
Guiding Attention using Partial-Order Relationships for Image Captioning

Murad Popattia1, Muhammad Rafi1, Rizwan Qureshi1,2, Shah Nawaz3†

1National University of Computer and Emerging Sciences, Karachi, Pakistan,
2Hamad Bin Khalifa University, Doha, Qatar

3Pattern Analysis & Computer Vision (PAVIS) - Istituto Italiano di Tecnologia (IIT)

muradmansoor189@gmail.com, muhammad.rafi@nu.edu.pk, riahmed@hbku.edu.qa,

shah.nawaz@iit.it

Abstract

The use of attention models for automated image cap-

tioning has enabled many systems to produce accurate and

meaningful descriptions for images. Over the years, many

novel approaches have been proposed to enhance the at-

tention process using different feature representations. In

this paper, we extend this approach by creating a guided

attention network mechanism, that exploits the relationship

between the visual scene and text-descriptions using spa-

tial features from the image, high-level information from

the topics, and temporal context from caption generation,

which are embedded together in an ordered embedding

space. A pairwise ranking objective is used for training this

embedding space which allows similar images, topics and

captions in the shared semantic space to maintain a par-

tial order in the visual-semantic hierarchy and hence, helps

the model to produce more visually accurate captions. The

experimental results based on MSCOCO dataset shows the

competitiveness of our approach, with many state-of-the-art

models on various evaluation metrics.

1. Introduction

Recent success of deep neural networks in com-

puter vision, speech, and natural language processing have

prompted academics to think beyond these fields as sep-

arate entities, instead solving challenges at their intersec-

tions [2, 6, 9, 17, 19, 33]. Generating descriptive and mean-

ingful captions for images, and to capture its semantic

meaning, is one such multimodal inference problem [3,10].

Despite its complexity, it has various applications, including

visually- impaired assistance, intelligent chat-bots, medical

report generation, self- driving cars, and many more [23].

In general, an image captioning model should be able to
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Figure 1. Examples of generated captions by humans (GT), atten-

tion (ATT) and using guided attention (T-OE-ATT). The words

higlighted in respective colors denote a comparison between the

semantic detail captured by the approaches used.

find objects, their positions, map the relationship, as well

as express this relationships in a human understandable lan-

guage.

A typical image caption system consists of a convolu-

tional neural network (CNN) and a recurrent neural network

(RNN), with CNN as the image encoder and RNN as the

sentence decoder [21, 26]. However, in order to capture

the spatial context from the image in an efficient manner,

other approaches such as [8, 31, 32, 34] incorporate high-

level information from topics or detected objects as seman-

tic features to the decoder model. Another line of research

was to make use of cross-modal associations between im-

age and text features in a joint-embedding space. Earlier

research work [13,15] treated images and caption as a sym-

metric relationship by using Euclidean or cosine distances

to gauge similarities between these two modalities. On the

other hand, in [25] treated these associations as asymmet-

ric by enforcing a hierarchical order within the embedding

space, and has shown to perform better than symmetric re-

lationships.

Further improvement in this framework, is the introduc-
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tion of attention mechanism [22], which allows the decoder

to focus on a sub-region of the image, when predicting the

next word in the caption [28]. Despite of focusing only on

spatial attention, Lu et al. [16] presented a novel adap-

tive mechanism for helping the attention module to learn,

when to shift between spatial and temporal context during

word prediction. In addition, Anderson et al. [1] improves

the attention process by first detecting a set of salient image

regions (bottom-up) and then attending to these fixated re-

gions (top-down). [30] builds upon this concept by exploit-

ing the semantic relationships between the detected spatial

regions using GCN (Graph Convolution Networks). [11]

also make use of a similar approach but instead modify the

attention module by adding self-attention module on top of

the conventional attention mechanism, which helps the de-

coder to draw relations between various attended vectors.

On the other hand, Jiang et al. [12], focused on increas-

ing the semantic information fed to the decoder by using

a fusion of multiple encoders, each focusing on a different

view point, to build better representations for the decoder.

Likewise, Wang et al. [27] also worked in a similar direction

that guides attention using a hierarchy of semantic features.

However, lack of inter-feature correlations between these

encoders makes it difficult for the decoder to leverage the

association from the resulting joint representations. Lastly,

despite relying on spatial cues from encoded features, Ke

et al. [14] worked on improving the temporal coherence of

words during descriptions by applying attention on both vi-

sual and textual domains.

Alongside the same line of work of incorporating se-

mantic associations between different spatial regions using

GCNs [30], our idea is to make use of multi-modal repre-

sentations such as ordered embeddings [25] as our semantic

feature vectors to guide the attention module. Similar to

the late-fusion of features as done in [30], we instead use a

weighted summation as our fusion mechanism to fuse these

embeddings.

Overall the main contributions of our work are three-

fold:

• We make use of ordered embedding features for topics

and images to guide the attention module instead of

feeding them as low-level features. This step has been

shown to improved metrics, see ablation study (Sec-

tion 3.3.1).

• We incorporate a global weighted sum for fusing ªvi-

sualº and ªtemporalº states instead of feeding them

at each time-step separately which helps the model to

learn the best estimation of the attention required for

each image.

• Lastly, we present an ablation study of each contribu-

tion and how it effects the overall performance of the

model on the MSCOCO dataset.

2. Methodology

2.1. Overall Framework

Our approach follows the traditional encoder-decoder

framework, where the encoder is responsible to pass on fea-

tures used by the decoder to output the most likely word

during captioning. Figure 2 illustrates the overall frame-

work.

Similar to recent approaches of sending objects or topics

during encoding [29, 34], we used topics instead of objects

to capture both the ºactorsº as well the ªactivitiesº binding

them. The encoder consists of three components: 1) topic

classifier 2) feature extractor and the 3) retrieval model. We

use a pre-trained deep CNN model as a feature extractor to

extract visual features from the image and train a multi-label

topic classifier to predict topics for given images. After that,

we train a retrieval model which embeds captions, image

and topics into a shared semantic space, in which a similar-

ity score can be calculated between them. Interestingly, us-

ing embeddings helps to better learn the latent relationships

between image and topic features, lost during feature ex-

traction. This helps the attention module in describing and

discriminating spatial regions more effectively. (Details in

Section 2.3)

Inspired from the simple yet effective architecture de-

fined in [1], we used two LSTM branches in the decoder

i.e. the guiding-lstm and the core-lstm. Here, we define a

weighted sum of the semantic embeddings of both the im-

ages and topics, as input to the guiding-lstm at the first time-

step, which gives the model a better understanding of the

alignment of visual features and the topics. We then utilize

its hidden state ht-1 for guiding the language LSTM and the

context vector zt used for attention. Similar to using a visual

sentinel [16], we used a weighted summation for fusing the

attention weights instead of a sentinel gate to shift between

spatial and temporal attentions. This allows for a more sim-

pler architecture in terms of learning parameters involved,

whilst maintaining the accuracy during word prediction.

2.2. Topic Classifier

For extracting topics T, the ground-truth captions are

concatenated to form documents D, where each document

d corresponds to captions C, for a given image and contains

a set of words W. After that, we train a Latent Dirichlet Al-

location (LDA) model [4], which is a probabilistic model to

learn the topic representations from documents. The trained

topic model outputs a set of topic probabilities T={T1, T2,

T3, ... Tn}.

For training the classifier, the topics are sampled and

converted to one-hot representations using the following

function:
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Figure 2. The overall framework of the proposed model, where Σw represents a weighted-summation and ⊕ denotes matrix addition. The

model consists of a feature extractor and a topic classifier to extract spatial features and topics given in an image. These semantic attributes

are then fed into a retrieval model which arranges an image, topic and caption triplet in a partial-order hierarchy. The resultant embeddings

are then late-fused using weighted summation and then fed into a ’guiding LSTM’. The ’core-lstm’ then makes use of this hidden state for

temporal attention. Consequently, two separate attention blocks are used, each attending to different aspects of decoding and the resulting

attention vectors are late-fused again in a weighted fashion to produce captions.

f ti ⊆ Ti
(x) =

{

1 if P (x) ≥ 0.1
0 else

(1)

where ti represents a single topic from a set of topics T,

for image i from a set of images I and P(x) represents the

topic-confidence from LDA. We formulate this as a multi-

label classification problem, since an image can have multi-

ple topics. A pre-trained CNN model is used to extract im-

age features which are then fed into a feed-forward neural

network with a sigmoid activation for the prediction layer.

This layer outputs an (Ni×Nt) vector where Ni corresponds

to the number of images and Tt are the number of topics. We

report the evaluation for the topic classifier in Section 4.1 of

the paper.

2.3. Retrieval Model

The architecture of the retrieval model is inspired by the

approaches in [25, 32]. It follows the idea of [13] to align

caption and images in the same space, but with a partial-

order relation rather than a symmetric relation. This is a

more intuitive approach as images have captions with dif-

ferent levels of details, and because the captions are so dis-

similar, it is impossible to map both their embeddings close

to the same image embedding using a symmetric distance

measure like cosine similarity. Nevertheless, maintaining

order is robust to such affect, as dissimilar caption can have

embeddings placed very far away from the image, while re-

maining above it in the partial order. The partial order rela-

tion can be defined as:

x ⪯ y ⇐⇒ ∀x∀y(x ≥ y). This imposes for all values of

the vector x to be greater than all values of the vector y in

the embedding space to maintain order.

We start with three entities i.e. images I, topics T and

captions C. As per [25], we utilized domain-specific en-

coders to extract features for training the embeddings. For

images and topics, we utilized the fully-connected features

from the feature-extractor and the topic features from the

topic classifier respectively. While for captions, we used a

Gated Relu Unit (GRU) as the RNN based text-encoder in-

stead of an LSTM, because of its computational efficiency.

These feature vectors are then weighted with WI, WT and

WC before being projected in the embedding space:

Oi = ∥W I · fFE(I)∥
2 (2)

Ot = ∥W T · fTC(T )∥
2 (3)

Oc = ∥WC ·GRU(C)∥2 (4)
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Oi, Ot, Oc represents the order embeddings of image,

topics, and captions respectively. fFE(I) represents the im-

age features from the feature-extractor, while fTC(T) repre-

sents the features from the topics classifier. We use L2-

Norm during encoding instead of an absolute value function

to mitigate overfitting [25].

Similarity Function The general notion of similarity be-

tween two vectors x and y in the embedding space can hence

be quantified as the degree to which a pair of points violates

the partial order x ⪯ y [25]:

S(x, y) = −(∥max(0, Oy −Ox)∥
2) (5)

where Ox and Oy represents the encoded feature vector in

the embedding space. The negative sign constitutes to the

fact that a positive difference between Oy and Ox denotes

violation of the order penalty.

Loss Function As previous works which learn embed-

ding in cross-modal retrieval tasks [13, 15], we re-use the

pair-wise ranking loss objective to increase the similarity

for the matching pairs and vice-versa for the contrastive

terms by a margin α:

L(x, y) =
∑

(x,y)

(
∑

x′

max{0, α− S(x, y) + S(x′, y)}+

∑

y′

max{0, α− S(x, y) + S(x, y′)})

(6)

where (x, y) is the ground-truth pair while (x′, y) and

(x, y′) are constrastive terms. Our hierarchy has image at

the top of the partial order, followed by captions which are

then bounded by the topics. Hence, the total loss can be

defined as the summation of losses over all three partial or-

ders:

L = L(I, C) + L(I, T ) + L(C, T ) (7)

2.4. Caption Generation

We now describe the decoding phase of the model. The

trained encoding functions Oi and Ot are used to produce

relevant embeddings for image and topics during feature

extraction. We then used a weighted-summation ( Σw ),

of these embeddings:

Σw(OE) = λ ·Oi + (1− λ) ·Ot (8)

where λ is a learnable parameter. The reason for a

weighted-sum is to allow the model to learn the relative im-

portance of each embedding during training. Different from

the approach of [32], we focused on guiding the decoder in a

3-way manner i.e. using the embedding information, visual

features and reliance on past information from the hidden

states.

Dual-LSTM branch We used an auxiliary guiding-lstm,

to process the information from the learned embeddings and

feeding the hidden state information to both the attention

vector zt and the core-lstm at initial timestep t = -1:

ht−1 = LSTMg(Σw(OE)) (9)

zt = Wght−1 +Wcht (10)

ht = LSTMc(xt, ht−1) (11)

where ht−1 and ht represents the hidden states at rele-

vant timesteps, Wg and Wc are learnable parameters in the

context vector zt. LSTMg and LSTMc represent the guid-

ing and core LSTMs respectively. The initial hidden state

for LSTMg is essentially zeroes and hence not shown in

the formulation.

Spatial Attention Block This block is responsible to

generate the attention distribution vector over the important

visual regions of the image. Similar to the idea of soft-

attention [16], we utilize the context-vector zt from equa-

tion 10 instead of just the hidden state information done

in [16], in order to guide attention pertaining to the partial-

order relation between the image and topic:

αt = softmax(Wα[WfFL +Wzzt]) (12)

ρs =

N
∑

i=1

αtifi (13)

where FL = {f1, f2, ....fN} represent the local image

features from the convolution layer just before the FC layer

of the feature extractor, αt denotes the attention weights

over the features in FL, αti denotes the weight over the ith

part of FL and ρs denotes the spatial-context vector.

Temporal Attention Block The temporal block guides

the attention module whether the information is required at

all, or the next word can be predicted using the past informa-

tion stored within the decoder [16]. Likewise, we utilize the

information from the LSTM’s memory cell along with the

context vector zt which contains the residual embedding in-

formation from the previous timestep. It helps the temporal

block decide whether the current timestep requires attend-

ing to visual features or not. This is illustrated below:

ρt = tanh(ct)
⊙

σ(Wxxt +Wz′zt) (14)

where ct is the memory cell of the core-lstm, xt is the

word vector at timestep t, zt denotes the context vector,
⊙

refers to an element-wise product and ρt denotes the

temporal-context vector.

Word Prediction Instead of keeping track of the tem-

poral information for each word, we let the model gener-

alize the ratio between these attentions using a weighted-

summation ( Σw ). This is because ideally it is a more
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simpler approach to rely less on the attention gate at each

timestep and generalize from the embedding context ob-

tained from zt.

Σw(ATT ) = µ · ρs + (1− µ) · ρt (15)

We then calculate the word probability over a vocabulary of

possible words at time t:

pt = softmax(fMLP (zt +Σw(ATT ))) (16)

where fMLP denotes a dense layer with ReLU activa-

tion.

3. Experiments

3.1. Implementation Details

As our model is divided into sub-components, we train

each part separately instead of training them end-to-end.

Feature Extractor We use a ResNet-152 [7] model

trained on ImageNet dataset. The FC features are taken

from the last layer of the CNN which have a dimension of

2048×1. We use FL = {f1, f2, ....fN}, fi ∈ R512 to repre-

sent the spatial CNN features at each of the N grid locations

where N = 49.

Topic Classifier For the training the topic model, we

limit our vocabulary to top 5000 and train the LDA on these

features for 100 iterations. We empirically set the number of

topics to be 80 for our case. Increasing the topics made the

topic vectors more sparse and decreased the recall for the

topic classifier. For the topic classifier, we used the image

features R2048×1 to be fed into a 5-layer feed-forward NN,

with the prediction layer R80 having a sigmoid activation.

The classifier was optimized using SGD with a learning-rate

of 0.1 and momentum 0.9. The learning-rate was changed

in case of plateauing with a patience of 0.4 and a factor of

0.2.

Retrieval Model For the retrieval model, we reused

the FC image features R2048×1 from the feature extractor

and the R80 topic features from the topic classifier in Sec-

tion 2.2. The dimensions of the embedding space and the

GRU hidden state in equation (4) were set to 1024, and the

margin α is set to 0.05 as per [25].

Caption Model For the decoder, our model used

LSTMs. The guiding and core LSTMs both have a dimen-

sion of 512. For the captions, we use a word embedding

size of 256. During training, we see that downsizing and

concatenating FC image features with this embedding im-

proved results. The initial value for λ and µ in equation (8)

is set to 0.5 for both, and learned during training. Further-

more, the number of units for fMLP was set to 1024. Lastly,

for sampling the captions, we use beam size of 1. The whole

model was optimized using Adam optimizer with a mini-

batch size of 128 and learning rate of 0.001. The model

trained for 10 epochs on a Tesla T4 GPU and the training

finished in 10 hours to produce the results.

3.2. Datasets

We conducted experiments on the popular benchmark:

Microsoft COCO dataset 1 as this has been widely used for

benchmarking in the related literature. Also, we adopt the

‘Karpathy’ splits setting [14], which includes 118,287 train-

ing images, and 5K testing images for evaluation. Some

images had more than 5 corresponding captions, the excess

of which are discarded for consistency. We directly use the

publicly available code 2 provided by Microsoft for result

evaluation, which includes BLEU, METEOR, ROUGE-L

and CIDEr.

3.3. Evaluation

3.3.1 Ablation Study

To study the effects of guiding the attention module, we de-

sign an ablation experiment to assess the effect of 1) using

an embedding space 2) using a different feature extractor

and 3) using embedding along with attention as shown in

Table 2. We see that the initial approach of feeding topics

as low-level features performs poorly. A dramatic improve-

ment was seen when using an embedding space in the pro-

cess. This confirms the hypothesis that embeddings serve

as a better auxiliary guidance for attention. We term this

as (T-OE). Moreover, we assess the model’s performance

on a less accurate feature extractor such as VGG-19 [20]

which only incurred as small change in the metrics signi-

fying that trained embeddings are robust to changes in the

feature extractor. Lastly, we incorporate attention in the pro-

cess (T-OE-ATT) and guide them using the trained embed-

dings which shows an improved score in all metrics, signi-

fying the importance of the embeddings to guide attention.

3.3.2 Quantitative Evaluation

In Table 1, we compare our proposed architecture with re-

cent state-of-the-art models on the MSCOCO dataset that

make use of LSTMs in their decoder architecture. For fair

comparison, we report the scores for single model for each

approach that use the same CNN backbone as ours (ResNet

[7]), without using ensembling and CIDEr optimizations.

Our approach is able to outperform RF-Net [12] and

HAN [27] signifying that using partial order is more suit-

able for building joint multi-modal representations as com-

pared to using domain-specific encoders alone. Moreover,

incorporating attention with T-OE, as shown in Table 2, also

helps us outperform RDN [14] over notable metrics such

as METEOR, ROUGE-L and CIDEr which show that or-

thogonal improvements to encoder or decoder alone are less

susceptible to improvement as compared to jointly improv-

ing both the feature representations and the caption genera-

1https://cocodataset.org/
2https://github.com/tylin/coco-caption
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Approaches BLEU-I BLEU-II BLEU-III BLEU-IV METEOR ROUGE-L CIDEr

Adaptive ATT [16] 74.2 58.0 43.9 33.2 26.6 - 108.5

LSTM-A [31] 75.4 - - 35.2 26.9 55.8 108.8

RF-Net [12] 76.4 60.4 46.6 35.8 27.4 56.5 112.5

Up-Down ATT [1] 77.2 - - 36.2 27.0 56.4 113.5

HAN [27] 77.2 61.2 47.7 36.2 27.5 56.6 114.8

RDN [14] 77.5 61.8 47.9 36.8 27.2 56.8 115.3

GCN-LSTM [30] 77.4 - - 37.1 28.1 57.2 117.1

AoA-Net [11] 77.4 - - 37.2 28.4 57.5 119.8

Ours (T-OE-ATT) 77.0 61.2 47.1 35.9 28.4 57.3 115.9

Table 1. Performance comparison on MSCOCO ’Karpathy’ test split trained on a single-model using cross-entropy loss without CIDEr

optimization. (-) indicates metrics not provided. All values are provided in percentages (%) with the highest bold-faced.

Approach B-IV METEOR ROUGE-L CIDEr

Topic 25.5 22.9 50.1 80.2

T-OE(VGG) 34.4 27.8 56.5 112.7

T-OE(Resnet) 35.4 28.2 57.0 114.4

T-OE-ATT 35.9 28.4 57.3 115.9

Table 2. Ablation study on MSCOCO ’Karpathy’ test split.

tion process. It is worth noting that compared to our archi-

tecture, RDN [14] and RF-Net [12] have a greater number

of learning parameters (1.15B parameters [14] for RDN),

whilst our decoder contains comprises of only 29M param-

eters and yet is able to produce competitive results. Both

GCN-LSTM [30] and AoA-Net [11] use Faster-RCNN as

their feature encoder which is able to feed in region-level

information while our model uses only the fully connected

features from the ResNet backbone and is still competitive

over METEOR and ROUGE-L scores. It should also be

noted that AoA-Net [11] leverage the use of self-attention

mechanisms which have been used alongside transformers

and are able to produce state-of-the-art results. On the con-

trary, our work can be extended to incorporate region level

information alongside topics or to use a different attention

mechanism to improve results and has not been explored in

this study.

As our model uses LSTMs for caption generation, hence

this comparison does not take into account transformer-

based architectures [5, 24]. Transformers are a different

class of architecture as compared to LSTMs as they do not

follow the auto-regressive nature of LSTMs and process the

inputs in a parallel fashion [24] so incorporating partial-

order embeddings alongside this class of architecture could

also be a favourable research direction.

3.3.3 Qualitative Evaluation

We assess our model qualitatively as illustrated in Figure 1.

The baseline model is based on model’s output based on

topic and image features, while the guided attention model

is based on topic and image embeddings. Without em-

beddings, we see that attention lack descriptiveness of the

context associated with the visual features such as double-

decker, grassy, drinking etc.

Figure 3. Examples of inaccurate captions from the model.

We also see an influence when comparing ground truth

captions where the model was able to capture semantic con-

text like parked instead of sitting and drinking water instead

of in the water. It is because the model is able to draw as-

sociations between objects and actions due to partial-order

information from the underlying topics of the captions fed

into the decoder module denoting how attention was guided.

However, as denoted in Figure 3, the attention module

can pick up on noise from these embedded features such

as confusing between a bus and a truck. This is evident

from T-OE, where the caption contains truck even though

it is absent from the image. An explanation can be bus

and truck being semantically closer in the embedding space.

Moreover, relying on spatial attention can also lead to mis-

classifying objects in the image from spatula to knife. This

can be seen from the caption generated from the model

without T-OE where the object is misidentified as a knife.
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4. Discussion

4.1. Evaluation of topic classifier and retrieval
model

As the topic classifier and the embedding sub-space act

as intermediaries to the final model, hence, we evaluate their

performance on relative metrics as well. The output of the

topic classifier is a set of sigmoid probabilities which are

converted into one-hot encodings. Using precision solely

for evaluating one-hot encodings is not enough as we can

see that a higher precision does not mean our model has a

good recall. Hence, we use F1-score with a β more inclined

towards recall. The highest F1-score was achieved in the

COCO dataset which may be due to a larger amount of data

being used to train the model. We summarize these results

in Table 3.

Dataset Precision Recall F1-Score

Flickr30k 60.08 42.33 43.56

MSCOCO 77.54 60.48 61.52

Table 3. Performance results of the topic classifier on validation

sets of Flick30k and MSCOCO dataset

For the order embedding model, we assess the quality of

the model by treating it as a Caption Retrieval task. The

metric used in this experiment was Recall@K which refers

to the percentage of recall achieved in top-k items. We sum-

marize these results in Table 4.

Dataset R@1 R@5 R@10

Flickr30k 35.2 61.9 73.4

MSCOCO 49.5 79.6 89.3

Table 4. Performance results of the retrieval model on validation

sets of Flick30k and MSCOCO dataset

Nevertheless, the scores for both the topic classifier

and the retrieval model were not state-of-the-art but were

enough to extract suitable features for the training images.

Respective improvements to the models in terms of fine-

tuning or using a different architecture, might positively im-

pact the overall accuracy during captioning but is beyond

the scope of this paper.

4.2. Visualizing the embedding space

In this section, we present a high-level visualization of

the partial-order structure between images, topics and cap-

tions in the embedding space, as shown in Figure 4.

The embedding space consist of three modalities, with

images being at the highest order, captions being at the cen-

ter and topics being at the lowest order of the hierarchy pos-

ing a lower bound for the captions. This hierarchical ar-

rangement also conforms with the cognitive arrangement of

these modalities. Images are generally abstract points from

Figure 4. Representation of order in the embedding space

which we derive meaning about its context while separate

words such as topics can be used to complement images but

do not contribute to any meaning on their own. Captions on

the other hand, describe a story which the spatial cues of the

image support.

We can then visualize these captions as a collection of

words each of which can constitute to a topic. Treating the

problem as a caption retrieval task, where given an image

the model outputs the set of all possible captions, setting a

lower bound with topics helps constraint this search space

and helps reduce noise from overlapping caption regions.

[32]

4.3. Analysis of the weighted summation for atten-
tion

Contrasting to the approach followed in [16], where the

model is trained to shift attention at each word prediction

step, we constraint the model in determining an overall ratio

of the spatial or temporal attention needed for word predic-

tion and keep this as a static value for all succeeding pre-

dictions. However, despite setting the values randomly, we

allow the decoder to generalize from a set of caption on

the amount of attention needed for each caption. For test-

ing, we set the temporal context µ to be 0.3 for spatial and

consequently, 0.7 for temporal attention. The reason for a

higher ratio for temporal context is because it complements

the RNNs capability to work with sequences. For the model

we use the ATT approach where the image features are fed

directly as spatial cues to the decoder. Figure 5 shows the

learned ratios after several iteration of training.

It can be seen that the model gradually learns to increase

the gradient flow from the spatial block of the attention

module, signifying the need of visual attention. However,

we do notice some peaks for the flow of temporal informa-
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Figure 5. Weight distributions of spatial and temporal attention for

several iterations on MSCOCO dataset.

tion. A plausible reason is because while visual informa-

tion is necessary, it may not always be inline with temporal

coherence when describing images. Hence, we sample cap-

tions with different values for µ as shown in Figure 6.

For a lower value of µ in the formulation 15 in Sec-

tion 2.4, the model allows the flow of temporal informa-

tion in the decoder and hence we see a time-relative as-

pect in sentences with phrases such as ºabout to hitº and

ºis laying onº. On the contrary, if we shift the value of µ

higher, it boosts the gradient flow from the spatial block fill-

ing in visual details from the image such as ºwhite shirtº,

ºwhite shortsº, ºlaptop computerº, ºtop of deskº. How-

ever, we see that despite being rich in scene-specific details,

the model misses out the global context of the image impos-

ing the need for a good balance between both the attention

modules. This is the reason we allow the model to learn

these weights during training.

5. Limitations

In this section, we discuss the architectural limitations

to our work and also explore future extensions to this ap-

proach. Firstly, the performance of the decoder phase is

dependant on the output from the topic classifier and bottle-

necks the overall improvement from training. Moreover,

most recent works such as GCN-LSTM [30] and AoA-

Net [11] make use of Faster-RCNN to feed in region-level

information and hence incorporating these object-level as-

sociations alongside topics in the multi-modal embedding

space are susceptible to increase in efficacy of the approach

used. Another limitation of our work is the use of tradi-

tional attention mechanisms. Our study make use of soft-

attention mechanism which involves the averaging of fea-

ture maps. Comparing our approach with HAN [27] which

also makes use of soft-attention mechanism, we gain a rel-

ative improvement as discussed in Section 3.3.2. However,

our approach struggles against AoA-Net [11] which uses

Figure 6. Sampled captions on varying µ values on COCO dataset.

A higher value of µ denotes more weight being given to the spatial

flow of information within the decoder and viceversa.

a more robust attention mechanism. Moroever, the use of

self-attention has been shown to improve performance over

traditional attention mechanisms such as [11], more notably

in transformers [5, 24] and hence can be incorporated with

the use of these multi-modal embeddings to improve perfor-

mance. Lastly, using recent reinformcement learning based

techniques such as CIDEr optimizations [18] have yielded

state-of-the-art results for image captioning, incorporating

them with our study may further boost the performance over

the metrics used.

6. Conclusion

In this work, we proposed a new approach to guide the

attention model by exploiting partial-order relationships be-

tween image, captions and topics. Arranging the image and

textual modalities in an asymmetric fashion results in more

effective learning of the latent space. Hence, we make use

of a multi-modal embedding space that is able to arrange the

visual and textual modalities in an asymmetrical hierarchy

where the caption embeddings are bounded between image

and topic features. We then make use of these joint repre-

sentations to guide the attention module. An extensive abla-

tion study was also performed to indicate that using ordered

embeddings, the attention model was able to draw accurate

links between semantically important regions of the image

when attending to them, which helped improve the overall

interpretability, syntax and descriptiveness of the captions.

The proposed architecture was not only simpler in terms of

complexity, but also competitive with many recent LSTM-

based architectures. For next steps, a promising direction

can be to incorporate the highlighted approach with trans-

formers or leveraging the model architecture to be trained

in an end-to-end manner.
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