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Abstract

Existing works in image retrieval often consider retriev-
ing images with one or two query inputs, which do not gen-
eralize to multiple queries. In this work, we investigate a
more challenging scenario for composing multiple multi-
modal queries in image retrieval. Given an arbitrary num-
ber of query images and (or) texts, our goal is to retrieve
target images containing the semantic concepts specified
in multiple multimodal queries. To learn an informative
embedding that can flexibly encode the semantics of var-
ious queries, we propose a novel multimodal probabilis-
tic composer (MPC). Specifically, we model input images
and texts as probabilistic embeddings, which can be further
composed by a probabilistic composition rule to facilitate
image retrieval with multiple multimodal queries. We pro-
pose a new benchmark based on the MS-COCO dataset and
evaluate our model on various setups that compose multi-
ple images and (or) text queries for multimodal image re-
trieval. Without bells and whistles, we show that our proba-
bilistic model formulation significantly outperforms existing
related methods on multimodal image retrieval while gener-
alizing well to query with different amounts of inputs given
in arbitrary visual and (or) textual modalities. Code is here:
https://github.com/andreineculai/MPC.

1. Introduction
Image retrieval aims to learn an embedding that encodes

the semantics of an input query for retrieving the most rele-
vant target images in the database. Existing works in image
retrieval often consider taking one single image [19] or a
text sentence [16] as query, which limit their applicability
in coping with multiple queries given in arbitrary modali-
ties. In this work, we investigate a more challenging sce-
nario in multimodal image retrieval, where the queries may
consist of an arbitrary number of queries in arbitrary visual
and textual modalities (e.g. images and texts).

As Figure 1 shows, given an arbitrary number of im-
age and (or) text queries, our goal is to retrieve the im-
ages that contain all the semantic concepts specified in the
queries. Inspired by the recent advances in compositional

Figure 1. We consider a new compositional learning paradigm for
multimodal image retrieval. Given an arbitrary number of multi-
modal queries (e.g. images and texts), the model is trained to learn
a feature embedding for retrieving images that contain the com-
posite set of semantic concepts specified in the queries, where the
input could be given in arbitrary combinations such as (a) image
+ image, (b) image + image + text, (c) image + text, etc.

learning for visual recognition [37, 41, 52], we tackle this
problem by learning a compositional embedding to flexibly
encapsulates the multiple semantic concepts specified in the
multimodal queries, and to be used for retrieving the more
relevant images. For instance, when giving two query im-
ages capturing “cat” and “dog”, and one text query stating
“sports ball”, we aim to learn a compositional embedding
that represents all three queries to retrieve images that con-
tain “cat”, “dog” and “sports ball” (see Figure 1 (b)).

A line of recent works [7,8,24,60,63] also explore com-
positional learning upon image and text. However, all these
existing works consider evaluating and modelling upon only
two queries given in a fixed combination of image and text.
Moreover, these works mainly consider using text to spec-
ify the modifications in input image for retrieving similar
images, which does not apply to the case when the retrieved
images are expected to represent a composite set of mul-
tiple semantic concepts. Therefore, to further investigate
image retrieval using an arbitrary number of queries (e.g.
more than two queries) given in arbitrary visual and (or)
textual modalities, we establish a new evaluation bench-
mark for multimodal image retrieval. Our new benchmark
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is built with the MS-COCO dataset [33] and offers a more
advanced and challenging testbed to facilitate research on
image retrieval. We propose this new benchmark with a
comprehensive evaluation of multiple state-of-the-art multi-
modal methods and propose a novel Multimodal Probabilis-
tic Composer (MPC) that learns an informative probabilis-
tic compositional embedding to flexibly encode an arbitrary
number of queries. Specifically, rather than fusing embed-
dings from different modalities through a fixed set of learn-
able parameters, we propose to parameterize each input as a
probabilistic embedding following a multivariate Gaussian,
and compose embeddings by deriving a composite multi-
variate Gaussian based on a probabilistic composition rule.

Our model formulation offers two unique properties to
learn a compositional embedding for multimodal image re-
trieval. First, our probabilistic composer allows to com-
pose embeddings of a flexible amount of queries in arbitrary
modalities. Second, its probabilistic nature allows to encode
semantics as well as ambiguities of a given input, thus well
capturing the polysemantic information in text queries, e.g.
a text query “dog” may refer to a variety of dog breeds that
differ visually. These properties well faciliate better perfor-
mance in multimodal image retrieval.

Our contribution is three-fold:
• We establish a new multimodal image retrieval bench-

mark using the MS-COCO dataset to investigate image
retrieval using an arbitrary number of queries in arbitrary
modalities. We evaluate a variety of settings including
(1) using different combinations of input modalities, and
(2) using various number of queries.

• We propose a Multimodal Probabilistic Composer
(MPC), which features a new probabilistic rule to com-
pose probabilistic emebddings and a new probabilistic
similarity metric to compare probabilistic embeddings,
which together lead to its superior model performance in
composing multimodal queries for image retrieval.

• We show that our model outperforms existing multi-
modal fusion methods significantly for mulitmodal im-
age retrieval. To further analyze our model design ratio-
nale, we also conduct an indepth experimental analysis.

2. Related Work

Multimodal image retrieval refers to image retrieval with
multimodal queries. In contrast to standard image retrieval
that takes in one image as query, multimodal image retrieval
digests multiple inputs in different modalities such as im-
ages, spatial layout [36], sketch [18, 66, 68], texts in the
attribute formats [1, 22, 29, 46, 67, 69] or natural language
sentences [7, 8, 20, 21, 24, 63]. Unlike these existing works
that consider the other non-visual modalities as feedback to
guide image retrieval, we focus on learning the composi-
tions of multiple semantic concepts specified in the query.

Compositional learning provides an important function-
ality in an artificial intelligent machine [30, 31]. The
goal of compositionality is to learn representations or data
distributions that encapsulate multiple semantic concepts
[38, 39, 41, 42, 50, 52, 55, 57, 60, 62]. One line of works ex-
plore compositionality in zero-shot recognition [37,41,52],
where the model is trained to compose states and objects
(e.g. “ripe” and “apple”) and used is to recognize their com-
positions. Another line of works introduce compositionality
for image generation, which aim to synthesize new images
that contain composite visual primitives [3, 44, 47, 55, 59]
or composite context and semantic content [10, 32, 58, 65].
More recently, compositionality is explored in various tasks
such as image retrieval [8,24,60], video recognition [9,38],
and visual relationship detection [25, 50]. In this work,
we study a new compositional learning paradigm for mul-
timodal image retrieval. Unlike the relevant works in im-
age retrieval that consider composing image and text for
modifying image content [8, 24, 60] , we establish a new
benchmark to investigate compositions upon an arbitrary
number of semantics concepts given in arbitrary modali-
ties. Moreover, we propose a novel probabilistic model for-
mulation to derive probabilistic compositional embeddings
that jointly capture semantics and ambiguities in input data
to learn more informative compositional embeddings.
Multimodal fusion is widely adopted as an effective learn-
ing scheme to fuse complementary and (or) compositional
information from multimodal input data for building a more
powerful model. A large body of works exploit multimodal
fusion to enhance video understanding, such as utilizing au-
dio and visual data [9,26,35,43,61], or using text and visual
data [17, 54] to learn video representations. A branch of
recent works leverage multimodal fusion to fuse RGB im-
ages with depth or LiDAR input to enhance representation
learning in autonomous driving [51,64]. Another volume of
works use multimodal fusion to integrate images and texts
for solving multimodal image retrieval [7, 8, 24, 60, 63] or
visual question answering (VQA) [2, 56]. Unlike existing
works that fuse a fixed combinations of modalities, we ex-
plore multimodal fusion upon an arbitrary composite set of
semantic concepts specified in different data modalities.

3. Multimodal Probabilistic Composer
Given a composite set of k input samples – where each

input specifies a semantic concept (e.g. “dog”, “sport
ball”), our goal is to learn a compositional embedding for
retrieving the corresponding target images that contain the
set of specified semantic concepts. Each input can be given
in visual or textual modality, and passed through modality-
specific encoder to obtain its embedding. Accordingly, the
composition of different embeddings should be modality-
agnostic, which means our model by default is trained to
combine an arbitrary set of samples in arbitrary modalities.
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Figure 2. Model overview. We show how Multimodal Probabilistic Composer (MPC) learns from two queries for visual simplicity. Here,
given the query image s1 and text s2, MPC first learns two modality-specific probabilistic embeddings (Section 3.1), and then composes
the two embeddings through a probabilistic composer to obtain a probabilistic compositional embedding (Section 3.2) which is further
aligned with the probabilistic embedding of the target image t by minimizing a probabilistic distance metric (Section 3.3). Note: MPC can
digest more than two queries by applying the probabilistic composer on a set of probabilistic embeddings (detailed in Section 3.2).

Figure 2 gives an overview of our proposed model: Mul-
timodal Probabilistic Composer (MPC). For simplicity, we
visualize the case where MPC takes in two queries (a “dog”
image and a “sport ball” text snippet) to retrieve a target
image that contains “dog” and “sport ball”. The image and
text are passed through modality-specific encoders to learn
probabilistic embeddings (Section 3.1) and then composed
to derive a compositional embedding (Section 3.2). MPC
is optimized to align the compositional embedding and the
target image embedding by minimizing a probabilistic con-
trastive loss (Section 3.3). While Figure 2 shows the sce-
nario with two inputs, MPC is designed with the flexibility
to process an arbitrary set of samples in arbitrary modalities
thanks to its probabilistic nature.

3.1. Modality-Specific Probabilistic Embeddings

In this section, we first describe how different modalities
(i.e. image and text) are modeled and then detail how prob-
abilistic embeddings are learned to represent each input.
Image encoder. We use a ResNet [23] backbone fResNet,
with an additional linear projection layer fimg , as our im-
age encoder to learn the image embeddings. Given an input
image (referred as s1), we pass it through fResNet to obtain
the feature map ϕimg and compute its feature encoding as:
zimg = fimg(ϕimg), where zimg ∈ RD.
Text encoder. To encode text information, we use GloVe
word embeddings [48] to encode each word (denoted as
fGloV e) and train a bidirectional GRU [11] (denoted as ftxt)
to learn the text embeddings. Given a text snippet (re-
ferred as s2), we obtained the word embeddings: ϕtxt =
fGloV e(s2). We pass ϕtxt through the GRU to obtain its

feature encoding: ztxt = ftxt(ϕtxt), where ztxt ∈ RD.
Probabilistic embeddings. Our model is motivated with
the flexibility to take a composite set of k queries in ar-
bitrary modalities. With this design rationale in mind, we
propose to model each embedding as a multivariate Gaus-
sian probability density function (PDF), such that the com-
positions of different embeddings can be achieved by com-
posing different Gaussian PDFs through a parametric prob-
abilistic rule, i.e. the product of k Gaussian PDFs [5]. Be-
low, we detail how each embedding is modeled as a multi-
variate Gaussian, similar to recent probabilistic embeddings
works [12, 45], and present how we derive compostional
embeddings through our probabilistic composer in Section
3.2.

Given any embedding and feature map (denoted as zm
and ϕm) from either the image encoder or the text encoder,
we model it as a Gaussian with mean µm and diagonal vari-
ance matrix Σm. For computational reasons, we work with
only the diagonal of the covariance matrix Σm, referred as
σ2
m. As seen in [12], µm and σ2

m are computed as follows:

µm = LN((zm + s(fc(attn(ϕm))))

log(σ2
m) = zm + fc(attn(ϕm))

(1)

where LN denotes a LayerNorm [4] operation, fc denotes
a linear layer, s(·) is a sigmoid activation function and attn
denotes a self-attention module [34]. The model outputs the
logarithm of the variance instead of the actual variance for
numerical stability. In essence, the Gaussian PDF (Eq. 1)
offers a more informative and expressive estimation about
the embedding, capturing not only the semantics of an input
but also its ambiguities. By design, imposing a probabilistic
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distribution on a feature embedding has the following mer-
its. First, it is essential in practice to encode both seman-
tics and ambiguities of an input – e.g. encoding a query of
“cat” needs to represent its semantic content as a cat but also
need to represent its ambiguities to reflect different possible
variations as not all cats visually look the same. Second,
composing a set of k probabilistic embeddings can be eas-
ily derived by composing their Gaussian PDFs through a
parametric probabilistic formulation, as detailed next.

3.2. Probabilistic Composer

Probabilistic composer. Let S={s1, . . . sk} be the set of k
samples in the query. The goal of the composition is to find
a probability distribution p(z|S) that unifies all the individ-
ual probability distributions {p(z|si) ∼ N (µi,Σi)}1,k. As
aforementioned, composing a set of k probabilistic embed-
dings can be achieved based on a parametric probabilistic
rule which derives the product of k Gaussian PDFs [5]. We
refer this process as our probabilistic composer and explain
the case where k = 2 (i.e. two queries) below. Formally,
the product of two Gaussian PDFs can be written as:

N (z;µ1,Σ1)N (z;µ2,Σ2) = N (z;µc,Σc)Z (2)

where N (z;µ1,Σ1),N (z;µ2,Σ2) are the two Gaussian
PDFs for the set of two queries s1, s2. N (z;µc,Σc) is the
new composite Gaussian with mean µc and variance Σc,
and Z is a normalization constant, defined as:

Σc = (Σ−1
1 +Σ−1

2 )−1

µc = Σc(Σ
−1
1 µ1 +Σ−1

2 µ2)

Z = N (µ1;µ2,Σ1 +Σ2)

(3)

While Eq. 2, Eq. 3 show the special case of k = 2, it can be
easily generalized to the case where k > 2 by deriving the
product of k Gaussian PDFs sequentially – i.e. multiplying
the kth Gaussian PDF with the product of all the (k − 1)
Gaussian PDFs, which results in a composite new Gaussian
with a normalization constant Z written as follows.

Z =

k−1∏
i=1

Zi,i+1 (4)

where Zi,j is the normalization constant of the product be-
tween the Gaussian PDFs of input i and input j. Thanks
to the inductive bias induced by our probabilistic composer,
our model can generalize to compositions of a flexible set
of queries even without training. In our experiments, we
show that despite not containing any learned parameters,
our probabilistic composer outperforms other composition
methods that learn fusion layers to compose embeddings.

3.3. Model Optimization

Similar to standard objectives in non-probabilistic metric
learning such as triplet loss and contrastive loss, our training

objective is imposed to pull the distribution of the compo-
sitional embedding and the target image distribution closer,
while pushing away the distributions of negative pairs. To
achieve this aim, we first need to define a probabilistic sim-
ilarity function between two probability distributions.
Probabilistic similarity. To quantify the similarity between
two probabilistic distribution, Monte-Carlo estimation can
be adopted [12], which draws a number of J data points
{zxi }1,J , {zyi }1,J from two distributions p(z|x), p(z|y), re-
sulting in J2 pairs of feature vectors that can be used to
compute the similarity between two distributions as:

sim(p(z|x), p(z|y)) = 1

J2

J∑
i=1

J∑
j=1

κ(zxi , z
y
j ) (5)

where κ(·, ·) refers to a standard similarity metric between
feature vectors, e.g. cosine similarity. Although Eq. 5
can measure the similarity between two probabilistic em-
beddings that follow Gaussian distributions, it could not be
directly applied in our scenario given that our composite
Gaussian is scaled by a constant Z (Eq. 4); while sam-
pling data points from N (z;µc,Σc) is equivalent to sam-
pling from N (z;µc,Σc)Z.

To align the probabilistic compositional embedding (Eq.
2) – modeled as a composite Gaussian N (z;µc,Σc)Z –
and the target image embedding – modeled as a multivari-
ate Gaussian N (z;µt,Σt)), we propose a new probabilis-
tic similarity function to measure the similarity between
the composite Gaussian p(z|S) and the target image dis-
tribution p(z|t) using the following procedure. First, we
sample J data points {zti}1,J from the target distribution
N (µt,Σt). Then, we assign these data points to the com-
posite distribution N (z;µc,Σc)Z to compute the proba-
bilistic similarity scores. The similarity function is formally
defined as the logarithm of these probabilistic scores:

sim(p(z|S), p(z|t)) = 1

J

J∑
i=1

log(N (zti ;µc,Σc)Z) (6)

where we compute the overall similarity with logarithm to
ensure numerical stability given that Z may contain small
numerical values. In essence, Eq. 6 provides a tractable
probabilistic formulation to measure the similarity between
two probabilistic embeddings that follow the Gaussian dis-
tributions N (z;µc,Σc)Z and N (z;µt,Σt). Eq. 6 is also
computationally more efficient than Eq. 5, given that their
computational complexity is O(J) vs O(J2).
Learning objective. In similar spirit as the cross entropy
loss and contrastive loss [6], we define our loss function as:

Lct=
1

B

B∑
i=1

− log
exp(sim(p(z|Si), p(z|ti)))∑B
j=1 exp(sim(p(z|Si), p(z|tj)))

(7)
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where B denotes the batch size. sim(p(z|Si), p(z|ti)) is the
similarity between probabilistic distributions of two posi-
tive pairs. The loss Lct is computed across all positive pairs.
To ensure the training stability and prevent the learned vari-
ance σ2

m (Eq. 1) from collapsing to zero or exploding to
very high values, we add a ℓ2 regularization term on the
logarithm of the variance, as defined below:

Lℓ2 =
1

B|S|

B∑
i=1

S∑
j=1

(log(σ2
i,j))

2 (8)

where |S| is the number of queries being composed. σ2
i,j is

the variance of the input j in the ith pair of queries in the
batch. The final loss is L = Lct + λℓ2Lℓ2 .
Model deployment. At test time, we compute the compo-
sitional probabilistic embeddings of the set of queries by
first computing the probabilistic embeddings (Eq. 1) and
then composing the embeddings through our probabilistic
composer (Eq. 2, Eq. 3). For image retrieval, we com-
pute the probabilistic embeddings for all the images in the
database, and match the composite queries with all images
based on the cosine similarity between the mean µc of a
compositional probabilistic embeddings and the mean µt of
an image embedding. The images with the top-k similarity
scores in the database are the top-k retrieved items.

4. Experiments
4.1. Constructing Benchmark

Dataset. To explore compositional learning upon a flex-
ible combination of queries, we establish a new bench-
mark based on the MS-COCO dataset [33], which contains
bounding box annotations of 80 unique object categories.
We utilize these data annotations to construct our multi-
modal image retrieval benchmark. As each image in MS-
COCO often contains a set of objects labeled with bounding
boxes, we can easily obtain full images that contain a com-
posite set of objects, as well as cropped images that contain
a single object by applying the bounding boxes. Concretely,
we use the cropped images with one object (e.g. dog, cat
and truck) as the query images, and use the category label
(e.g. sport balls, carrot and stop sign) as the query texts.
It is worth noting that we consider short texts in this work;
however, our model is able to handle free-form texts, given
that the text encoder can encode both words and sentences.
The query images and (or) query texts can be composed by
composition methods to retrieve the target images that con-
tain the composite set of specified semantic concepts. More
details about the benchmark are given in the supplementary.
Benchmark setup. To build a comprehensive benchmark,
we consider various evaluation setups, as detailed next.
• composing different input modalities: images only, texts

only, and multimodal query with images and texts.

• seen compositions vs unseen compositions: the former
considers that the composite concepts encountered at test
time are seen during training, while the latter considers
the compositions are new and unseen at test time.

• varying number of queries: 2, 3, 4 queries.
We construct a training/validation/test data split with
around 78,000/20,000/20,000 image samples using the MS-
COCO dataset. For the seen compositions, we select 1000
category tuples for training and validation and we use the
same tuples for testing. In the unseen compositions sce-
nario we pick 100 pairs for training and validation and 500
different pairs for testing (the training and testing pairs use
the same categories). Due to the high number of image sam-
ples for each category, the actual number of possible com-
positions of images and (or) texts is extremely high. Thus,
the same compositions of queries are rarely repeated during
training, offering rich diversity in the constructed query-
target pairs for training. Due to space limit, we give data
statistics and evaluate on other datasets in supplementary.
Evaluation metrics. We use two metrics to evaluate im-
age retrieval. First, we use recall@K (R@K), which mea-
sures the percentage of at least one correct retrieved images
occurred in the top K retrieved items. Second, we use R-
Precision (R-P) [40], which takes into account that there
are multiple correct retrieved images for each query, i.e.
R-P= 1

N

∑N
i=1

r
R , where N is the number of test queries;

for each test query, R is the number of correct target images
in the gallery, and r is the number of correct retrievals in
the top-R retrieved items. R-P has a high score only if the
model ranks all the correct items before the incorrect ones.
Implementation details. We implement our model using
PyTorch. For the image encoder, we use the ResNet-50 net-
work [13] pre-trained on ImageNet. The 2048-D image em-
beddings are passed through a self-attention module with a
hidden layer of dimension 1024 and a fc layer that maps it
to a 512-D probabilistic embedding (Eq. 1). For the text en-
coder, we use the GloVe 300-dimensional word embeddings
pre-trained on the corpus with 1.9M vocabulary [48], and
train a bidirectional GRU [11] with 256 features in its hid-
den state. The 256-D text embeddings are passed through a
self-attention module with a hidden layer of dimension 150
and a fc layer that maps it to a 512-D probabilistic embed-
ding (Eq. 1). To compute the probabilistic similarity in Eq.
6, we use J = 7, same as [12]. We set the weight λℓ2 for
the regularizer Lℓ2 to 0.001. For data augmentation, we use
Cutout [14], random resizing and random horizontal flips
for the images and apply random word dropout with proba-
bility 0.1. For training, we use the Adam optimizer [28] and
our learning rate is 2e-4. We set the learning rate of ResNet
layers before the GAP layer to 1/10 the general learning
rate. We train our model for 1600 epochs and decrease the
learning rate by a factor of 1/10 every 600 epochs. We use
the same data augmentation and training scheme for differ-
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Method
images only multimodal texts only

R@5 R@10 R P R@5 R@10 R P R@5 R@10 R P
Relationship 0.36 0.72 0.11 0.47 0.77 0.13 0.61 1.31 0.14
FiLM 0.40 0.92 0.15 0.51 1.06 0.18 0.37 1.06 0.15
MRN 19.81 28.17 4.52 24.59 34.83 5.46 33.20 42.48 6.73
TIRG 21.98 31.58 5.80 18.94 26.85 4.87 34.79 51.43 9.09
PCME + addition 15.19 21.86 3.66 20.02 29.41 4.88 28.78 39.94 6.62

MPC 27.32 36.52 6.72 37.76 48.23 9.10 59.32 69.42 15.14
Table 1. Evaluation of composing two queries for image retrieval on a seen composition setup.

Method
images only multimodal texts only

R@5 R@10 R P R@5 R@10 R P R@5 R@10 R P
Relationship 0.40 0.49 0.13 0.41 1.02 0.17 0.57 1.62 0.27
FiLM 0.00 0.16 0.04 0.01 0.12 0.05 0.00 0.00 0.03
MRN 9.89 16.96 2.21 17.63 26.97 3.73 25.16 36.48 5.14
TIRG 6.95 11.97 1.62 4.77 8.93 1.30 2.91 5.01 0.76
PCME + addition 4.61 8.00 1.09 7.37 12.78 1.68 10.44 16.26 2.08

MPC 8.90 15.13 1.94 19.26 28.03 4.15 32.52 43.28 6.75
Table 2. Evaluation of composing three queries for image retrieval on a seen composition setup.

ent methods to ensure fair comparisons.

4.2. Comparing to the State-of-the-Art

Competitors. We compare our model MPC to a variety of
state-of-the-art approaches that perform multimodal fusion.
We re-implement some methods to ensure they could per-
form flexible compositions of varying numbers of queries
in arbitrary modalities, as described next.
• Relationship [53]: A relation reasoning module. It con-

catenates image features and text features, followed by
an MLP to obtain a compositional embedding.

• FiLM [49]: A feature-wise linear modulation module. It
learns affine transformation layers to modulate the image
features based on the text features.

• MRN [27]: A multimodal fusion module. It fuses the
image and text features through three blocks of element-
wise multiplication and residual learning.

• TIRG [60]: An multimodal composition module. It com-
poses image and text features by concatenation, followed
by a gating function and a residual connection for fusion.

• PCME + addition [12]: It uses the same probabilistic em-
beddings in Eq. 1. For composition, we add the two
probabilistic embeddings directly, as defined below.

X ∼ N (µ1,Σ1);Y ∼ N (µ2,Σ2)

X + Y ∼ N (µ1 + µ2,Σ1 +Σ2) = N (µc,Σc)
(9)

Discussion. Except for PCME, the other methods above
were specifically designed to combine deterministic image
and text features (either for VQA or for image search with
text feedback). Our method is designed to leverage prob-
abilistic embeddings and combine them in a way in which
we can capture the polysemantic nature of the data. Our
composition method is also agnostic of the input modality
or the number of queries which allows us to combine any

type of multimodal input. In our experiments, we repro-
duce the existing methods using the same ResNet backbone
and pre-trained word embeddings for fair comparisons.
Quantitative results. As mentioned in Section 4.1, we test
various setups, including different input modalities, seen vs
unseen compositions, and varying number of inputs. We
present our experimental results on these setups below.
Seen compositions with two inputs. Table 1 shows our
experimental results on composing two queries for multi-
modal image retrieval, where the model is tested on com-
positions seen during training. As can be seen, when given
an arbitrary combination of the input modalities (i.e. im-
ages only, multimodal queries, texts only), we can observe
that our model MPC outperforms the other competitors with
substantial margins. On the compositions of image inputs,
our MPC obtains a R@5 of 27.32% vs 21.98% by the best
competitor TIRG. On the compositions of multimodal in-
puts, MPC obtains a R@5 of 37.76% vs 24.59% by the best
competitor MRN. On the compositions of text inputs, MPC
surpasses the best competitor TIRG by a margin of 24.53%
(59.32-34.79). Overall, our results show that MPC outper-
forms the other methods significantly, which indicates its
strong generalization to digest an arbitrary combination of
different input modalities for image retrieval.
Seen compositions with three inputs. Table 2 presents our
experimental results on composing three queries for image
retrieval, where we also test combinations of different input
modalities. As shown, our MPC achieves the best perfor-
mance on the compositions of multimodal and text-only in-
puts, obtaining R@5 of 19.26%/32.52% vs 17.63%/25.16%
by the best competitor MRN. Although MPC does not sur-
pass MRN on the compositions of image-only inputs, its
performance is quite close to MRN, obtaining a R@5 of
8.90% vs 9.89% by MRN. From Table 1 and Table 2, we ob-
serve that while the other methods could perform robustly
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Figure 3. Qualitative results of various types of multimodal queries: (a) image + image, (b) image + text, (c) text + text, (d) image + image
+ image / text + image + text. For each example, we show the top 3 retrieved images and highlight the groundtruth with a green box.

Method
average

R@5 R@10 R P
MRN 6.24 9.77 1.16
TIRG 14.34 21.28 3.58
PCME + addition 19.27 27.80 4.40

MPC 26.11 37.41 6.05
Table 3. Evaluation of composing two queries for image retrieval
on a unseen composition setup.

well under different setups, MPC obtains the best overall
model performance in varying number of inputs (2 or 3) and
in different combinations of input modalities (image-only,
text-only, or multimodal). Moreover, MPC surpasses oth-
ers with great margins in handling text-only queries, thanks
to the fact that it probabilistic nature can well capture the
polysemantic semantics of words.
Unseen compositions. We further test a challenging setup
with unseen compositions – in similar spirit to composi-
tional zero-shot learning [52], we consider the compositions
of semantic concepts encountered at test time are unseen
during training. Table 3 shows the averaged results reported
over all possible combinations of two input modalities (i.e.
images only, texts only, multimodal queries), in compari-
son to three best competitors: MRN, TIRG, PCME + ad-
dition. We find that MPC outperforms other methods sig-
nificantly, obtaining a R P of 6.05 vs 4.40 by the best com-
petitor PCME + addition. Overall, these results suggest that
MPC generalizes well at test time to digest unseen compo-
sitions of semantic concepts specified in queries.
Qualitative results. Figure 3 shows the qualitative image
retrieval results using a composite set of queries in different
modalities. When given two inputs in arbitrary modalities
(see (a), (b), (c)), our model can retrieve the images that
contain the set of semantic concepts specified in the input,
e.g. in the second example in (b), “broccoli” image and
“carrot” text are composed to retrieve a dish with both con-
cepts. When given three inputs (see (d)), our model can
discover the images that cover the multiple semantic con-
cepts specified in the input. Another interesting observation

Method
average

R@5 R@10 R P
MPC w/o Eq. 2 15.40 24.17 3.43
MPC w/o Eq. 6 30.26 38.62 8.05
MPC 40.54 50.60 10.02

Table 4. Ablation study on our multimodal probabilistic composer.

is that when given text queries, we find that our model is
capable of capturing their polysemantic nature, e.g. ”clock”
may refer to a wall clock, but when composed with ”bus”,
its semantic meaning becomes a clock tower, as shown in
the 3 retrieved images in the first example in (c).

4.3. Model Analysis

Generalization to more complex compositions. As mo-
tivated, one uniqueness of our work is that we consider
compositions upon an arbitrary number of queries. To test
the generalization to handle an increasing number of inputs
without additional training, we evaluate our model and three
best competitors by training on compositions of 2 inputs and
testing on compositions of 2, 3, 4 inputs. The more inputs
are composed, the more challenging the task is, as the model
needs to retrieve images that match all query concepts at
once. Figure 4 shows that under the varying number of in-
puts, our MPC maintains the best model performance un-
der different combinations of input modalities. It is worth
noting that the performance of non-probabilistic methods
(MRN, TIRG) degrade to almost random guess (≈0% in
R@5) when increasing the number of queries from 2 to 4. In
contrast, the probabilistic methods (our MPC, PCME + ad-
dition) are able to retain a relatively reasonable model per-
formance even when increasing the number of inputs to 3 or
4 without additional training. Overall, these results indicate
that the probabilistic nature of our model helps to encode
richer semantics and interactions between different seman-
tic concepts, which strengthens its capability of composing
an flexible amount of queries for image retrieval.
Ablation study. To gain insights of our model, we analyze
the following two components: our probabilistic composer
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Figure 4. Evaluation of composing an increasing number of multimodal queries for image retrieval. All methods are trained to compose
2 inputs but tested to compose an increasing number of queries (i.e. 2, 3, 4). (a), (b), (c) show results on different combinations of input
modalities. Note: as we increase the number of queries, the task difficulty is also increased. Numerical results are in the supplementary.

(Eq. 2) and our probabilistic similarity function (Eq. 6).
First, we compare our proposed probabilistic composer (Eq.
2, Eq. 3) with a baseline “MPC w/o Eq. 2” that fuses two
embeddings by MLPs: [µc, σ

2
c ] = fMLP([µ1, σ

2
1 , µ2, σ

2
2 ]).

Second, we compare our proposed probabilistic similarity
function (Eq. 6) with a baseline ‘MPC w/o Eq. 2” that
uses an existing similarity function (Eq. 5). Table 4 re-
ports the averaged results over different combinations of in-
put modalities. When comparing MPC and “MPC w/o Eq.
2”, we find that the model performance degrades signifi-
cantly from 40.54% to 15.40% in R@5. This suggests that
our probabilistic composer works much more effectively
compared to simple composition with MLPs, owing to the
rich inductive bias induced by our probabilistic composer.
When comparing MPC and “MPC w/o Eq. 6”, we find that
the model performance also decreases substantially from
40.54% to 30.26% in R@5. This indicates that our prob-
abilistic similarity function offers a better estimated simi-
larity as compared to the other similarity function, making
our model converge well and learn a better embedding.

Probabilistic uncertainty for discriminating feasibility.
The probabilistic nature of our model allows encoding both
semantics and uncertainties for given inputs; while the un-
certainty score of a probabilistic compositional embedding
can be naturally used to indicate the feasibility in compo-
sitions – it is feasible to compose “broccoli” and “carrot”
as they can appear together in a dish; but it is infeasible to
compose “broccoli” and “piano”as they rarely appear to-
gether in real-world images. To utilize probabilistic un-
certainty for discriminating feasibility, we use the Monte-
Carlo estimation to derive uncertainty same as [45]. For
non-probabilistic models, we use the distance between two
embeddings as the uncertainty score. We construct the fea-
sible and infeasible sets of inputs based on their existence
in MS-COCO dataset, where the feasible sets may be seen
or unseen during training. We test the binary discrimina-
tion of feasibility based on ROC curve [15]. Figure 5 shows
the comparison between MPC and the top competitors. We
find that the probabilistic models (MPC, PCME + addi-
tion) obtain much higher AUC scores compared to the non-
probabilistic models (TIRG, MRN); while our MPC obtains

Figure 5. The ROC curves and their AUC scores (area under curve,
higher is better) for discriminating feasibility in compositions.

the best AUC of 0.96 among all methods. These results sug-
gest that the uncertainty derived from MPC serves as a supe-
rior indicator for discriminating feasibility in compositions.

5. Conclusion and Future Work

In this work, we explored a new compositional learning
paradigm for multimodal image retrieval. We established
a new benchmark for multimodal image retrieval based on
MS-COCO dataset, which poses a new challenge of com-
posing a flexible amount of queries given in arbitrary visual
and (or) textual modalities. To tackle this challenge, we pro-
posed a novel multimodal probabilistic composer that learns
probabilistic embeddings and composes embeddings based
on a parametric probabilistic rule. We formulated a proba-
bilistic composer and a probabilistic similarity function to
learn informative compositional embeddings. We demon-
strated the superiority of our model compared to multiple
existing methods under a diverse set of evaluation setups.

Our model has shown its efficacy; however, there are still
critical research problems to be solved for the new chal-
lenge posed in this work, such as considering more com-
plex natural language queries, and ensuring model robust-
ness when increasing the number of inputs. Moreover, to
bring a positive societal impact, we also need to consider
issues such as algorithmic biases and fairness when deploy-
ing our model to real-world search engines.
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