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Dan Oneat, ă Horia Cucu
Speech and Dialogue Research Laboratory

University POLITEHNICA of Bucharest, Romania
dan.oneata@speed.pub.ro

Abstract

Multimodal speech recognition aims to improve the per-
formance of automatic speech recognition (ASR) systems
by leveraging additional visual information that is usually
associated to the audio input. While previous approaches
make crucial use of strong visual representations, e.g. by fine-
tuning pretrained image recognition networks, significantly
less attention has been paid to its counterpart: the speech
component. In this work, we investigate ways of improv-
ing the base speech recognition system by following similar
techniques to the ones used for the visual encoder, namely,
transferring representations and data augmentation. First,
we show that starting from a pretrained ASR significantly
improves the state-of-the-art performance; remarkably, even
when building upon a strong unimodal system, we still find
gains by including the visual modality. Second, we employ
speech data augmentation techniques to encourage the mul-
timodal system to attend to the visual stimuli. This technique
replaces previously used word masking and comes with the
benefits of being conceptually simpler and yielding consis-
tent improvements in the multimodal setting. We provide
empirical results on three multimodal datasets, including the
newly introduced Localized Narratives.

1. Introduction
With the advent of video sharing platforms (such as

YouTube or Vimeo), multimodal data involving audio, visual
and language are becoming ubiquitous. In many types of
video, such as instructional videos, documentaries, movies,
what is spoken is related (grounded) to the visual channel.
In this paper we build upon this observation and address the
task of automatic speech recognition in the context of visual
information, also known as multimodal speech recognition.
Concretely, we assume that we have two inputs (the acoustic
signal and a related visual modality, such as a video or an
image) and we want to output the transcription of the input
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Figure 1. Overview of a multimodal speech recognition system.
Compared to traditional speech recognition, which generates tran-
scriptions based solely on audio input, the multimodal setting in-
volves using an additional input corresponding to the visual stream
(e.g., image or video). The main motivation of this setup is that
the visual information is often associated with audio (as encoun-
tered in instructional videos, documentaries, movies) and it can
help disambiguate the audio recording, consequently, producing
more accurate transcriptions. In this paper, we investigate ways of
improving the multimodal system by focusing on the audio encoder
and its fusion with the visual encoder.

utterance. The setup is illustrated in Figure 1.
The recent work on multimodal speech recognition makes

crucial use of deep end-to-end architectures [2, 4, 27, 29, 38–
40]. We follow their suite and develop an end-to-end mul-
timodal speech recognition system. Compared to previous
work, we first experiment with two fusion mechanisms for
combining the audio and visual modalities—either concate-
nation along the embedding dimension or concatenation
along the temporal dimension. Second, and more impor-
tantly, we improve the pipeline by focusing on the speech
component by (i) transferring pretrained speech representa-
tions and (ii) performing audio-level data augmentations.

Transferring representations. All recent papers on mul-
timodal speech recognition transfer visual representations,
obtained as activations or softmax predictions of a pretrained
visual classification network. Depending on the training
classes (objects, as in [22,27,39,41]; scenes, as in [5,21,38];
actions, as in [2, 21, 29]; faces, as in [21, 23]), the visual
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encoder is more sensible to pick up certain types of visual in-
formation. However, none of these prior works make use of
pretrained speech representations. In this paper we not only
show the importance of starting from a good representation
for both the audio and visual channels, but crucially we pro-
vide an answer to question of whether the visual information
is helpful for a stronger baseline system.

Data augmentation. Augmenting the training set with
perturbed samples is a common technique to enforce in-
variants for high-capacity deep learning models. For image
classification, images are altered by horizontal flips and
small affine transformations, while for speech recognition
the speed of an utterance is modified by time warping. We
use these ideas, in particular those related to speech augmen-
tation, to improve the multimodal models. Our intuition is
that perturbing the audio signal will make the model more
reliant on the visual channel. The inspiration stems from
the work of Srinivasan et al. [37, 39] which have shown that
multimodal models improve over the baseline ASR even
when audio-image pairs are mismatched (incongruent) [37],
but if the multimodal models were trained on masked audio
signals, this behaviour is alleviated [38]. Compared to the
previous approaches [37–39], we do not limit ourselves to
temporal masking of words, but randomly mask temporal
and frequency segments, as in [30]; as a consequence our
approach is more general and convenient to use. Another
key distinction is that we do not carry the evaluation on the
masked data, but consider the more realistic scenario of as-
suming clean speech at test time and performing alterations
only at train time.

Apart from the two main contributions of transfer learning
and data augmentation, we also explore fusion techniques
for the audio and visual modalities. Concretely, we propose
two options: fusing the embeddings a) along the feature di-
mension and b) along the temporal dimension. All these set-
tings are empirically evaluated on three multimodal speech
recognition datasets. We report state-of-the-art performance
on the commonly-used Flickr8K and How2 datasets, and
new results on the recently introduced Localized Narratives
dataset.

2. Related work
In this section we discuss the main categories of multi-

modal models and present our task in the context of related
problems.

A taxonomy of multimodal models. Perhaps unsurpris-
ingly, the techniques for multimodal speech recognition have
been following the trends in speech processing and computer
vision. Based on the choices of the two main components
(namely, the audio and visual pipelines), we distinguish three
types of systems.

The first approaches [3, 25] date back to the 2000s and
rely on the Hidden Markov Models and Gaussian Mixture

Models (the HMM-GMM paradigm) for speech recognition
and hand-crafted features for the visual channel. These meth-
ods also assumed more constrained and simplified settings
to account for the lack of data.

The second category of multimodal systems [5, 21, 22, 26,
41] uses Hidden Markov Models and Deep Neural Networks
(the HMM-DNN paradigm) for speech recognition, while
the visual component relies on pretrained networks. While
many of these approaches fuse the two components at the last
stage (language modeling) [5,22,26,41], a notable exception
is the work of Miao et al. [21], which advocates for early
fusion, at the audio level, based on the observation that the
acoustic conditions can correlate with the visual context.

Finally, the latest type of models leverage recent devel-
opments in end-to-end architectures and training [2, 4, 27,
29, 38–40]. For the audio part, the most common model in-
volves recurrent networks for encoder and decoders, coupled
through an attention mechanism, but other variants include
using a connectionist temporal classification (CTC) model
(as done in [27]) or the Transformer architecture, which in-
volves attention-only layers (as done in [29]). Various fusion
levels have been explored: encoder, decoder, and also at
acoustic level. Of course these can be combined as done by
Caglayan et al. [2].

Our approach falls into the latter category, of end-to-
end architectures. We share similarities to the work of
Paraskevopoulos et al. [29], in that we employ Transformer
architecture and sub-word modeling, however our base
speech recognition system is much stronger and we focus
our empirical evaluation on the importance of transfered
representations.

Related tasks. We distinguish our work from two closely
related tasks, which also make use of audio and visual in-
put modalities. A first task is audio-visual speech recogni-
tion [1, 20, 24, 31], which also attempts to improve speech
recognition, but it uses lip movement information. A key dif-
ference to our methodology is that for the lip-based recogni-
tion there is a much tighter (although arguably more difficult
to model) relation between the video and the transcriptions,
while for multimodal speech recognition, the relationship
is at a semantic level and might affect only a few words,
which have visual grounding. Among the methods applied
for this problem, the closest to our approach is the parallel
work of Ma et al. [20], which also employs pretrained audio
representations and data augmentations. A second related
task is learning audio-visual correspondences, but without
depending on the textual annotations. This formulation has
the advantage of relying on less supervision and finds many
uses, such as representation learning [6, 9], learning linguis-
tic units [7], semantic keyword spotting [14], speech-based
image retrieval [8, 9, 42] and speech-based object localiza-
tion [8].
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3. Methodology
In speech recognition, an audio input a is mapped to

a transcription t, usually represented as a sequence of to-
kens. In the usual encoder-decoder instantiation the out-
put is obtained by composing the two components: t =
Dec(Enc(a)). In the case of multimodal speech recognition,
we assume that we have access to an additional input—the
visual channel v. The visual information is processed by a
separate encoder, Encv, and integrated into the network by
a fusion function, which we denote by “▷◁”:

t = Dec(Enc(a) ▷◁ Encv(v)).

Next, we discuss each of the components: speech encoder
and decoder in §3.1, visual encoder in §3.2, fusion in §3.3.

3.1. Speech recognition system

The backbone of the multimodal system the is an end-to-
end automatic speech recognition system. We use a Trans-
former network, which is based on self-attention modules
for the encoder and attention modules in the decoder to
pool information from the audio stream. The network pre-
dicts tokens in an autoregressive fashion, by modelling the
probability of the next token given the audio and previously
predicted tokens, p(tk|t<k,a).

Transfer learning. Instead of starting the training of
the multimodal speech recognition system from scratch, we
explore initializing the speech components (encoder and
decoder) from a pretrained speech recognition model. The
base system is a pretrained ASR system on a large unimodal
dataset, the LibriSpeech corpus [28], whose weigths we
transfer and then adapt on the target multimodal dataset via
finetuning.

Data augmentations. We extend the set of speech sam-
ples with perturbed versions of the signal in order to make
the system more robust and to encourage the decoder to at-
tend to the visual component. The augmentations are based
on SpecAugment [30] and include time warping, frequency
masking and time masking. The same transformations were
used for training the base unimodal system on LibriSpeech
and we also apply them when training the multimodal system.
Previous approaches [37, 38, 40] used temporal masking, but
in their case the removed segments corresponded to words
(such as nouns and places). As such, these methods rely
on additional components such as audio-text alignment and
part-of-speech tagging, while our approach is unstructured
and, consequently, free of these dependencies. Moreover,
these methods investigated masking with a different goal in
mind (not as a data augmentation technique): to quantify
how well the visual component is able to retrieve the masked
words at test time.

3.2. Visual encoder

The visual encoder summarizes the information present
at the input of the visual channel. We assume an image at
input and build upon the popular ResNet architecture [10],
which was also used in previous works on multimodal speech
recognition, e.g., [2,37,38]. The visual encoder is initialized
with the weights of a pretrained model on the ImageNet
dataset [34] and uses intermediate network activations as its
encoding. Depending at which layer we take the activations,
we obtain either (i) a single feature vector or (ii) a sequence
of feature vectors. Concretely, the activations before the soft-
max layer (and after the global average pooling layer) yield a
single fixed-sized vector, which encodes global information
from the entire image. If we take the activations from one
layer before (that is, before the global average pooling layer),
we obtain a 7 × 7 grid of embeddings, which we sequence
as a list of K = 49 embeddings. This second approach en-
codes more local information, which we hope will allow the
model to use more fine-grained characteristics of the image.
On top of the sequence of embeddings we optionally learn
layers of gated multilayer perceptrons (gMLP) [19], a re-
cently introduced substitute for self-attention layers, which
alternates channel-wise with sequence-wise dense layers.
Compared to the attention layer, the gMLP architecture re-
quires less computation and memory, while still maintaining
the performance.

Relation to prior work. Most of prior work uses a single
global feature vector to encode the visual information, some
notable exceptions being [29] and [40]. The method in [29]
works on video sequences and extracts a feature vector for
each video frame, while in [39] the authors extract ResNet
features for K = 16 object proposals obtained from a detec-
tion network. Compared to the latter approach, our approach
does not require a pretrained detection module and hence is
simpler and can be trained with less supervision.

3.3. Fusion mechanisms

Our fusion techniques combine the speech and visual em-
beddings (as produced by each of the two encoders) before
feeding them into the decoder. In the following we assume
that speech embeddings have dimension Da × T , while vi-
sual embeddings have dimension Dv ×K (the second axis,
of length K, can correspond to a list of boxes in an image or
a list of frames in a video). We experiment with two fusion
approaches, either along the embedding dimension (emb)
or along the sequence dimensions (seq); these two variants
are illustrated in Figure 2. The choice of fusion is also in-
fluenced by the visual encoder: if we represent the visual
input with a single feature vector (K = 1) it is possible to
concatenate along the embedding dimension, while if we
use a list of visual features (K > 1) then the concatenation
along the sequence dimension is more suitable.

Fusing along the embedding dimension (emb). In this
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Figure 2. The two proposed fusion mechanisms of the audio and visual modalities: emb, fuses along the embedding dimension (left); seq,
fuses along the sequence dimension (right). Additional operations (dense projection, denoted by π; repeat operation, denoted by ρ) ensure
matching dimensions and better adapted embeddings; the subscript (D or T ) indicates the axis along which each transformation is applied
(embedding dimension or sequence dimension). The symbol “▷◁” denotes concatenation.

case we fuse the speech and visual features along the dimen-
sion of the embeddings. More precisely, we first project the
two inputs to new subspaces (of dimension Da′ and Dv′ ,
respectively), replicate the visual embedding T times, then
we concatenate the two representations and, finally, project
the output to have dimension Da. In this case, the fusion
procedure outputs a matrix of the same size as the input
speech matrix, Da × T . Retaining the original dimension
has a number of advantages: it allows us to maintain the
same decoder size as in the unimodal case (enabling transfer
learning and fairer comparisons) and to use residual connec-
tions (from speech to the fused features), which are known
to help learning.

Fusing along the sequence dimension (seq). When the
embeddings of the two input modalities are both sequences,
it makes sense to concatenate the visual and speech fea-
tures along the sequence dimension (temporal for speech
and patch-wise for the image). As the decoder attends along
sequential dimension of the input, this operation will become
more expensive after the fusion. However, the seq fusion has
the advantage of being more flexible than the emb variant,
since the decoder has the option of pooling separately the
audio and visual features, without mixing the two.

Relation to previous work. Many of the previous ap-
proaches were based on recurrent networks and the common
ways of incorporating the visual context were (i) to set the
first decoded “word” as the visual embedding [22, 41], or
(ii) to initialize the hidden state of the recurrence with the
visual embedding [2]. Another method, encountered espe-
cially for adapting acoustic features, was visual adaptive
training [21, 27], which amounts to applying a linear trans-
formation parameterized by the visual encoding. While
concatenation of features was previously employed [21, 27]
it was not used in the context of Transformer architectures.
When the visual information is a sequence, attention-based
methods are a popular choice [4, 29, 39]. All these meth-
ods pool independently across the audio and visual streams,
whereas in our case the seq method pools over both of them

simultaneously. The methods in [4, 39] attend to the visual
sequence based on the previously decoded word (as we do),
while [29] pools based on the audio. The main distinction be-
tween [4] and [39] is that the former simply concatenates the
two pooled representations, while the latter predicts which
of the two modalities (visual or audio) should be preferred
through a second, hierarchical attention layer.

4. Experimental setup
In this section we present the experimental setup, includ-

ing the multimodal datasets (§4.1) and additional implemen-
tation details (§4.2).

4.1. Datasets

We carry out the evaluation on three datasets that contain
the three desired modalities (audio, visual, language).

Flickr8K [6, 11] consists of 8K images, each described
by five captions. The original dataset [11] contained only
the visual and language modalities, and it was later extended
with audio recordings of the read captions by [6].

How2 [36] contains instructional videos downloaded
from YouTube and comes with additional shot information
and transcriptions. We use the 300h variant, which totals
around 13.5K videos (190K shots). The dataset consists of
pre-extracted audio and visual features, but, in order to use
pretrained models, we had to use the original videos; the raw
data was kindly provided by the authors, upon request.

Localized Narratives [32] is a recently introduced
dataset, that extends four popular image datasets (Flickr30K
[45], COCO [18], ADE20K [46], Open Images [17]) with
new captions, audio recordings and mouse traces (which
locate the spoken words in the image). Compared to the
original datasets, the captions are richer and the audio com-
ponent is challenging due to noisy recording conditions and
accented speech. We use this dataset to carry out an ablation
study. In order to be able to perform such extensive studies
we (i) use only the Flickr30K part, (ii) segment the audio into
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sentences (based on the provided transcripts), (iii) remove
utterances longer than 15 seconds, (iv) subsample half of
the utterances. This procedure is applied on all three splits
(training, validation, testing) and yields around 32K, 1K, 1K
samples, respectively.

4.2. Implementation details

Our implementation is based on the ESPnet framework
[43] and the code is available online.1

The speech recognition component is a Transformer ar-
chitecture and is pretrained on the LibriSpeech dataset [28];
this model achieves 2.6% word error rate on the LibriSpeech
clean test set and 6.0% on the LibriSpeech other test set.
The audio encoder has 18 blocks and outputs embeddings
with size 512, while the decoder has six layers and outputs to-
kens from a vocabulary with 5000 elements. The vocabulary
was obtained by subword segmentation using an unigram
language model [16]; we don’t use an external language
model. For finetuning, we train for 50 epochs for the smaller
datasets (Flickr8K and Localized Narratives) and 30 epochs
for the larger dataset (How2). For optimization, the learning
rate is warmed up linearly from 3.2 × 10−8 to 8 × 10−4

over 25K batches, after which it is decreased as a function
of 1/s2 in the step number s. At test time, we predict using
a model whose weights are set to the average of the ten best
checkpoints encountered during training; this technique is
applied to all of our reported results and it yields small but
consistent improvements (around 5% relative improvement)
over predicting with only the best model.

The visual encoder is a ResNet architecture with either
18 or 50 layers, pretrained on the ImageNet dataset [34],
yielding 512 or 2048-dimensional embeddings, respectively.
The input image is rescaled to 224 × 224 pixels and stan-
dardized using the ImageNet statistics. We perform image
data augmentation by random horizontal flipping. The How2
dataset contains video, but since our visual embedding works
on images, we use only the middle frame. As the videos
are shots and hence stable in terms of viewpoint change, we
expect a single frame to encode enough information.

For the emb fusion variant we project both the audio
and visual embeddings to a 128-dimensional space. For the
seq variant we use two gMLP layers on top of the visual
embeddings, as this choice gave slightly better results than
the alternatives of using zero or one layer.

5. Experiments
This section presents the empirical evaluation of the pro-

posed methodology. First, in §5.1 we compare our best
unimodal and multimodal systems to baseline and state-of-
the-art approaches. Second, in §5.2 we present an ablation

1https://github.com/danoneata/espnet/tree/
multimodal-asr/egs2/vorbis

method visual fuse Flickr8K How2 Loc. Nar.

[41]
14.8 — —

✓ 13.8 — —

[39]
13.6 — —

✓ 14.1 — —

[29]
— 19.2 —

✓ — 18.4 —

[4]
— 17.7 —

✓ — 17.2 —

pretrain 11.1 26.9 49.3
finetune 3.8 11.8 4.3
finetune ✓ emb 4.3 11.1 3.9
finetune ✓ seq 4.7 10.8 4.0

Table 1. Comparison to state-of-the-art approaches on the test
sets of three multimodal datasets (Flickr8K, How2 and Localized
Narratives) in terms of word error rate (lower values are better).
Visual indicates those variants that use the visual channel as input
in addition to the speech.

study over the main individual contributions: transfer learn-
ing and data augmentations.

5.1. Main results

Table 1 presents speech recognition performance for four
of our systems: two unimodal variants (a pretrained ASR,
used as a baseline, and its finetuned counterpart based on
adapting the pretrained method on each dataset) and two mul-
timodal variants (both trained by finetuning all components,
but differing in the fusion techniques, emb or seq, as de-
scribed in §3.3). Both multimodal methods use the SpecAug-
ment data augmentation and a ResNet with 50 layers as the
visual encoder. We compare our approaches to state-of-the-
art methods. Previous studies evaluate usually on a single
dataset, for example, Flickr8K [39,41] or How2 [4,29], while
we report performance on three datasets: the two aforemen-
tioned ones and Localized Narratives (on which we are the
first to report multimodal speech recognition performance).

We observe that the pretrained method already improves
over previous work on Flickr8K, although its results are
poorer on How2 and Localized Narratives due to data mis-
match. However, by finetuning, the speech-only unimodal
system significantly outperforms the current state-of-the-art,
yielding relative improvements of 72% and 31% on Flickr8K
and How2, respectively. The results for the multimodal sys-
tems, which include the visual information, are better than
the unimodal results in the case of How2 and Localized
Narratives dataset; for Flickr8K it is difficult to improve
presumably because it is a clean dataset for which the ASR
already works well and many of its errors are not visually
grounded. Among the two fusing methods the results are
mixed, the fusion along the embedding dimension, emb,
being the better method on two of the three datasets.
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visual fuse aug. Flickr8K How2 Loc. Nar.

— 3.8 11.8 4.3
— ✓ 4.2 11.2 4.5

✓ emb 4.8 11.8 4.1
✓ emb ✓ 4.3 11.1 3.9

✓ seq 4.0 11.8 4.2
✓ seq ✓ 4.7 10.8 4.0

Table 2. Evaluation of the impact of audio augmentations (aug.) on
the test sets of the three multimodal datasets in terms of word error
rate. All models are finetuned and the multimodal variants use the
ResNet50 as visual encoder.

5.2. Ablation studies

In this subsection we carry two main ablation studies to
better understand the impact of data augmentation and the
importance of transferring representations.

Data augmentations. We evaluate the impact of the
SpecAugment data augmentation technique in three scenar-
ios: for the unimodal system and for the two multimodal
variants using the two feature fusion techniques (emb and
seq). For all cases, we perform finetuning of all components
and for the visual-based systems we use the 50-layer ResNet.

Table 2 reveals that speech data augmentation is important
for the multimodal systems, yielding improvements in five
out of the six cases. These results suggest that perturbing the
audio signal might help the multimodal models rely more
on the visual encoder and eventually produce better results.
Surprisingly, the unimodal variants have seen little benefit
from data augmentation, with the exception of the results on
the How2 dataset.

Transferring representations. We conduct an exten-
sive ablation study over the impact of initialization (random
or pretrained) and training procedure (fixed or finetuned
weights) for each of the components of the model (audio
encoder, visual encoder, decoder). These experiments are
carried on the Localized Narratives dataset and for the multi-
modal setting we use only the emb fusing method. Addition-
ally, we investigate the impact of visual encoder’s capacity
by varying the number of layers in the ResNet architecture:
18 or 50. The results are presented in Table 3.

Rows 1–5 show the results for the unimodal system, cor-
responding to a standard, speech-only ASR. We observe
that the pretrained variant, without any finetuning (row 1)
is underperforming, most likely, due to the large mismatch
in both terms of audio (speech is noisy and accented) and
language data. On the other hand, ignoring the availability of
pretrained representations (row 2) is also not ideal: training
the network from scratch, as is customary done in previous
works, produces better, but still unsatisfactory transcriptions.
Rows 3 and 4 show the results for the case when the encoder

is fixed and the decoder is trained: either from scratch (row
3) or by finetuning the pretrained weights (row 4). Since the
decoder of an end-to-end ASR model plays also the role of a
language model, this procedure is akin to language adapta-
tion and results in significant boosts in performance for both
variants. Finally, finetuning both components (row 5) yields
the best results, with a relative improvement of around 30%.

Rows 6–13 present the results for the multimodal sys-
tems, using a visual encoder with 18 (rows 6–9) or 50 layers
(rows 10–13). For this set of experiments, we use only with
the finetuning approach, as the results of the unimodal sys-
tem have showed that this technique is superior. We also
always adapt the decoder because the speech-vision fusion
affects the distribution of features. Note that the fused fea-
tures are projected to the same embedding dimension as the
speech features, which enables sharing the pretrained de-
coder weights. The projection layers in the fusion layer are
always trainable.

We first note that including visual information improves
over the single-stream system in all scenarios: either if we
keep the encoders fixed (rows 6 and 10 vs row 4) or if we
finetune the encoders (rows 9 and 13 vs row 5). Second, we
observe that we obtain better results as we allow for more
components to be finetuned, with the last column indicating
a correlation between the number of trainable parameters
and the performance. The best results are achieved when
finetuning all components (rows 9 and 13). Finally, increas-
ing the capacity of the visual encoder yields similar results.
We do see slight improvements for the cases when we fine-
tune the speech encoder (row 12 vs row 8; row 13 vs row 9),
potentially suggesting the coupling between the two modali-
ties needs to be accounted also by the encoders and not only
the decoders.

5.3. Qualitative results

In this subsection we present a series of qualitative exam-
ples to contrast the output of the unimodal system with the
one of the multimodal system. The results are provided on
the How2 dataset using models trained in the finetune regime
and using data augmentation; for the multimodal model we
used the emb fusing method and the ResNet50 visual en-
coder. Table 4 shows nine samples where the two systems
differ in their predictions, but at least one agrees with the
groundtruth transcriptions: for the first two rows the multi-
modal system is correct, while in the last row the unimodal
system is correct. The first four examples are cases where
the multimodal system correctly chooses between phoneti-
cally similar words, for example, it corrects “eight” to “egg”,
“would” to “wood”, “shock on” to “shotgun”, “vile” to “vial”.
While these examples suggest that the visual context helps
the transcription, the rest of the samples are more difficult to
interpret.
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audio encoder visual encoder decoder
WER (%)

num. trainable
params (×106)init train init train network init train

1 á � — — — á � 49.3 0
2 ù � — — — ù � 22.5 99.4
3 á � — — — ù � 9.1 32.9
4 á � — — — á � 6.3 32.9
5 á � — — — á � 4.3 99.4

6 á � á � ResNet18 á � 5.8 33.2
7 á � á � ResNet18 á � 5.5 44.4
8 á � á � ResNet18 á � 4.3 99.6
9 á � á � ResNet18 á � 4.2 110.8

10 á � á � ResNet50 á � 5.9 33.4
11 á � á � ResNet50 á � 5.6 56.9
12 á � á � ResNet50 á � 4.1 99.8
13 á � á � ResNet50 á � 4.1 123.3

Table 3. Transferring representations—evaluation on the test set of the Localized Narratives dataset. For each of the three components of the
model (audio encoder, visual encoder, decoder), we indicate how the model’s weights are initialized (either random ù or shared from a
pretrained model á) and trained (either fixed � or finetuned �). For each setting we report the word error rate (WER) and the number of
trainable parameters. The visual information is fused with the emb method. For these experiments, we did not use audio augmentation.

5.4. Discussion and limitations

We discuss two potential limitations of our work. These
shortcomings stem from the nature of the problem, which
involves a modality (the audio input) that dominates the other
(the visual input).

Limited potential improvements. We have seen that
the results usually improve under the multimodal setting, but
a possible criticism of our work could be that the gains are
not significant. However, our results are in line with prior
art (see Table 1), which works in a more favourable setup as
their multimodal variants have more scope for improvement.
Moreover, we believe that it is difficult to obtain considerably
larger improvements in the current setting. While accurately
quantifying the upper bound of the multimodal performance
is a difficult task, we manually inspect the most common
mistakes that occur in the unimodal setting (we consider
the How2 dataset and the unimodal method trained with the
finetune option and using data augmentation). We observe
that many of the most frequent mistakes involve short words
that correspond to prepositions, pronouns, indeterminates
(such as “and”, “to”, “you”, “I”, “the”, “a”, “that”), which
are either erroneously inserted or missed in the automated
transcription. These types of mistakes are difficult to correct
by the visual modality since they don’t have visual ground-
ing. In the tail of the distribution we find mistakes that have
visual context, such as the pairs presented in the qualita-
tive results or substitution mistakes such as “cymbal” →
“symbol”, “sprite” → “sprayed”, “bow” → “boat” or “both”.
However, this type of errors are in minority, indicating that
substantial improvements are difficult to achieve.

On the rôle of the visual modality. The qualitative re-
sults indicate that there are still cases for which it remains
unclear how the multimodal system uses the visual com-
ponent. Previous work in the context of both multimodal
speech recognition [37] and multimodal machine transla-
tion [44] have observed that the visual channel helps in
unexpected ways. In particular, Wu et al. [44] suggest that
the visual branch plays the role of a regularizer and is not
necessarily injecting useful information into the system. In
our case, while we believe that the proposed speech data
augmentation may alleviate the issue to some extent, its ef-
fect may remain still insufficient. We conjecture that the
problem lies in the loose coupling of the input modalities.
A possible solution for a more pervasive fusion would be
pretraining a self-supervised audio-visual model on large
quantities of data. Such audio-visual systems are becom-
ing common place, but they were not usually applied in the
multimodal speech recognition setting. The closest works in
this direction are the ones of Hsu et al. [12], which uses the
pretrained audio-visual representations for unimodal speech
recognition, and Rouditchenko et al. [33], which performs
multimodal text retrieval.

6. Conclusions
In this paper, we extend and build upon state-of-the-art

approaches for multimodal speech recognition. We employ a
Transformer ASR architecture as a baseline system in which
we inject visual information through a ResNet image encoder.
In contrast to the previous methods, we leverage pretrained
representations for both the speech and visual channels, and
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r · mix it up really good because that egg white
is thick it’s really thick

r · and spalting is nothing more than the natural
decay process that wood goes through

r · so we can either take the fiber wire or use the
shotgun or use the pistol that we picked up

u · mix it up really good because that eight white
is thick it’s really thick

u · and spalting is nothing more than the natural
decay process that would goes through

u · so we can either take the fiber wire or use the
shock on or use the pistol that we picked up

m · mix it up really good because that egg white
is thick it’s really thick

m · and spalting is nothing more than the natural
decay process that wood goes through

m · so we can either take the fiber wire or use
the shotgun or use the pistol that we picked up

r · so each vial here is actually one use r · that’s just a long road r · never leave your person on their back
u · so each vile here is actually one use u · that is just a long row u · never leave your person on your on their back
m · so each vial here is actually one use m · that’s just a long road m · never leave your person on their back

r · here’s an example of a nicely bound script r · i just took our salad out of the refrigerator r · five more keep breathing deep expanding
u · here’s an example of a nicely bound script u · i just took our salad out of the refrigerator u · five more keep breathing deep expanding

m · here’s an example of a nicely balance script m · now i just took our salad out of the
refrigerator

m · five more key breathe than deep expanding

Table 4. Qualitative results on the How2 dataset. For each example, we show the central frame of the video shot, the reference text (r), the
transcriptions using the unimodal model (u) and the multimodal one (m). The mistakes are shown in red and italics. The multimodal model
is using the finetune setting, the emb fusing method and the ResNet50 visual encoder.

we further explore two fusion techniques for the two input
channels. Our approach leads to substantial improvements
over the state of the art on two standard multimodal datasets:
Flickr8K and How2. The ablation studies provide important
insights on the role of using speech augmentation before
training the multimodal network and the individual contri-
bution of finetuning the various components of the system.
While we find it remarkable that the multimodal setting still
improves over a strong unimodal baseline, the qualitative
examples still leave open the question of how system is using
the visual information.

Future work. To better understand the complicated in-
teractions that arise in a multimodal speech recognition net-
work, a future work direction could investigate which parts
of the inputs (audio, image, previously predicted tokens)
contribute more to the output; modern tools for explainable
machine learning [13, 15, 35] are a possible avenue for this
enterprise. Another future direction could involve coupling

the two encoders through a more pervasive fusion by leverag-
ing self-supervised audio-visual models that are pretrained
on large-scale datasets.

Broader impact. The goal of this research work is mak-
ing speech recognition more accurate when additional visual
information is available. Speech recognition is a technology
that enables many impactful applications, such as automatic
caption generation or keyword search in large collections of
audio data. While as any machine learning approach it can
be subject to biases in the data or malicious use, we do not
foresee any specific societal harm that could stem from the
current line of work.
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