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Abstract

Zero-shot learning methods rely on fixed visual and
semantic embeddings, extracted from independent vision
and language models, both pre-trained for other large-scale
tasks. This is a weakness of current zero-shot learning
frameworks as such disjoint embeddings fail to adequately
associate visual and textual information to their shared se-
mantic content. Therefore, we propose to learn semantically
grounded and enriched visual information by computing a
Jjoint image and text model with a two-stream network on a
proxy task. To improve this alignment between image and
textual representations, provided by attributes, we leverage
ancillary captions to provide grounded semantic informa-
tion. Our method, dubbed joint embeddings for zero-shot
learning is evaluated on several benchmark datasets, im-
proving the performance of existing state-of-the-art meth-
ods in both standard (+1.6% on aPY, +2.6% on FLO) and
generalized (+2.1% on AWA2, +2.2% on CUB) zero-shot
recognition.

Zero-shot learning (ZSL) aims at classifying images into
new ‘“‘unseen’” categories at test time without having been
provided any corresponding visual examples in the train-
ing stage. This is possible by taking advantage of semantic
embeddings describing the visual categories by means of
auxiliary text information i.e. attributes. In recent years,
several approaches have been proposed to tackle ZSL: A
metric/score can be learnt to quantify the compatibility be-
tween semantic embeddings and pre-computed visual fea-
tures (visual embedding) [54]. Alternatively, visual features
can be synthesized from semantic embeddings with adver-
sarial generative training [34, 56, 60]. In these terms, ZSL
and its extension named generalised ZSL (GZSL) [54], nat-
urally appear as multimodal classification problems. How-
ever, visual and semantic embeddings adopted in ZSL ap-
proaches are usually extracted independently from ancillary
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Figure 1. For these three bird species of CUB [51] dataset, the
attributes “brown spotted wings” is not discriminative. In fact, a
“Brown Thrasher” is characterized by the presence of white wing-
bars. An “Arcadian Flycatcher” features spots which are present
over the whole side of the animal — not just over the wings. A
“Song Sparrow” shows peculiar tips over the stripes. We posit that
captions can provide ancillary semantic information which we pro-
pose to exploit altogether with attributes and visual data.

tasks. In fact, visual embedding are usually features trained
for object/scene recognition on classical vision benchmarks
such as ImageNet [21,46]. On the other hand, semantic em-
beddings in ZSL are either manually defined, by collecting
attributes which describe a certain category, or extracted us-
ing natural language processing [11,21,33,46].
Independently extracted semantic embeddings convey
only general information about a given visual category. For
this reason, their sensitivity may be limited in describing
specific semantic nuances that actually help in discrimi-
nating between another category whose instances look ex-
tremely similar (see Figure 1). In this paper, we posit that
this problem is affecting zero-shot learning and, in order to
mitigate it, we propose to exploit captions to inject seman-
tic information into visual embeddings. This is achieved by
means of a joint training, finalized at better enriching the
embeddings using both visual and semantic cues, in order
to ease a zero-shot learning recognition paradigm.
Generally, a jointly learned image and text representa-
tion is referred as pretrain-then-transfer, a defacto stan-

4589



dard paradigm to process vision and language informa-
tion [6,32] The success of pretrain-then-transfer learning is
instrumental in developing methods which can capture con-
nections between vision and language domains on so-called
“proxy tasks” with large-scale image and text datasets i.e.
MSCOCO [31], Flickr30K [39], Conceptional Captions
(ConcCapt) [45], Visual Genome [27]. Therefore, in the
recent years, an increased interest was registered in uni-
fying models as to learn joint image and text representa-
tions [10, 32, 40, 48]. These models utilize cross-modal
attention mechanisms to capture interaction between im-
age regions and fine-grained text information. However,
zero-shot learning methods cannot leverage these powerful
models to improve visual or semantic information because
the zero-shot learning problem does not account for fine-
grained text description for visual information. Therefore,
we solve for this deficiency by presenting a framework to
learn joint image and text representation to improve visual
information for ZSL and GZSL tasks.

We propose a novel framework, called joint-embeddings
for zero-shot learning (JE-ZSL), to learn a semantically-
grounded visual representation. We use a two-stream net-
work, consisting of two layers of non-linearities on top of
the image and captions, trained with a bi-directional loss
function. We implement structure-preserving constraints to
align the alternative visual and textual sources of informa-
tion. We posit that, by means of our joint training, we can
better capture the interaction between semantically-related
image and text components, ultimately bridging the gap
between visual and semantic representations and, in turn,
improving the performance of a zero-shot learning mecha-
nism. We evaluate our proposed semantically grounded em-
beddings on various well-know compatibility function and
GAN based methods, improving standard and generalised
zero-shot learning performance on coarse-grained and fine-
grained dataset. This empirically demonstrates the benefits
of corroborating the representation adopted for visual data
in zero-shot learning by means of semantically grounded
information.

1. Related Work

We summarize previous work on both joint image
and text representations (Section 1.1) along with stan-
dard/generalized zero-shot learning (Section 1.2).

1.1. Joint Image and Text Representation

In the recent years, several works have been proposed to
learn joint image and text representation for various vision
and languages tasks in a multimodal setting [4,6,12,17,36].
Usually, joint image and text representation strategies start
with separate vision and language models (pre-trained for
other large-scale tasks) and then perform a task-specific
training [3, 12]. However, the last years have seen a

paradigm shift in learning joint image and text represen-
tations on proxy tasks designed to bridge the semantic
gap between visual and textual clues leveraging large-scale
datasets [10, 29, 32, 40, 48]. These joint representations
transfer to various downstream vision and language tasks
including visual question answering, grounding referring
expression, visual commonsense reasoning and image re-
trieval, without the necessity of extra-training. In this spirit,
we proposed to learn semantically grounded enriched vi-
sual embedding using joint image and text representation
on a proxy task. The key differences between our JE-ZSL
approach and the other methods are twofold: (i) Interac-
tion between image and text representations only occur at
the last layer of the two-stream network; and (if) JE-ZSL
uses global visual and text representation to capture interac-
tion between image and textual clues. These key differences
enable our JE-ZSL model to handle downstream zero-shot
learning tasks.

1.2. Zero-shot Learning

In ZSL, a compatibility function is used to measure the
matching between visual and semantic embeddings. For
that scope, either metric [24,26,42,63], scoring [30,47,49]
or ranking functions [9, 1 9] are adopted. However, the main
drawback of those methods is the shallowness of the archi-
tectural design. As a result, an improvement in the recog-
nition of unseen classes usually corresponds to a decreased
performance in the seen classes and vice-versa [54], dam-
aging the overall generalization capabilities. In this paper,
we propose to tackle this issue by the usage of joint embed-
dings, which we conjecture that can help shallow models in
better generalizing.

As an alternative strategy to compatibility functions, the
pivotal paper [57] proposed to directly synthesize visual de-
scriptors conditioned on semantic embeddings. A Gener-
ative Adversarial Network (GAN) is trained to synthesize
visual features which are indistinguishable from the ones
extracted from a ResNet—101 backbone. At the deploy-
ment stage, the very same model can be utilized to generate
synthetic visual features for the unseen classes. Finally, a
shallow softmax classifier is trained using both real features
from seen classes and unseen features from the unseen ones.
This baseline architectural design was recently advanced in
various approaches, such as the adoption of variational in-
ference to boost the generator [22,35,43,58,65]. Additional
loss functions were investigated to better handle the prob-
lem, like cycle-consistency [14], triplet [7] or contrastive
loss [1]. In this paper, we show that the semantic condi-
tioning used to generate visual features can be furthermore
boosted by the usage of joint embeddings: since they are
endowed of semantically-grounded visual information, the
“gap” between semantic and visual embeddings is already
bridged at the input level already.
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Figure 2. Overview of Joint Embeddings for Zero-Shot Learning (JE-ZSL). Our model consists of a visual and semantic embedding
modules, V and S respectively, which are responsible for the joint training of the image embeddings starting from textual cues (here,
sentences). We stack two fully-connected layers, using ReLU non-linearity, batch normalization (BN), L2 normalization and a Structure-
Preserving Alignment Loss which is responsible of injecting semantic patterns into visual descriptors (see Section 2.2). Once the jointly
trained visual embeddings x are optimized over a set of seen classes (in the figure, watercress, daffodil, primula, ...), they can be used to
train the optimization objective of an arbitrary zero-shot learning framework. Consequently, even if we never saw an image of a “buttercup”,
we can still manage to classify it (decision boundary represented in red) while leveraging the side information which provides the attributes

that the class “buttercup” is expected to own.

2. Joint Embeddings for Zero-Shot Learning:
Methodology

Our proposed strategy JE-ZSL is to ground visual em-
beddings through the usage of textual information for the
sake of enhancing zero-shot learning methods from the data
representation point of view.

2.1. Overview of the Proposed Architecture

In Figure 2, we visualize the joint embeddings model
that we propose. It is composed by three input streams,
each of them corresponding to a different type of input
data (images, sentences and class attributes). The modules
V and S provide vectorial representation extracted from
ResNet—101 [21] and Bidirectional Encoder Representa-
tions from Transformers (BERT) [I 1] models respectively
to learn joint embeddings. On top of the output of V and
S, JE-ZSL stacks two-fully connected layers, the first of
which followed by a rectified linear unit (ReLU) and the
second of which is followed by batch-norm operator fol-
lowed by an L2 normalization. These two fully-connected
layers are then responsible for the joint training of the vi-
sual embeddings x supported by the sentence embeddings

y, by means of a structure-preserving alignment loss [50]
(see Section 2.2). Once visual embeddings are optimized,
they can be used in an arbitrary zero-shot learning frame-
work, together with attributes - or other class embeddings
- without requiring any modification in the pipeline of the
zero-shot learner, thus ensuring a broad applicability (addi-
tional details in Section 2.3).

2.2. Structure-Preserving Alignment Loss

The JE-ZSL loss function is defined as follow. Given a
visual embedding z;, let Y;" and Y, represent sets of pos-
itive and negative sentence embeddings respectively. The
distance between a positive pair should be smaller than the
distance between a negative pair with margin m:

d(zi,y;) +m <d(zi,ye) Yy €Y, Vye €Y, (1)

where x; and y; represents positive pair while x; and yy, is
negative pair. Similarly, given a sentence y;:
ij/ e Xt

i

VY € Xi77
2

where X :,r and X represents the sets of positive and neg-
ative images for ;.

d(mj/ayi') +m < d($k/7yi/)
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In addition, the loss function includes neighborhood con-
straints to project semantically similar images and sen-
tences close to each other in the embedding space. Let
N (z;) represent the neighborhood of x; with images that
contains the same concept. In our scenario, it contains im-
ages represented by the set of sentences associated with x;
Furthermore, a margin m is enforced between N(z;) and
any point outside of the neighborhood:

d(zi,zj)+m < d(x;,zr) Vzr; € N(z;),Vor ¢ N (x;)
(3

Similarly to Eq. 3, the constraint is enforced for sen-
tences:

d (i, yj)+m < d(yir, yw)

“)

Finally, constraints are converted to the training objec-

tive using hinge loss. The resulting loss function is given
by:

L(va) = Zmax [07m + d(miayj) - d(xiayk)]

04k
+ M Z max [0,m +d (z,yir) — d (zp, ysr)]
i/7j/,k/
+ Ao Z max [0,m + d (z;,2;) — d (24, T)]
igk

+ )3 Z max [0, m + d (yir, Y1) — d (yir, yr)] -

53"k

The hyperparameter \; balances strengths of both rank-
ing terms and the value is fixed to 2. Similarly, A, and
A3 controls the neighborhood constraint and values are set
to 0.1 or 0.2 respectively [50]. The distance d is fixed to
be the Euclidean distance. In addition, triplets are selected
within the mini-batch only. To learn our joint embeddings,
the network is trained in end-to-end fashion with large-
scale datasets MSCOCO [31], Flickr30K [39], Concep-
tional Captions (ConcCapt)) [45], using captioning annota-
tions to leverage the fine-grained datasets Caltech-UCSD-
Birds (CUB) [52] and Oxford Flowers (FLO) [38].

2.3. Joint Embeddings for Zero-shot Learning

Once the joint embeddings z are extracted by means of
the structure-preserving alignment loss, they are then fed
to a second computational module which is responsible for
the zero-shot learning task. In order to classify a pool of
unseen classes ¢ € Cy, we take advantage of training data
(z4,¢;),i = 1,..., N where the labels ¢; belong to the seen
classes (¢; € Cg) for every 4. In order to bridge the gap
between seen and unseen classes, either of them need to
be describes in terms of class-embeddings a = a. such as

Vy;r € N (yir) , Yy ¢ N (i)

manually defined attributes. The learning problem writes as
minimizing the empirical risk defined through the following
loss function

N
Z Lzs1(xi, ac,30), &)
i1

which depends upon the learnable parameters 6. In turn, the
parameters 6 can be optimized exploiting different strate-
gies, using alternative expressions for Lygy, in eq (5). For
methods based on a compatibility function, Lzsy, is chosen
to be either a distance [24, 26,42, 63], scoring [30,47,49]
or ranking function [9, 19]. The optimization attempts to
match x; and a; when and only when they belongs to the
same class. Additional regularization terms are used to
make sure that the distance/scoring/ranking function Lzgj,
can generalize towards unseen classes. In fact, when a new
test instance Z occurs, inference is solved as

arg max Fyg1,(Z,0), (6)

being Fyzgr, a l-nearest neighbor classifier based on the
learned compatibility function Lzsr,. Alternatively, Fygsr,
can be chosen to be a softmax classifier trained on real joint
embeddings from seen classes Cs and synthesized features
from the unseen classes Cy. For the feature synthesis, mod-
els such as generative adversarial networks [5, 15,23,57,62]
or variational autoencoders [18, 35, 44, 58] are adopted to
generate visual descriptors conditioned on the class-specific
embeddings a., ¢ € Cy.

3. Experiments
3.1. Data Sources

Datasets for Joint Embeddings. We trained joint image
and text model on three publicly available datasets includ-
ing MSCOCO [31], Flickr30K [39] and Conceptional Cap-
tions (ConcCapt) [45]. MSCOCO dataset contains 123,287
images, and each image is annotated with five text descrip-
tions or captions. Similarly, Flickr30K contains 31,783 im-
ages along with five captions for each image. While, Con-
cCapt dataset consists of ~3.3 million image and text pairs
collected from alt-text enabled images on the web. At time
of access, some links are broken which resulted in ~ 1.3
million image and text pairs.

Datasets for Zero-shot Learning. We evaluate JE-ZSL
on two fine-grained and two coarse-grained zero-shot object
recognition data sources: CUB [52], FLO [38], Animals
with Attributes (AWA2) [55] and Attribute Pascal & Yahoo
(aPY) [13] containing 200, 102, 717, 50 and 32 categories,
respectively. For fair comparison, we followed the standard
zero-shot splits proposed by Xian et al. [57].

3.2. Backbone ZSL Methods

We evaluate the performance of JE-ZSL when adopting
the following backbone zero-shot learning methods: We se-
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lect one of the most efficient methods based on a compat-
ibility function [25], while also including two state-of-the-
art approaches based on feature generation [35,56]. Further
details on these methods are provided below, including how
we combined them with our joint embeddings.

Coupled Dictionary Learning [25] (CDL) is composed
of the following stages. First, given the semantic embed-
dings of the classes to be recognized, visual prototypes are
learnt by preserving neighborhood relationship across the
visual and semantic spaces. This is obtained through a
structure alignment module and implemented in the form of
visual and semantic dictionaries which are then learnt and
coupled. We take advantage of our jointly training embed-
dings for the sake of learning these dictionary-based repre-
sentations.

f-CLSWGAN [56] is implemented as a Wasserstein
GAN which attempts to generate visual features, which are
similar to the ones available for seen classes, while also per-
forming semantic-to-visual translation. To better enhance
the discrimination capability of the learnt feature, a classi-
fication loss is used. Instead of standard ResNet—101 de-
scriptors, we take advantage of jointly training embedding
as the real features, supervising the adversarial learning.
Once features have been generated for the unseen classes,
a softmax classifier is trained from real joint embeddings
from the seen classes and synthesized features for the un-
seen ones. The trained softmax classifier is the model used
for the final inference.

A recent generative approach, called tf-VAEGAN [35],
improved upon [56] under multiple perspectives. First, the
generation capability of a GAN are paired with a variational
autoencoder and a cycle consistency loss is adopted, aiming
at predicting attributes from synthesized features using a re-
gression paradigm. We modify the original implementation
by exploiting joint embeddings as either the real features
from the seen classes and the input data for the approach
regressing attributes. For the final inference stage, the con-
catenation of the generated visual features and regressed se-
mantic embeddings are used to train the final softmax clas-
sifier. Joint embeddings are adopted also at this stage.

3.3. Implementation Details

We used listed hyperparameters to learn joint image

and text embedding with a structure perserving alignment
loss [50]. Similarly, we employed listed hyperparameters
for zero-shot learning methods [25, 34, 56].
Baseline Visual and Semantic Embeddings. For visual
embedding, we extract 2048-dim top layer pooling units of
ResNet—101 [21]. For the semantic embeddings, we em-
ploy the class-level attributes for CUB (312 — d), AWA
(85 — d) and aPY (64 — d). For FLO, fine-grained visual
descriptions of image with size (1024 — d) are extracted
from a character-based CNN-RNN [41].

Semantically Grounded Embeddings. The proposed em-
bedding is extracted from joint image and text representa-
tion trained with structure preserving alignment loss. For
fair comparison, we learn joint image and text representa-
tion with ResNet—101 embeddings.

Evaluation Metrics. To evaluate the performance on stan-
dard zero-shot learning, we utilized the recommended top- 1
classification accuracy over seen classes (T1). Similarly, we
adopted common metrics for generalized zero-shot learning
as well [54]: Mean per-class accuracy over seen and un-
seen classes s and u, respectively, while reporting also their
harmonic mean H.

4. Joint Embeddings for Zero-Shot Learning:
Ablation Study and the Fine-Grained case

In this section, we provide an experimental analysis to
understand and evaluate the impact of two distinct factors
influencing the performance of JE-ZSL. First, we present an
ablation study with to monitor if there is an effect of varying
the dimensionality of our proposed joint embeddings while
training them using the structure-preserving alignment loss
(presented in Section 2.2) on various image-text datasets.
Then, we will evaluate the impact of using fine-grained cap-
tions leveraging fine-grained datasets.

4.1. Effect of the Embedding Size

In Table 1, we evaluate the impact of various em-
bedding sizes applied to JE-ZSL. We take advantage of
state-of-the-art methods (CDL [25], f-CLSWGAN [56] and
tf-VAEGAN [35]) on coarse-grained benchmark datasets:
AWA?2 [28] and aPY [61]. These methods are fed with
off-the-shelves conventional visual features, exploiting the
standard ResNet—101 embeddings as provided by [56].
We then compare the very same zero-shot learning ap-
proaches as a baseline references to evaluate the impact
in performance of having visual embeddings trained in a
joint manner with text information, taking advantage of the
architecture presented in Section 2.1. For the joint training,
we take advantage of Flickr30K [39], MSCOCO [31] and
ConcCapt [45] and, in all cases, we extract joint embedding
of dimensions d = 256,512,1024 and 2048 to compare
them with baseline visual embeddings.

Discussion. Table 1 shows the results in bold text
font and color which are superior to the respective base-
line values: It is evident that the joint training produces
a widespread improvement on performance, being consis-
tent with respect to different baseline approaches and mul-
timodal datasets used. Notably, the idea of performing joint
training for the embedding has the peculiar trait of ensur-
ing a stable performance even at low embedding sizes. No
matter which is the input embedding size, in fact, in a few
cases, joint training with d = 256, d = 512, d = 1024
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67.4
69.9
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57.8
57.3
63.1
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73.8
71.5
61.5

62.6
64.5
67.0
67.0

d =256
d =512
d=1024
d = 2048

JE-ZSL (ours) MSCOCO

70.5
72.3
71.8
76.3

d =256
d =512
d=1024
d = 2048

JE-ZSL (ours) ConcCapt

71.9
69.4
68.1
70.6

56.9
60.6
62.8
62.3
61.0
58.8
59.0
63.0

73.4
64.0
63.8
78.3
73.6
71.2
71.8
75.6

64.0
66.0
66.8
69.4
66.8
64.4
64.8
68.7

36.4
389
414
40.2
43.2
43.7
40.8
41.8
41.8
39.6
40.3
42.1

25.5
26.8
29.2
29.9
30.0
30.6
30.8
273

42.2
50.9
53.0
47.1
62.3
59.7
53.6
70.6

31.8
35.0
37.6
36.8
404
40.5
38.5
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29.3
29.8
31.9
32.1

51.9
52.5
54.7
49.5

37.5
38.0
40.3
39.0

Table 1. Joint Embeddings for zero-shot learning (JE-ZSL) - ablation study on the effect of the dimensionality. We mark in blue and bold
any improvement scored by joint embeddings over the respective backbone zero-shot learning method used as baseline.

and d = 2048 is capable of improving upon the baseline
methods in both standard zero-shot learning (T1 on aPY
for both Flickr30K and MSCOCO with respect to CDL
zero-shot learn method, T1 on AWA2 for MSCOCO with
respect to f~-CLSWGAN) and generalized zero-shot learn-
ing as well (H for MSCOCO and ConcCapt with respect
to f-CLSWGAN and H for MSCOCO with respect to tf-

VAEGAN). This is especially remarkable if considering
that baseline approaches exploit 2048 —dimensional visual
embeddings: Even if using lower dimensional embeddings,
there are only very few cases in which severe drops are reg-
istered (such as for d = 256 on Flickr30K with respect to
f-CLSWGAN) and performance are often better. Overall,
methods such as CDL are improved in their standard and
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Figure 3. Joint embeddings for zero-shot learning (JE-ZSL) to handle fine-grained datasets.

generalized zero-shot recognition by +2.9% (T1) and +5%
(H), respectively using ConcCapt and d = 2048. Simi-
larly, using the very same setup, we register analogous im-
provements of +0.5% for T1 and +3.0% for H (with re-
spect to f-CLSWAGAN), while we enhance tf-VAEGAN
by +4.1% (T1) on standard zero-shot learning and +2.8%
(H) for generalized zero-shot learning using d = 2048 and
MSCOCO. These results indicate that the joint training im-
prove representation with visual and semantic cues which
in turn eases zero-shot learning recognition task.

4.2. Fine-grained Joint Embeddings

Fig. 3 shows the comparison of the setup d = 2048 with

Flickr30K [39], MSCOCO [31], ConcCapt [45] and fine-
grained datasets (CUB [51] and FLO [37]) for which cap-
tions annotating the images are available on seen classes.
This helps us in understanding to which extent a joint train-
ing is capable of enhancing results, while disentangling it
from the intrinsic difficulty of the dataset on which the
ZSL evaluation is carried out. In fact, on CUB and FLO
datasets, categories are fine-grained in nature (bird and
flower species, respectively) and, therefore, much harder to
classify - and we will evaluate joint embeddings also in this
playground.
Discussion. Despite the fine-grained nature of the classes to
recognize, dataset such as Flickr30K are enough to improve
s and H metrics with respect to the baseline model CDL (on
CUB). Joint embeddings trained using ConcCapt improve
the metric s scored by CDL on FLO. Using MSCOCO, joint
embeddings boost the performance of f-CLSWGAN (T1 on
FLO) and tf-VAEGAN is improved as well (T1 on FLO) us-
ing either Flickr30K or MSCOCO. Thus, despite the chal-
lenging nature of fine-grained recognition task, still the idea
of joint training provides subtle improvements.

These preliminary improvements are furthermore en-
hanced as soon as the fine-grained textual information is ex-
ploited on CUB and FLO: We improve CDL, f-CLSWGAN
and tf-VAEGAN. More specifically, our proposed approach
improves the T1 score of f~=CLSWGAN on CUB (47.9). On
FLO dataset, CDL, f-CLSWGAN and tf-VAEGAN base-
line methods are improved by +2.6%, +8.4% and +4.8%

in their zero-shot learning performance (T1). Similar im-
provements are registered in GZSL: the I value by CDL is
improved by +4.6% on CUB and by +8.4% on FLO. The
H value by f-CLSWGAN is improved by +3.1% on CUB
and +8.4% on FLO. Finally, tf-VAEGAN achieves an im-
provement of H on both CUB (+2.2%) and FLO (+3.4%).
The scored performance improvements on CUB and FLO
datasets demonstrate that fine-grained textual information
enhances visual embeddings when paired with our proposed
joint training.

5. Comparison with the State-of-the-Art

In this section, we test our proposed joint embeddings
against state-of-the-art zero-shot learning methods based on
two mainstream paradigms: Compatibility functions and
feature generation.

Compatibility functions. Among the state-of-the-art ap-
proaches, we included the idea of generating a latent rep-
resentation on which visual and semantic information is
projected (LATEM [53]) and the generation of synthetic
classifiers for the unseen classes as a linear combination of
classifiers of the seen ones (SynC [8]). We also compare
against structured embedding obtained by combining differ-
ent sources of side information (SJE [2]) and the deep visual
and semantic embedding model known as DeVISE [16].
We include the kernelized approach to learn a compatibility
function in max-margin sense (KerZSL [64]) and the cou-
pled dictionary learning approach to learn and then match
a set of visual and semantic atoms with which images and
side information can be described (CDL [25]).

Feature generating approaches. We consider several meth-
ods to generate visual features for the unseen classes,
known in terms of attributes only. Namely, the Wasser-
stein GAN trained with a classifier loss (f-CLSWGAN [57])
and its variant in which a cycle-consistency loss is added to
predict attributes from synthesized features. (Cycle-WGAN
[15]). We compare against the usage of confidence smooth-
ing (COSMO [5]) which, combined with a feature gener-
ation approach, helps in balancing the recognition perfor-
mance across seen and unseen classes. A similar effect is
achieved by the adoption of dual learning to train feature
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AWA2 [28] CUB [51] FLO [37] aPY [61]

T1 u s H T1 U s H T1 U s H T1 u s H
2 LATEM [53] 551 73 717 133 | 496 152 573 24 | 404 6.6 476 115|368 57 656 104
= SynC [§] 493 89 873 162|530 115 709 19.8 - — — - 239 74 663 133
2 SIE[2] 656 11.3 746 19.6 | 539 235 592 336|534 139 476 215|317 13 714 26
E DeViSE [16] 542 134 687 224|520 238 53.0 328|459 99 442 162|370 35 1784 6.7
g KerZSL [64] 70.5 189 827 30.8 | 51.7 21.6 52.8 30.6 — — — - 453 105 762 185
g CDL [25] 69.9 28.1 735 406 | 545 235 552 329 |59.6 320 648 428 | 430 198 48.6 28.1
O  JE-ZSL (ours) 71.0 293 77.1 425 | 541 256 702 375|622 435 622 512 | 459 245 51.1 331
f-CLSWGAN [56] 682 579 614 596|573 437 577 497|672 59.0 738 656|405 258 59.5 360

o Cycle-WGAN [14] 66.8 634 59.6 598 | 586 593 479 530|703 616 692 652 - — — -

.2 f-VAEGAN-D2[58] | 71.1 57.6 70.6 63.5 | 61.0 484 60.1 53.6 | 677 568 749 64.6 - — — -

g CADA-VAE [44] 68.2 558 750 639|573 516 535 524 - - — - - — — -
5 GDAN [23] 68.1 32.1 675 435|588 393 66.7 49.5 - - — - 383 304 750 434

(Q'? COSMO [5] - 52.8 80.0 63.6 - 444 578 50.2 - 59.6 814 68.8 - — - -

é PGN [62] 712 48.0 83.6 61.0 | 683 485 572 525|814 63.6 77.8 700 - — - -
©  0-VAEGAN [20] 699 562 71.7 63.0 | 549 41.1 485 444 - - — - 363 31.7 532 397
tf-VAEGAN [35] 722 598 751 666 | 649 528 647 581|708 625 84.1 717|408 30.8 546 393
JE-ZSL (ours) 70.6 63.0 756 687 | 70.2 60.0 60.7 603 | 756 67.6 84.7 751 | 421 32.1 495 39.0

Table 2. Comparison of our proposed JE-ZSL against state-of-the-art methods based on either compatibility functions or feature genera-
tion. Improvements scored by JE-ZSL over each of this class of methods is highlighted in blue and bolded.

generation and attribute prediction synchronously (GDAN
[23]). We also compared against the idea of scheduling
the generation of synthetic feature by means of episodic
training (PGN [62]). In addition, we consider methods in
which the feature generation stage is enhanced by the adop-
tion of a variational autoencoder to pair a GAN: 0-VAE-
GAN [18], f-VAEGAN-D2 [59], CADA-VAE [44], and tf-
VAEGAN [35].

Table 2 shows the results of this analysis. We fix the di-
mensionality of the embedding to d = 2048 that were used
to boost CDL when challenging other compatibility func-
tions. When comparing against tf-VAEGAN, performance
is enhanced with joint embedding while comparing against
other feature generating approaches. The fine-grained setup
(see Section 4.2) was used when handling both CUB and
FLO datasets, while using Conceptual Captions for the joint
training on AWA?2 and aPY.

Discussion. With our proposed semantically grounded em-
beddings, the performance previously scored by compatibil-
ity functions is considerably improved. We observed perfor-
mance boosts with respect to the metric u over all datasets
(AWA2, CUB, FLO and aPY) along with s on FLO dataset.
Additionally, on AWAZ2, the best performance on zero-shot
learning (KerZSL) is improved by 4+0.5% and the H of
the best scoring method on generalized zero-shot learning
(CDL) is boosted by +1.9%. Similarly, the H metric is en-
hanced for generalized zero-shot learning on CUB (+5.9%
with respect to SJE) on FLO (+8.4% with respect to CDL)
and on aPY (+5% with respect to CDL). The best scored
T1 classification accuracy of prior methods is improved on
FLO (+2.6% with respect to CDL) and on aPY (+0.6%
with respect to KerZSL). While considering feature gener-

ating approaches, our proposed embedding boosts the H
score on both AWA2 and CUB (+2.1% and +2.2%, respec-
tively - both with respect to tf-VAEGAN). On aPY, we also
improve f-CLSWGAN in the T1 score for ZSL (+1.6%).

6. Conclusions

This paper presents joint embeddings for zero-shot learn-
ing tasks. Unlike existing methods which utilize fixed vi-
sual and semantic information, we proposed to learn se-
mantically grounded visual embedding by capturing inter-
actions between images and text clues with a two-stream
network on a proxy task leveraging large-scale unlabelled
data sources. We evaluated our embeddings with vari-
ous state-of-the-art methods on two fine-grained (CUB and
FLO) and two coarse-grained (AWA2 and aPY) benchmark
zero-shot learning datasets. Our evaluation showed that our
proposed embeddings considerably improved standard and
generalised zero-shot learning performance across various
compatibility functions and GAN-based methods.

References

[1] Transferable contrastive network for generalized zero-shot
learning. In The IEEE International Conference on Com-
puter Vision (ICCV), 2019. 2

[2] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and
Bernt Schiele. Evaluation of output embeddings for fine-
grained image classification. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015. 7, 8

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.
Vqa: Visual question answering. In Proceedings of the IEEE

4596



(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

international conference on computer vision, pages 2425—
2433, 2015. 2

Omer Arshad, Ignazio Gallo, Shah Nawaz, and Alessandro
Calefati. Aiding intra-text representations with visual con-
text for multimodal named entity recognition. In 2019 15th
IAPR International Conference on Document Analysis and
Recognition (ICDAR). IEEE, 2019. 2

Yuval Atzmon and Gal Chechik. Adaptive confidence
smoothing for generalized zero-shot learning. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 4,7, 8

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. Multimodal machine learning: A survey and tax-
onomy. [EEE transactions on pattern analysis and machine
intelligence, 41(2):423-443, 2019. 2

Yannick Le Cacheux, Herve Le Borgne, and Michel Cru-
cianu. Modeling inter and intra-class relations in the triplet
loss for zero-shot learning. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 10333—
10342, 2019. 2

Soravit Changpinyo, Wei-Lun Chao, Boging Gong, and Fei
Sha. Synthesized classifiers for zero-shot learning. In /IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 7, 8

Soravit Changpinyo, Wei-Lun Chao, Boging Gong, and Fei
Sha. Classifier and exemplar synthesis for zero-shot learn-
ing. The Springer International Journal of Computer Vision
(IJCV),2019. 2,4

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. ECCYV, 2020.
2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1, 3

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. Vse++: Improving visual-semantic embeddings with
hard negatives. arXiv preprint arXiv:1707.05612, 2017. 2
Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth.
Describing objects by their attributes. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1778-1785. IEEE, 2009. 4

Rafael Felix, Vijay BG Kumar, Ian Reid, and Gustavo
Carneiro. Multi-modal cycle-consistent generalized zero-
shot learning. In The European Conference on Computer
Vision (ECCV), 2018. 2, 8

Rafael Felix, Vijay BG Kumar, Ian Reid, and Gustavo
Carneiro. Multi-modal cycle-consistent generalized zero-
shot learning. In European Conference on Computer Vision
(ECCV),2018. 4,7

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Marc’ Aurelio Ranzato, and Tomas Mikolov. De-
VISE: A deep visual-semantic embedding model. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2013. 7,8

Ignazio Gallo, Alessandro Calefati, and Shah Nawaz. Multi-
modal classification fusion in real-world scenarios. In 2017

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

4597

14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), volume 5, pages 36-41. IEEE,
2017. 2

Rui Gao, Xingsong Hou, Jie Qin, Jiaxin Chen, Li Liu, Fan
Zhu, Zhao Zhang, and Ling Shao. Zero-vae-gan: Generating
unseen features for generalized and transductive zero-shot
learning. /[EEE Transactions on Image Processing, 29:3665—
3680, 2020. 4, 8

Yuchen Guo, Guiguang Ding, Jungong Han, Xiaohan Ding,
Sicheng Zhao, Zheng Wang, Chenggang Yan, and Qionghai
Dai. Dual-view ranking with hardness assessment for zero-
shot learning. In The AAAI Conference on Artificial Intelli-
gence, volume 33, pages 8360-8367, 2019. 2, 4

Zongyan Han, Zhenyong Fu, and Jian Yang. Learning the
redundancy-free features for generalized zero-shot object
recognition. In IEEE Conference on Computer Vision and
Fattern Recognition (CVPR), 2020. 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 1, 3, 5

He Huang, Changhu Wang, Philip S Yu, and Chang-Dong
Wang. Generative dual adversarial network for generalized
zero-shot learning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 2

He Huang, Changhu Wang, Philip S Yu, and Chang-Dong
Wang. Generative dual adversarial network for generalized
zero-shot learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 4, 8

Huajie Jiang, Ruiping Wang, Shiguang Shan, and Xilin
Chen. Learning class prototypes via structure alignment for
zero-shot recognition. In European conference on computer
vision (ECCV), 2018. 2, 4

Huajie Jiang, Ruiping Wang, Shiguang Shan, and Xilin
Chen. Learning class prototypes via structure alignment for
zero-shot recognition. In European conference on computer
vision (ECCV), 2018. 5,6,7, 8

Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic
autoencoder for zero-shot learning. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
2,4

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. International journal of computer vision,
123(1):32-73, 2017. 2

CH. Lampert, H. Nickisch, and S. Harmeling. Learning to
detect unseen object classes by between-class attribute trans-
fer. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009. 5, 6, 8

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557,2019. 2

Yan Li, Junge Zhang, Jianguo Zhang, and Kaiqi Huang. Dis-
criminative learning of latent features for zero-shot recogni-



(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

tion. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 2, 4

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740-755.
Springer, 2014. 2,4,5,7

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vil-
bert: Pretraining task-agnostic visiolinguistic representations
for vision-and-language tasks. In Advances in Neural Infor-
mation Processing Systems, pages 13-23, 2019. 2

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013. 1
Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan,
Cees GM Snoek, and Ling Shao. Latent embedding feed-
back and discriminative features for zero-shot classification.
arXiv preprint arXiv:2003.07833, 2020. 1, 5

Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan,
Cees GM Snoek, and Ling Shao. Latent embedding feed-
back and discriminative features for zero-shot classification.
In The European Conference on Computer Vision (ECCV),
2020. 2,4,5,6,8

Shah Nawaz, Muhammad Kamran Janjua, Ignazio Gallo,
Arif Mahmood, Alessandro Calefati, and Faisal Shafait. Do
cross modal systems leverage semantic relationships? In
Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, pages 0-0, 2019. 2

M-E. Nilsback and A. Zisserman. A visual vocabulary for
flower classification. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2006. 7, 8
Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722-729. IEEE, 2008. 4

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazeb-
nik. Flickr30k entities: Collecting region-to-phrase corre-
spondences for richer image-to-sentence models. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2641-2649, 2015. 2,4, 5,7

Di Qi, Lin Su, Jia Song, Edward Cui, Taroon Bharti, and
Arun Sacheti. Imagebert: Cross-modal pre-training with
large-scale weak-supervised image-text data. arXiv preprint
arXiv:2001.07966, 2020. 2

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele.
Learning deep representations of fine-grained visual descrip-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 49-58, 2016. 5
Bernardino Romera-Paredes and Philip Torr. An embarrass-
ingly simple approach to zero-shot learning. In The Interna-
tional Conference on Machine Learning (ICML), 2015. 2,
4

Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor
Darrell, and Zeynep Akata. Generalized zero- and few-
shot learning via aligned variational autoencoders. In The

[44]

(45]

[46]

[47]

(48]

(49]

[50]

[51]

(52]

(53]

(54]

[55]

[56]

4598

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 2

Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor
Darrell, and Zeynep Akata. Generalized zero- and few-
shot learning via aligned variational autoencoders. In /[EEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 4, 8

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556-2565, 2018. 2,4,5,7

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

Jie Song, Chengchao Shen, Yezhou Yang, Yang Liu, and
Mingli Song. Transductive unbiased embedding for zero-
shot learning. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 2, 4

Hao Tan and Mohit Bansal. Lxmert: Learning cross-
modality encoder representations from transformers. arXiv
preprint arXiv:1908.07490, 2019. 2

Vinay Kumar Verma and Piyush Rai. A simple exponential
family framework for zero-shot learning. In The European
conference on machine learning and knowledge discovery in
databases (ECML-PKDD), 2017. 2, 4

Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep
structure-preserving image-text embeddings. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5005-5013, 2016. 3,4, 5

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical
Report CNS-TR-2010-001, California Institute of Technol-
ogy, 2010. 1,7, 8

Peter Welinder, Steve Branson, Takeshi Mita, Catherine
Wabh, Florian Schroff, Serge Belongie, and Pietro Perona.
Caltech-ucsd birds 200. 2010. 4

Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh
Nguyen, Matthias Hein, and Bernt Schiele. Latent embed-
dings for zero-shot classification. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 7,
8

Yonggin Xian, Christoph H Lampert, Bernt Schiele, and
Zeynep Akata. Zero-shot learning-a comprehensive evalu-
ation of the good, the bad and the ugly. The IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2018. 1,
2,5

Yongqgin Xian, Christoph H Lampert, Bernt Schiele, and
Zeynep Akata. Zero-shot learning—a comprehensive eval-
uation of the good, the bad and the ugly. IEEE transactions
on pattern analysis and machine intelligence, 41(9):2251-
2265, 2018. 4

Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5542-5551, 2018. 1, 5, 6, 8



[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. 2, 4,7

Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep
Akata. F-VAEGAN-D2: A Feature Generating Framework
for Any-Shot Learning. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019. 2,
4,8

Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep
Akata. f-VAEGAN-D2: A feature generating framework for
any-shot learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 8

Meng Ye and Yuhong Guo. Zero-shot classification with
discriminative semantic representation learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7140-7148, 2017. 1

Y. Yu. aPascal-aYahoo Image Data Collection. Technical
report, University of Illinois at Urbana-Champaign, 2009. 5,
6,8

Yunlong Yu, Zhong Ji, Jungong Han, and Zhongfei Zhang.
Episode-based prototype generating network for zero-shot
learning. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 4, 8

Hongguang Zhang and Piotr Koniusz. Zero-shot kernel
learning. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 76707679, 2018. 2, 4
Hongguang Zhang and Piotr Koniusz. Zero-shot kernel
learning. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 7, 8

Yizhe Zhu, Jianwen Xie, Bingchen Liu, and Ahmed Elgam-
mal. Learning feature-to-feature translator by alternating
back-propagation for generative zero-shot learning. In The
IEEE International Conference on Computer Vision (ICCV),
2019. 2

4599



