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Abstract

Generating meaningful videos that are synchronised to
audio signals is a complex synthesis task that requires gen-
eration of not only realistic videos but also coherent video
motions that conform to the provided audio signals. While
tremendous effort has been expended on audio-to-video
generative models, these models rely heavily on supervised
signals such as face/body key points or 3D meshes. How-
ever, key point annotation requires time and effort. Be-
sides, some dataset domains do not have predictable struc-
ture, which makes the extraction of points of interest infeasi-
ble. Our proposed model consists of a cascaded generator-
discriminator architecture that works at the pixel level to
generate videos according to the associated soundtracks. It
adopts a new self-supervised temporal augmentation tech-
nique to optimise the correlation between the audio signal
and the generated video instead of relying on supervised
signals. The proposed architecture has proven its effective-
ness in extensive experiments that compared different mod-
els across two datasets.

1. Introduction
While a myriad of image synthesis applications are avail-

able, more progress is needed in video generative models to
achieve higher user satisfaction. The synthesis of realistic
videos is much more complex than its counterpart in the im-
age domain for several reasons. First, a video is a sequence
of images, and these images need to be realistic. More-
over, not only should the flow of the frames be coherent,
but it is also important to maintain synchronisation between
the motion and the audio signal, such as music or speech.
Early attempts to generate video content were limited to un-
conditional video generation such as MoCoGAN [42] and
VGAN [44]. Later, additional conditional signals were used
to include a broader range of applications in the generation
process .

In generating videos based on audio signals, current
state-of-the-art models may be divided into two applica-

tions: dance and speech synchronisation. Models that gen-
erate dance movements according to music are trained on
the key points of the joints of a human body [4, 15, 27,
33, 38, 39, 53, 57], or 3D body meshes [28]. In speech-to-
video frameworks, most models are built after preprocess-
ing the datasets by cropping or aligning the face [24,32,45]
or mouth [9] and centring them around the same pixel in all
the samples. Other speech-to-video models use 3D meshes
[8, 22, 25, 36] or facial landmarks [10, 13, 31, 55, 56] to fa-
cilitate the generation process. The model proposed in this
paper generates videos at the pixel level, unlike other audio-
to-video models that are based on intermediate supervised
signals.

There are multiple motivations for avoiding the use of
additional intermediate signals. First, manual annotation
requires effort and time, and deep learning models that rely
on annotations are limited to specific tasks. For example,
OpenPose [7] extracts the spatial locations of the joints of
human skeletons, which can then be used as key points.
Also, some tasks require expert data annotations, such as
medical datasets. Due to structure variability, some tasks
cannot be annotated with key points or 3D meshes, and
the generation models need to deal with such tasks at the
pixel level. For example, ocean waves datasets and fire-
works datasets have irregular structures.

In this work, we first created an audio-video dataset
as the available video datasets usually lack audio sig-
nals [12, 37], provide only key points [3, 40], or do not
have coherent audio and video signals [37]. For exam-
ple, in the action recognition dataset UCF101 [37], sound-
tracks are unavailable in some categories, such as Playing
Piano, Playing Tabla and Playing Violin. Moreover, sounds
in some other categories do not reflect the changes in mo-
tion because of strong background noise. Also, individual
category samples alone are insufficient to train a genera-
tive model because of the limited number of samples per
class. We choose the domain of our dataset to be phonic
songs because it has a relatively higher number of samples
on YouTube. In addition, we want our dataset to have both
audio and video signals, and the audio signals to correlate
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with the motion. In our dataset, the audio signal represents
a song about letters and objects that start with these letters.
The videos contain illustrations of the letters and objects,
as well as animations of these components. Our dataset has
multiple categories, and to the best of our knowledge there
is no automated method to annotate it. We, therefore, chal-
lenge our model to use the audio as a self-supervised signal
to learn the motion.

In this work, the aim is to generate videos without inter-
mediate signals such as key points or 3D meshes, therefore,
we use audio signals as a self-supervised signal to guide
the motion in the generated videos. Inspired by Hyun et
al. [20] who adopted a shuffling technique in an uncondi-
tional video GAN as an auxiliary component to optimise
the GAN architecture and generate smooth random motion
trajectories, we propose a novel self-supervised GAN archi-
tecture conditioned on the audio signal which uses the shuf-
fling technique to generate motion in the video according to
the shuffled audio signal.

Our Contributions

1. We build a novel GAN architecture that generates videos
at the pixel level according to the audio signals.

2. We propose a novel optimisation and augmentation
method that focuses on maintaining the coherence be-
tween the audio segments and the motions in the gener-
ated clips.

3. We build a new dataset that contains audio and video sig-
nals, where the audio signal correlates with the motion
in the video.

4. We perform extensive analyses and comparisons be-
tween the proposed architecture and state-of-the-art ones
in the video realm and with different datasets, which
demonstrates that our model surpasses other state-of-
the-art models in terms of the quality of the generated
images, smoothness of the motion and the synchronisa-
tion between the audio and motion signals.

2. Related Work
The introduction of GAN [17] has led to an explosion of

content creation. It has proven its effectiveness in the im-
age, audio, text and video domains. While several video
generation applications have been successful, video gen-
eration is still considered more complex than image gen-
eration because of the multimodal nature of videos [6].
Early attempts at video GAN models focussed on gener-
ating videos unconditionally. VGAN [44] utilises unsuper-
vised disentanglement for two aspects of video generation,
namely background and foreground. The model combines
the generation of foreground and background streams to
generate the final video. MoCoGAN [42] employs multi-
ple noise vectors that represent changes in the motion and a

shared content vector in a recurrent architecture. G3an [49]
uses two streams for decomposing the motion and con-
tent. In addition, a third stream generates videos, with help
from the content and motion streams. While these models
[42, 44, 49] synthesise random videos, our proposed model
is conditioned on audio and identity frames.

The unconditional video generation models [42, 42, 44]
share a strategy, namely decomposing the video represen-
tations into multiple sub representations such as content
and motion. Such disentanglement facilitates the learning
of complex representations to generate videos at the pixel
level. However, in conditional video generation models, su-
pervised signals are used to render the final videos. For
example, in the case of video-to-video generation, the mod-
els learn to generate videos based on segmentation maps
[47, 48]. These models can create, for example, a video
of portraits given a segmentation map of the face. Image-
to-video models usually employ key points [21, 46], 3D
body poses [54] or movement directions [14], depending
on the application. ImaGINator [50] synthesises videos
based on images without a supervised signal. Similar to un-
conditional models, ImaGINator decomposes videos into a
motion vector and a conditional image to reflect the iden-
tity in the generated video. The main difference between
our work and ImaGINator is that ImaGINator is condi-
tioned only on an image, while our model is conditioned
on an image and audio signal to maintain the coherence be-
tween audio and video signals. While ImaGINator uses an
encoder-decoder architecture for the generator, our model
uses multiple streams of the same architecture to perform
self-supervision, as explained in section 3.3.

Audio-to-video generative models are the closest to our
proposed model. These models may be categorised based
on their applications. One such category is dance re-
targeting, where the training phase uses key points of the
skeleton [4, 15, 19, 27, 33, 38, 39, 53, 57] or 3D body poses
[28]. Another related application is speech synchronisa-
tion, where the input is an audio speech signal along with
the target identity image, and the output is a video of the
person uttering the conditioned speech. These models use
a 3D mesh of the face [8, 22, 25, 36] or some key points
[10, 13, 31, 55, 56]. Deviating from these models, our pro-
posed model can generate coherent motion from the audio
signal in a self-supervised manner in scenarios where key
points or 3D meshes are not readily available. There are
a few audio-to-video models that synthesise videos at the
pixel level [41]. Tsuchiya et al. [41] trained their model
on a dataset from a single category. In contrast, we develop
a model that can generate videos from multiple categories.
Unlike Tsuchiya et al. [41], we perform extensive experi-
ments, presented in section 4, to compare our models with
others and across multiple datasets.

Self-supervised learning is a machine learning technique
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that uses the provided data to learn a representation, with-
out the need for manual annotation or automatic labelling
of the dataset. Self-supervised learning has been applied in
the video domain to achieve a specific goal, such as predict-
ing or verifying the natural order of the video frames. For
example, Misra et al. [30] built a triple Siamese network to
classify whether video frames are in the correct order with-
out predicting the actual order. Lee et al. [26] solved a
more complex problem using a Siamese architecture to pre-
dict the order of shuffled frames, where the number of all
possible orders is a factorial of the number of input frames.
Xu et al. [52] dealt with videos as small clips and showed
that using clips instead of frames can help to better learn
the motion. The videos are divided into clips first; then the
clips are shuffled. After that, these clips can be used to train
a network to predict the order of the shuffled clips. The
trained network could be used in downstream tasks that re-
quire temporal features. Hyun et al. [20] adopted clip shuf-
fling in unconditional video generative models. The shuf-
fled and non-shuffled clips were fed into a network with
shared weights as the discriminator to predict the order of
the input clips. The shuffling technique optimised their
model to generate random smooth changes in the motion
of the synthesised videos. However, while the introduction
of the shuffling technique [20] into an audio-to-video GAN
results in smooth motion, it is still unsynchronised with au-
dio, as explained in section 4.5. Therefore, in order to gen-
erate motion trajectories in accordance with the audio, we
introduce audio as an input in the shuffling technique. Our
proposed model initiates shuffling from the generator side,
and the encoded shuffled audio segments are fed into a cas-
caded Siamese GAN model to generate shuffled videos. In
addition to image and video discriminators, there is also an
order predictor network with shared weights as a video dis-
criminator to estimate the order of the clips. Providing the
shuffled audio segments and comparing the generated clips
with the ground truth shuffled clips helps as an augmen-
tation technique to learn the correlation between different
orders of the audio and the motion signals more effectively.

3. Methodology
In this paper, we propose a novel cascaded Siamese self-

supervised audio-to-video GAN. The overall architecture is
divided into multiple GAN models based on the number of
clips in each video. Each GAN model has a generator and
discriminator, and the generator has an encoder and a de-
coder with skip connections. In this paper, a video refers
to the entire video sample that we aim to generate, whereas
a clip means a temporal segment of a video. A visualisa-
tion of the architecture is provided in Fig. 1, with only two
streams because of space limitations. Each stream generates
one clip given a corresponding audio segment and an iden-
tity image. The architecture may be extended to any number

of streams based on the number of clips. The following sub-
sections describe the functionality of different components
in this architecture.

3.1. Generator

When loading the data during training, a video sample
and the corresponding soundtrack are divided into equal
segments called clips. These clips are then shuffled, and
the order of the shuffled clips is recorded, to be used later
in the order prediction model as explained in section 3.3.
The flow of the generation process starts with the encoding
of the audio signal, which is the corresponding audio chunk
for the video segment that is used in the video discrimina-
tor side. The audio wave signal is converted to log Mel-
spectrogram since this format better represents the audio
signal [16,23,38,51]. The resulting log Mel-spectrogram is
divided into overlapping equal segments of the same num-
ber as the number of clips in a video. These segments are
encoded using GRU units [11]. The initial frame is en-
coded using a CNN architecture. These two encoded sig-
nals, along with the encoded class, are concatenated and
then input into the decoder to generate the first clip of the
video. There are skip connections between the image en-
coder and the decoder, in order to focus on generating a
video with the same identity as the encoded image. The
same procedure is repeated in the second stream to gen-
erate another segment of the video, and all streams share
the trainable weights. However, in the second stream, the
last frame of the generated clip from the previous stream is
used to generate the following clip of the generated video.
It is important to note that every generated clip is forced to
have coherent motion, while the clip order is shuffled dur-
ing training. The shuffling effect can be removed at test time
to produce coherent overall motion, as discussed in section
3.3.

3.2. Discriminators

There are two levels of discriminators: video level
and image level. The image level discriminator compares
the real and fake images in terms of the spatial aspect.
The video level discriminator consists of multiple clip-
discriminators. The architecture is shared among the clip
discriminators and consists of a 3D convolutional neural
network. The final decision for the video level is made us-
ing a majority voting ensemble of clip discriminators. The
video discriminator not only evaluates the spatial aspect of
the video, but also considers the motion in the clips.

3.3. Shuffling

Inspired by the shuffling technique in Self-supervised
Video GAN (SVGAN) [20], we propose a novel shuffling
process for audio-to-video GAN. Unlike SVGAN however,
where the shuffling is performed in the discriminator to op-
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Figure 1. Cascaded Audio-to-Video GAN architecture includes multiple streams. Each stream has encoders, decoder, clip discriminator
and order predictor model. There are two encoders, one each for the audio signal and the initial image.

Figure 2. Order predictor model in the training stage. The audio
segments may be in any order.

timise the GAN architecture, in our model we perform shuf-
fling in both the generator and discriminator. We introduce
shuffling in the audio segments, which are used as input
to generate shuffled clips. We train our model on audio-
video datasets that have a correlation between audio and
video motion. During training, our model learns the co-
herent motion within the clips. Having multiple genera-
tors and discriminators maintains coherent motion within
the clips, while the cascade architecture helps maintain co-
herent motion in the entire video. This approach may be
considered as a method of temporal augmentation of the
dataset by providing clips and soundtracks in all possible
shuffled permutations during the training phase. However,
only chronologically ordered audio segments are used to
generate the ordered video during test time. Having con-
trol over the order of the audio signal stops leakage of any
unnatural motion trajectory into the generated videos. The
order predictor model shown in Fig. 2 shares weights with
the clip discriminators. Similar to the video discriminator,
the main structure of the order predictor model consists of
multiple encoders to downscale the generated clips. The
outputs of these encoders are concatenated and input to fully

connected layers to predict the order.

3.4. Loss function

Three main loss functions are used: adversarial loss,
self-supervised loss and reconstruction loss. Adversarial
loss is applied using image discriminator DI for real image
i and fake image x, as in equation (1). In addition, video
discriminator DV evaluates the spatio-temporal aspects of
real video v and the fake video. The fake samples are gen-
erated using G(i, c, a), where i is the initial image, c is the
category, and a is the audio segment, as in equation (2).

LI(DI,G) = Ei∼pdata
[logDI(i)]

+ Ei,c,a∼pdata
[log(1−DI(x)] (1)

LV (DV,G) = Ev∼pdata
[logDV (v)]

+ Ei,c,a∼pdata
[log(1−DV (G(i, c, a))] (2)

Self supervised loss is used to evaluate the correctness of
the resulting order prediction. To compare the prediction pi
with the ground truth permutation yi, we use cross-entropy
as in equation (3):

LT = −
j∑

n=1

yilog(pi) (3)

For reconstruction loss, we use L1, as in (4), to sharpen the
generated images and make them closer to real ones.

Lreconstuction = E[∥v −G(i, c, a)∥1] (4)
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Figure 3. five clips from the proposed dataset samples at 5Hz.
Each clip belongs to a category. For example, the first clip is within
”S” category.

3.5. Dataset

We constructed a dataset from alphabetic videos from
YouTube1 illustrating letters and objects along with phonic
songs. The choice was motivated by the accessibility and
variability of such videos. In these videos, the object and
the letter are moving according to the music. Candidate
videos were chosen manually, downloaded and segmented
into short videos, where each short video illustrates only
one letter. The segmentation into short videos was per-
formed based on the transcript of the videos, if available. If
the transcript was not available on YouTube, speech-to-text
Google API [2] was used to generate the transcript. The fi-
nal videos have varying lengths, between 14 frames and 100
frames. Metadata for each video, such as the class (e.g., let-
ter) and the number of frames, was collected. The dataset
has 26 categories to represent all the alphabetic letters, and
Fig. 3 illustrates 5 examples by showing the first 10 frames
sampled at 5Hz. The current version of the dataset used in
this work has 1570 clips, with 30 to 90 short videos per let-
ter. This dataset has been made publicly accessible through
this link2.

For evaluation purposes, we also trained our model on
the VidTIMIT Audio-Video dataset [35]. This dataset con-
tains 43 people uttering 10 short sentences; the videos were
captured for the head region. The total number of videos is
430, with varying lengths between 56 to 240 frames. The
videos were extracted and saved as images, and the audio
was stored in a mono WAV file. The dataset was recorded
in a lab setting.

4. Experiments
Due to the different design of our proposed audio-to-

video GAN model, we could not directly compare our
model with other baseline audio-to-video models [4, 8, 10,

1https://www.youtube.com/
2https://github.com/NuhaAldausari/Cascaded-Siamese-Self-

supervised-Audio-to-Video-GAN

13,15,19,22,25,27,28,31,33,36,38,39,53,55–57], as these
models use supervised signals such as body/face landmarks
or 3D meshes to learn changes in motion, as mentioned in
section 2. In contrast, our model utilises a temporal self-
supervised technique to learn the relationship between au-
dio and frame motions. Therefore, we compared our model
to two unconditional video-GAN models, namely MoCo-
GAN [42] and G3an [49] after adjusting these models to
use the same input signals for fair comparison. We ap-
plied the same audio and image encoders that our model
uses to these models. For MoCoGAN [42], we encoded the
log Mel-spectrogram using GRU units to represent the mo-
tion vectors in the original implementation of MoCoGAN.
Also, instead of the content vector, we used the encoded ini-
tial image to act as the identity of the generated video. In
G3an [49], the motion and appearance random vectors were
replaced by the encoded audio and image, respectively. We
also compared our model with ImaGINator [50], an image-
to-video model that shares a similar architecture as one of
our streams. We adjusted the model to have an audio en-
coder to ensure that the same conditional signals are being
input to the model. In addition, we compared our model
with the PhonicsGAN [5] audio-to-video model that gen-
erates videos at the pixel level without any initial image.
To make PhonicsGAN comparable in terms of input condi-
tions, we also added the initial image as an additional con-
dition signal.

4.1. Implementation Details

The number of frames in the generated videos is 32. The
spatial dimension of the frames is 64x64, due to limited
computational resources. Similarly, the number of audio
segments is 32, and every audio segment corresponds to one
frame. The dimension of the audio segments is 64x20. The
class of the video (e.g., alphabet letter) was encoded us-
ing One-Hot Encoding. In our dataset, we used 26 bits to
encode the letter illustrated in the clip, with each bit corre-
sponding to one alphabet letter. In the VidTIMIT dataset,
we used 43 bits to encode the category, which is the face of
the person uttering the sentences. During training, the batch
size was 32. Adam optimizer was used, and the learning rate
was 0.0002. To enable temporal shuffling for our model,
we divided the aligned audio signal of the 32-frames into
four segments. In addition, we divided the 32-frame video
into four 8-frame clips. Thus the implementation contains
four Siamese streams. The number of permutations is 4!.
Therefore for each sample video, 4! shuffled orders were
provided during training.

4.2. Qualitative Evaluation

We compared the results of our model with other state-
of-the-art models such as MoCoGAN [42], G3an [49],
ImaGINator [50] and PhonicsGAN [5] qualitatively. Our
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model surpasses other models in terms of the quality of
the generated images, smoothness of the motion and bet-
ter correlation with the audio signal, as shown in Fig. 4.
More videos from our model and more comparison videos
are provided in this link3. Visual inspection of the results
clearly shows that MoCoGAN, PhonicsGAN and G3an tend
to have unclear objects and artefacts because the dimensions
of the encoded content vectors of these models are smaller
than our proposed model, which results in lower quality im-
ages. Our model and ImaGINator have better quality in the
generated images because both models have skip connec-
tions between the encoder and decoder. Feeding the initial
image at multiple scales helps to reflect better content in
the generated image. In addition, our generated videos have
smooth and correlated motion compared to other models for
several reasons. First, other models have a limited receptive
field for the input audio signal as their original implemen-
tations have limited motion vectors. In addition, our shuf-
fling technique facilitates the augmentation of the temporal
aspects of the video, resulting in better learning of the cor-
relation between the audio and changes in the video.

We also analysed the latent representations that corre-
spond to the content and the motion. For the temporal di-
mension, we kept the audio signal constant and changed the
initial image. We observe that our model can successfully
generate similar motion trajectories for several initial im-
ages given the same audio, as shown in Fig. 5. The object
starts to appear around the same highlighted frames in all
the generated videos. In addition, we conducted an exper-
iment by fixing the initial image and changing the audio
signals. As shown in Fig. 6, our model can generate differ-
ent motion trajectories based on the audio signals. A user
study complements these results is described in section 4.4.

4.3. Quantitative Evaluation

In addition to qualitative evaluation, we deploy three
quantitative evaluation metrics: Inception Score (IS) [34],
Frechet Inception Distance (FID) [18] and Frechet Video
Distance (FVD) [43]. All these metrics are calculated af-
ter extracting the features using pre-trained networks. IS
provides the confidence that the generated images belong
to a given class. It also checks the diversity of the gener-
ated images by evaluating how wide a range of classes are
included in the generated samples. While IS [34] evaluates
the synthesised samples exclusively, FID and FVD compare
the generated samples with real ones. Both FID and FVD
use statistics to compare the distributions of real and fake
videos. The main difference is that FID uses a pre-trained
image network while FVD is calculated based on extracted
features from a temporal pre-trained network. The mean
and covariance for real data and fake distribution are used

3https://github.com/NuhaAldausari/Cascaded-Siamese-Self-
supervised-Audio-to-Video-GAN

Phonics Dataset VidTIMIT
Model IS↑ FID↓ FVD↓ IS↑ FID↓ FVD↓

MoCoGAN 0.0001 59.81 1248.73 0.0001 160.82 2041.02
PhonicsGAN 0.0002 46.82 961.85 0.0002 113.97 613.46
G3an 0.0002 36.93 936.99 0.0003 47.02 826.29
ImaGINator 0.0005 35.23 377.25 0.0006 45.07 171.29
Our model 0.0008 27.56 95.13 0.0009 26.05 81.49

Table 1. Quantitative Evaluation using IS, FID, and FVD scores.
Our model shows better performance in terms of quality of the
generated images, and synchronisation of the generated motion.

to calculate the final score. Overall, our model shows much
better IS, FID and FVD scores on both datasets as reported
in Tab. 1. While our model has a comparable spatial score
(IS, and FID) to ImaGINator (because both models use skip
connections and sufficient dimensions for the encoded con-
tent), it outperforms other models in terms of FVD signifi-
cantly. The FVD score captures the video correlation with
the audio signal and the smoothness of the motion.

4.4. User Study

The available GAN metrics are limited and do not pro-
vide information about specific aspects of the generated
samples, such as the naturalness of the motion and real-
ism of the generated examples in comparison with real ones.
We, therefore, conducted a user study to evaluate our model
in terms of perceived quality and motion coordination with
the input music. We conducted a subjective analysis on
Amazon Mechanical Turk [1], where 40 participants com-
pleted two surveys in one session. In the first survey, we
asked the participants to rate 26 videos, one per letter, gen-
erated by the proposed model in terms of motion synchrony
between the audio and video. We asked, ”how well is the
object movement coordinated with the song’s rhythm?” Par-
ticipants could answer using a 9-point Likert scale, where 1
corresponds to ”Not well at all” and 9 corresponds to ”Ex-
tremely well”. We observed that 83% of human raters chose
a rating above 5, with an average value of 7.13. The sec-
ond part of the survey included comparisons between the
generated videos from our model and other models such as
MoCoGAN [42], G3an [49], ImaGINator [50] and Phonic-
sGAN [5]. The results, reported in Tab. 2, show that raters
preferred our generated examples over other models using
a comparative 7-point Likert scale in terms of quality of the
frames, association with the song and naturalness of motion.

4.5. Ablation Study

We evaluated the effectiveness of the different compo-
nents of our model by incrementally adding components.
First, we trained a basic version of our model consisting
of one stream that accepts the entire audio and generates a
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Figure 4. Qualitative comparison of generated videos using multiple models, namely MoCoGAN, PhonicsGAN, G3an, ImaGINator and
our model. Frames are sampled with a time step = 3.

Figure 5. Generated videos conditioned on the same audio and
different initial images. The same motion is observed in all of the
generated videos. The transaction starts to occur around the red
dotted frames (T=8) in all videos.

Method Quality(%) Assoc. w/ music(%) Motion(%)

Ours/MoCoGAN 67 / 20 52 / 31 60 / 35
Ours/PhonicsGAN 63 / 4 64 / 14 70 / 14
Ours/G3an 54 / 6 43 / 25 50 / 31
Ours/ImaGINator 54 / 22 56 / 27 56 / 22

Table 2. User preferences in terms of quality, association with
the song and natural motion when compared with our generated
examples given the same input. In each cell, the number on the
left represents the raters’ preference (greater than 4 on the Likert
scale) for the proposed framework over the model in the right.
The number on the right represents the opposite. The remaining
percentage (not shown) is when raters chose 4 on the Likert scale.

32-frame video. The model tends to generate artefacts, as
shown in the first example of Fig. 7, and one reason could
be an inability to reflect the input signals in the generated

sample using limited computational parameters. Then, we
added the shuffling technique as introduced in [20] to ex-
amine its effectiveness with the methodology of our base-
line model. We observed that the shuffling technique helps
in learning stable and smooth motion trajectories, resulting
in an improved FVD score (Tab. 3). However, the gener-
ated motion does not correlate well with the audio signal.
The song transcript was ”T is for Telephone T T T Tele-
phone.” We expected to have an entrance motion of an ob-
ject at the end of the frames. However, the same frame is
generated from frame 5 onward, as in the second row of
Fig. 7, even though there is a noticeable change in the au-
dio. This is because the shuffling technique does not con-
sider the shuffling of the audio segments. Adding multiple
generators that are conditioned on the shuffled audio seg-
ments helps in generating correlated motion as in the third
video in Fig. 7. However, we started to see artefacts around
the start/end of clips. Then, we added multiple discrimina-
tors along with multiple generators. The FVD score Tab. 3
is enhanced, however we still noticed artifacts, as shown in
Fig. 7. Then, we added the cascade architecture along with
the Siamese GAN, which resulted in a better FVD score.
The cascade architecture helps in diminishing the artefacts
between the clips and generates better motion smoothness
and audio-video correlation.

4.6. Limitations and Ethics

The main limitation of the generated examples of our
proposed model when trained on the phonics dataset is that
the generated object might not necessarily reflect the cor-
responding object in the song if the object does not appear
in the input frame. We use the letter class as a conditional
signal to always generate the correct letter. However, the
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Figure 6. Generated videos conditioned on the same initial image and different audio signals. From left to right, motions are generated
based on the input songs and may be interpreted as: disappear-appear-disappear, disappear-appear, disappear-appear-disappear-appear,

and disappear. Frames are sampled with a time step = 2.

Figure 7. Generated videos using multiple versions of our model.
We incrementally added a component and tested our generated ex-
amples. The corresponding song’s transcript for the video was ”T
is for Telephone T T T Telephone.” Frames are sampled with a
time step = 3.

Architecture FVD

Baseline (one stream) 305.17
+ With shuffling technique 95.80
+ With multiple generators 480.53
+ With multiple discriminators 366.01
+ With cascade architecture 93.13

Table 3. Ablation study on the proposed model. We added com-
ponents of our model incrementally to validate the importance of
each structure.

utterance of the object name in the song, even if present,
is insufficient to build such a correlation because we have
around 20 objects on average per letter, and the average
number of samples is only 3 per object. Therefore it is a

complex task to find the relationship between the object in
the audio signal and the object in the generated frames. One
solution could be to manually collect images of the object
class and use it as an additional conditional signal. Another
solution could be to collect more samples, but this might be
a more time-consuming solution and that is only marginally
more effective. Another limitation is related to the gener-
ated motion. Because some samples in the phonics dataset
have static-image videos, the generated motion trajectories
sometimes may be static even though there are conditional
audio signals. Similar to speech synchronisation models,
the proposed model could be used to generate fake videos
of persons uttering any speech. The regulations for such
applications have been discussed elsewhere [29].

5. Conclusion

The main goal of this paper was to maximise the cor-
relation between synthesised video and a corresponding au-
dio signal without using any intermediate supervised signal.
We constructed a dataset that has both audio and video sig-
nals to cover the limitations in other audio-video datasets,
such as lacking audio signals, or video frames (e.g., key
points instead of actual frames). Our dataset can be used to
train models that work at the pixel level. Audio is a sepa-
rate signal that might help in drawing the content and mov-
ing objects. Therefore, we have proposed a self-supervised
approach based on a novel shuffling mechanism to better
utilise this signal. The proposed model outperforms other
base models in terms of the quality and motion flow as mea-
sured quantitatively, qualitatively and perceptually.
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