activation 18
activation 17

68.22 ± 1.83%
66.64 ± 2.95%
66.19 ± 2.14%

76.51 ± 3.30%
70.14 ± 4.40%
71.61 ± 3.10%

84.40 ± 1.74%
85.70 ± 0.84%
85.28 ± 1.31%

90.20 ± 1.23%
88.06 ± 1.40%
88.43 ± 1.44%

90.06 ± 1.08%
93.48 ± 0.67%
93.62 ± 0.83%

94.62 ± 0.75%
95.27 ± 0.74%
95.25 ± 0.87%

92.07 ± 0.58%
96.46 ± 0.54%
96.62 ± 0.56%

96.17 ± 0.46%
97.27 ± 0.60%
97.14 ± 0.79%

MobileNet Self-Supervised

MobileNet Supervised

conv pw 11 relu
flatten
conv pw 12 relu

conv pw 11 relu
flatten
conv pw 12 relu

58.21 ± 1.65%
51.08 ± 2.07%
54.97 ± 2.03%

63.90 ± 1.64%
60.04 ± 3.15%
59.98 ± 1.89%

74.66 ± 1.13%
68.32 ± 1.28%
70.63 ± 1.23%

76.38 ± 1.72%
72.10 ± 1.10%
74.35 ± 1.35%

83.86 ± 1.03%
76.68 ± 0.99%
79.30 ± 1.24%

84.09 ± 1.27%
78.80 ± 0.86%
80.40 ± 1.27%

88.14 ± 0.76%
82.35 ± 0.99%
83.31 ± 0.77%

87.34 ± 0.84%
81.64 ± 1.16%
83.69 ± 0.48%

DenseNet121 Self-Supervised

DenseNet121Supervised

conv5 block15 0 relu
conv5 block16 0 relu
avg pool

conv5 block15 0 relu
conv5 block16 0 relu
avg pool

67.95 ± 2.17%
68.85 ± 2.88%
64.51 ± 3.17%

69.95 ± 3.29%
68.97 ± 3.34%
63.65 ± 2.70%

85.59 ± 1.20%
86.89 ± 1.13%
80.96 ± 1.11%

86.69 ± 0.94%
86.26 ± 1.38%
81.82 ± 1.39%

92.10 ± 0.90%
92.58 ± 0.73%
88.26 ± 1.05%

93.75 ± 0.64%
93.56 ± 0.79%
88.60 ± 0.85%

95.02 ± 0.43%
94.66 ± 0.56%
90.17 ± 0.69%

95.70 ± 0.41%
95.61 ± 0.55%
91.96 ± 0.37%

SqueezeNet Self-Supervised

SqueezeNet Supervised

batch norm 8
batch norm 9
global average pooling2d

batch norm 8
batch norm 9
global average pooling2d

62.54 ± 2.40%
39.70 ± 2.99%
23.92 ± 2.63%

71.76 ± 2.61%
56.07 ± 2.52%
38.77 ± 2.61%

82.10 ± 0.88%
55.14 ± 1.62%
25.13 ± 0.98%

87.44 ± 1.40%
73.59 ± 0.96%
45.34 ± 1.59%

89.56 ± 0.85%
61.64 ± 1.53%
26.27 ± 0.80%

93.67 ± 0.92%
80.34 ± 1.53%
47.22 ± 1.23%

92.37 ± 0.58%
64.65 ± 1.33%
25.95 ± 0.98%

96.31 ± 0.40%
83.07 ± 0.84%
48.20 ± 1.15%

Minixception Self-Supervised

Minixception Supervised

add 3
add 2
conv2d 6

add 3
add 2
conv2d 6

68.63 ± 2.13%
66.71 ± 2.28%
52.74 ± 2.43%

71.33 ± 3.39%
70.34 ± 2.23%
64.24 ± 3.36%

82.94 ± 1.41%
85.78 ± 1.21%
65.75 ± 1.48%

88.38 ± 0.97%
87.98 ± 0.96%
79.87 ± 1.20%

90.12 ± 0.73%
92.80 ± 1.01%
70.91 ± 1.01%

94.34 ± 0.83%
94.63 ± 0.77%
86.68 ± 1.17%

92.29 ± 0.70%
95.30 ± 0.51%
73.73 ± 0.95%

96.86 ± 0.46%
96.91 ± 0.68%
89.39 ± 0.56%

Linear SVM NA 63.55 ± 3.66% 85.39 ± 1.07% 92.51 ± 0.79% 95.67 ± 0.90%

Table 6. RotNet transfer learning classification accuracies on the Turntable dataset.



D. Denoising Autoencoder Model Selection
In this section we describe the neural network architecture that we used as a Denoising Autoencoder.

We selected the following encoder-decoder CNN architecture for the DAE, which based on the one reported in [40]: The
encoder architecture consists of Conv2D(32, 3×3) - MaxPool(2×2) - Conv2D(16, 3×3) - MaxPool(2×2) - Conv2D(8, 3×3)
- MaxPool(2× 2) - Flatten() - Fully Connected(c). The decoder architecture is composed by Fully Connected(c×nw ×nh) -
Reshape() - Conv2D(32, 3×3) - UpSample(2×2) - Conv2D(16, 3×3) - UpSample(2×2) - Conv2D(8, 3×3) - UpSample(2×2)
- Conv2D(1, 3× 3).

E. Denoising Autencoder Transfer Learning Results
In this section we show additional detailed transfer learning results with a Denoising Autoencoder, presented in Table 7.

Test Set Accuracy

Model Code Size Gaussian Noise (σ) 10 Samples 40 Samples 110 Samples 200 Samples

Denoising AE
32

0.100
0.125
0.150
0.175
0.200

64.40 ± 2.98%
62.29 ± 1.55%
60.89 ± 2.62%
63.03 ± 3.32%
61.59 ± 2.35%

80.01 ± 1.72%
75.42 ± 1.02%
68.91 ± 1.82%
77.28 ± 1.11%
74.21 ± 2.13%

82.68 ± 1.20%
78.37 ± 0.84%
71.73 ± 0.75%
81.20 ± 1.21%
79.16 ± 1.17%

84.49 ± 0.64%
79.48 ± 1.00%
72.55 ± 1.18%
82.62 ± 0.85%
80.40 ± 1.15%

64

0.100
0.125
0.150
0.175
0.200

64.97 ± 1.80%
61.81 ± 2.59%
67.90 ± 2.80%
63.93 ± 3.15%
62.18 ± 1.92%

83.34 ± 1.47%
78.06 ± 1.24%
81.44 ± 1.72%
79.70 ± 1.95%
79.84 + - 1.69%

88.06 ± 0.81%
82.71 ± 1.29%
86.79 ± 0.91%
85.84 ± 0.80%
85.05 ± 1.23%

89.65 ± 0.71%
85.11 ± 1.0%
88.40 ± 0.66%
87.45 ± 0.77%
86.69 ± 0.63%

128

0.100
0.125
0.150
0.175
0.200

68.31 ± 1.60%
65.05 ± 2.98%
69.39 ± 2.24%
69.81 ± 2.31%
66.88 ± 2.98%

85.28 ± 1.32%
83.42 ± 1.61%
85.38 ± 1.60%
86.82 ± 0.97%
84.51 ± 1.52%

91.14 ± 1.09%
88.94 ± 1.22%
92.40 ± 0.87%
92.37 ± 0.78%
91.48 ± 0.60%

94.31 ± 0.63%
90.07 ± 0.90%
94.49 ± 0.62%
93.96 ± 0.73%
93.73 ± 0.94%

AE
32 - 67.53 ± 2.03% 81.56 ± 1.55% 86.54 ± 1.13% 88.31 ± 0.83%

64 - 67.10 ± 3.01% 83.84 ± 1.54% 89.16 ± 0.92% 91.39 ± 0.53%

128 - 67.86 ± 1.53% 83.25 ± 1.59% 90.54 ± 1.30% 92.21 ± 0.59%

Table 7. Denoising Autoencoder transfer learning classification accuracies on the Turntable dataset.



F. Jigsaw Model Selection
In this section we describe the neural network architecture that we used for Jigsaw self-supervised learning.

Extensive experiments were carried out to optimize the CNN feature extractor design that works as a baseline for Jigsaw.
The main parameters that we varied were the number of layers, number of filters and downsampling in the feature extractor.
The original Jigsaw architecture [30] uses a set of {64, 128, 256, 386} 2DConvs. In our case, we have reduced considerably
the number these filters (and hence number of parameters) to a set of {32, 16, 8} 2DConvs, this is because our Jigsaw model
is trained on the smaller Watertank dataset and such large models might lead easily to overfitting.

We used a Time Distributed Layer1 (TDL) from Keras in order to feed image patches simultaneously through the sequential
CNN feature extractor and a final decision network (classification layer). The feature extractor is composed of the following
layers: Conv2D(32, 3×3) - BatchNorm() - MaxPool(2×2) - Dropout() - Conv2D(16, 3×3) - BatchNorm() - MaxPool(2×2)
- Dropout() - Conv2D(8, 3× 3) -BatchNorm() - MaxPool(2× 2)- Dropout() - Flatten(). The TDL takes this sequential model
and flattens the output predictions from every image tile to then process them through the decision network. The decision
network is composed by: TimeDistributedLayer(9, None) - Flatten() - FullyConnected() - BatchNorm() - FullyConnected() -
BatchNorm() - Dropout() - FullyConnected().

G. Jigsaw Transfer Learning Results
In this section we show additional detailed transfer learning results with Jigsaw, presented in Table 8.

Test Set Accuracy

Permutations Layer 10 Samples 40 Samples 110 Samples 200 Samples

5
dropout 0 60.61 ± 1.68% 83.93 ± 1.25% 91.59 ± 0.63% 95.19 ± 1.09%

dropout 1 66.41 ± 2.67% 86.17 ± 1.06% 94.51 ± 0.95% 96.74 ± 0.66%

dropout 2 70.14 ± 2.36% 86.76 ± 2.10% 94.35 ± 1.16% 96.24 ± 0.47%

10
dropout 0 64.248 ± 2.22% 84.71 ± 1.79% 92.65 ± 1.44% 95.62 ± 0.74%

dropout 1 64.62 ± 1.75% 86.29 ± 1.85% 94.76 ± 0.74% 96.83 ± 0.47 %

dropout 2 66.20 ± 1.51% 88.55 ± 0.78% 93.95 ± 1.41% 96.77 ± 0.41%

15
dropout 0 64.0 ± 3.88% 84.40 ± 0.98% 91.84 ± 1.13% 95.16 ± 0.50%

dropout 1 67.10 ± 1.68% 86.73 ± 1.66% 94.51 ± 1.07% 96.65 ± 0.46%

dropout 2 68.18 ± 4.74% 85.73 ± 2.09% 93.79 ± 0.68% 95.93 ± 0.58%

20
dropout 0 60.71 ± 2.55% 83.59 ± 0.73% 91.84 ± 0.77% 95.19 ± 0.39%

dropout 1 63.16 ± 1.89% 85.36 ± 1.51% 93.55 ± 0.63% 95.62 ± 0.87%

dropout 2 67.25 ± 2.57% 87.16 ± 1.34% 93.36 ± 0.72% 95.59 ± 0.52%

Supervised
dropout 0 65.45 ± 2.96% 87.59 ± 1.51% 93.82 ± 1.05% 96.58 ± 0.59%

dropout 1 69.64 ± 3.99% 89.33 ± 1.09% 94.91 ± 0.85% 97.08 ± 0.22%

dropout 2 66.94 ± 1.26% 87.25 ± 1.46% 93.89 ± 1.51% 96.09 ± 0.51%

Table 8. Jigsaw transfer learning classification accuracies on the Turntable dataset.

1https://keras.io/api/layers/recurrent_layers/time_distributed/

https://keras.io/api/layers/recurrent_layers/time_distributed/


H. Comparison of Best Performing Transfer Learning Models
In this section we show additional comparisons of the best transfer learning results, presented in Figure 11 for selected

values of samples per class (SPC).

Base
line

Wate
rta

nk
 (S

L)

Wate
rta

nk
 (S

SL)

Wild 
(SS

L)

  A
E W

ate
rta

nk

DAE W
ate

rta
nk

DAE W
ild

  W
ate

rta
nk

 (S
L)

 W
ate

rta
nk

 (S
SL)

 W
ild 

(SS
L)

Pretraining Dataset Method

0

10

20

30

40

50

60

70

80

Tu
rn

ta
bl

e 
Ac

cu
ra

cy
 %

 (
10

 S
PC

) 63
.5

5

76
.5

12

68
.6

36

9.
20

9

67
.8

6

69
.8

14

51
.6

9

69
.6

43

70
.1

4

70
.7

91

SVM
RotNet
DAE
Jigsaw

(a) 10 spc.

Base
line

Wate
rta

nk
 (S

L)

Wate
rta

nk
 (S

SL)

Wild 
(SS

L)

  A
E W

ate
rta

nk

DAE W
ate

rta
nk

DAE W
ild

  W
ate

rta
nk

 (S
L)

 W
ate

rta
nk

 (S
SL)

 W
ild 

(SS
L)

Pretraining Dataset (Method)

15

10

5

0

5

10

15

Tu
rn

ta
bl

e 
Ac

cu
ra

cy
 %

 D
iff

er
en

ce
s 

(1
0 

SP
C)

63
.5

5

76
.5

12

68
.6

36

9.
20

9

67
.8

6 69
.8

14

51
.6

9

69
.6

43

70
.1

4

70
.7

91

SVM
RotNet
DAE
Jigsaw

(b) 10 spc with baseline substracted.
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(d) 40 spc with baseline substracted.
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(f) 110 spc with baseline substracted.

Figure 11. Comparison of the best performing SSL models pretrained on the Watertank sonar dataset (with supervision and self-
supervision) and the Wild sonar dataset. 10, 40 and 110 spc cases.


