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Abstract

In this paper, we address the problem of cross-modal re-
trieval in presence of multi-view and multi-label data. For
this, we present Multi-view Multi-label Canonical Correla-
tion Analysis (or MVMLCCA), which is a generalization of
CCA for multi-view data that also makes use of high-level
semantic information available in the form of multi-label
annotations in each view. While CCA relies on explicit pair-
ings/associations of samples between two views (or modali-
ties), MVMLCCA uses the available multi-label annotations
to establish correspondence across multiple (two or more)
views without the need of explicit pairing of multi-view sam-
ples. Extensive experiments on two multi-modal datasets
demonstrate that the proposed approach offers much more
flexibility than the related approaches without compro-
mising on scalability and cross-modal retrieval perfor-
mance. Our code and precomputed features are available at
https://github.com/Rushil231100/MVMLCCA.

1. Introduction

During the last decade, there has been a significant in-
crease in the amount of digital data in diverse modali-
ties such as images, videos, audio, text, etc. Because of
this, cross-modal matching and retrieval has emerged as a
promising research problem where given a sample in one
modality (or view), the objective is to retrieve semantically
similar samples from another modality. E.g., given a query
text (a set of words or a caption), retrieve images that are
semantically relevant to it. One popular idea to address
this problem is to project samples (features) from diverse
modalities into a learned common embedding space where
similar samples are close to each other, and then perform
cross-modal retrieval by comparing them using some con-
ventional similarity measure such as cosine similarity.

Canonical Correlation Analysis (or CCA) [18] is one
of the earliest and most popular methods based on this
idea. It learns a common embedding space by maximiz-

ing the correlation between the projections of features from
two modalities. However, CCA has three major limita-
tions: (1) its application is limited to data with only two
modalities, (2) it requires explicit pairing/association be-
tween cross-modal samples at the time of training, and
(3) it is an unsupervised approach and cannot make use
of additional semantic information that is generally avail-
able in the form of multi-label annotations along with sam-
ples. Lately, some of the papers have attempted to address
these limitations of CCA. Two promising attempts in this
direction are: (1) Multi-view Canonical Correlation Analy-
sis (or MVCCA) [15], which is a generalization of CCA to
multi-view data and learns the common embedding space
using explicitly associated samples from multiple (two or
more) modalities, and (2) Multi-label Canonical Correlation
Analysis (or MLCCA) [26], which uses multi-label annota-
tions to determine associations between samples from two
modalities rather than requiring explicit associations as in
CCA. Both MVCCA and MLCCA have shown compelling
results on a variety of cross-modal retrieval tasks compared
to CCA. Specifically, in MLCCA, independence from the
requirement of explicit associations between samples from
two modalities at the time of training and the flexibility to
integrate multi-label semantics make it an appealing alter-
nate to CCA. However, one major limitation of MLCCA is
that it can be applied when the input data contains samples
from only two modalities, and its generalization to multi-
modal data with more than two modalities is non-trivial and
non-existent in the literature as per our knowledge. On the
other hand, while MVCCA can be applied to data with two
or more modalities, it requires explicit associations among
samples from different modalities at the time of training and
cannot make use of multi-label annotations.

To address these limitations, we present Multi-view
Multi-label Canonical Correlation Analysis (or MVML-
CCA), which is a generalization of CCA to multi-view data
(data with two or more modalities), does not require ex-
plicit associations among samples from different modali-
ties, and can make use of semantic information available
in the form of multi-label annotations at the time of train-
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Method
Number of Samples associated Multi-label
modalities across modalities semantics

CCA [18] 2 ✓ ✗
MLCCA [26] 2 ✗ ✓
MVCCA [15] ≥ 2 ✓ ✗
MVMLCCA (Ours) ≥ 2 ✗ ✓

Table 1. Comparison of the proposed MVMLCCA with CCA [18]
and its extensions MLCCA [26] and MVCCA [15] in terms of (a)
how many modalities (or views) they can work with, (b) whether
they require supervision in the form of explicit pairing or associa-
tion among samples from diverse modalities at the time of training,
and (c) whether they can use semantic information available in the
form of multi-label annotations to compute associations among
samples from diverse modalities at the time of training.

ing to determine associations among multi-modal samples
(Table 1). Further, our approach is also applicable to the
real-world scenarios where the vocabularies of labels are
non-overlapping across modalities. In such cases, we make
use of real-valued feature representations of labels (e.g., us-
ing Word2Vec [23]) to compute similarities between multi-
label annotations of samples in different modalities1.

We validate our approach on two popular multi-modal
datasets (IAPRTC-12 [8] and MS-COCO [20]), and demon-
strate that it offers scalability and cross-modal retrieval per-
formance that is comparable to the competing methods. It
should be noted that while we limit the scope of our dis-
cussion and analyses to datasets containing samples from
image and text modalities, the proposed technique is appli-
cable to any set of content modalities.

2. Related Work

Cross-modal matching and retrieval is a long-standing
research problem, which was first introduced in [18] along
with a technique to address this - Canonical Correlation
Analysis or CCA. Particularly during the last two decades,
there has been a surge of multimedia content on the inter-
net and thus cross-modal matching and retrieval has gained
significant attention in various domains such as image-
text [13, 15, 21, 26, 28], image-audio [14], text-text [40],
etc. Being the first approach to facilitate cross-modal re-
trieval, a large number of recent techniques are inspired
from CCA, including both non-deep learning based as well
as deep learning based methods. Non-deep learning based
methods [13, 15, 26–28, 31] assume the availability of pre-
computed features of samples in different modalities, and

1While label features can also be incorporated in the MLCCA [26]
approach to compute similarity between two sets of labels, this was not
explored in the original paper. For comparisons in our experiments, we
update the implementation of MLCCA provided by its authors.

then learn a common embedding space using them by intro-
ducing novel learning formulations [31, 36], additional in-
formation in the form of meta-data/tags [13,28], or both [5,
26,27,32]. While CCA has inspired a large number of cross-
modal matching algorithms, another category of methods
adopt ranking based optimizations that not only pull pos-
itive (semantically similar) pairs closer like CCA-based
methods, but also push negative (semantically dissimilar)
pairs farther [17,33]. However, their training stage is gener-
ally computationally intensive as they utilize both positive
as well as negative pairs. Unlike non-deep learning based
methods, deep learning based methods learn both features
as well as a common embedding space simultaneously start-
ing with raw data. While the initial deep learning method
worked with global features [2,9–11,22,30,35,39,40], sev-
eral recent methods use local features and align them across
diverse modalities using attention mechanism [6,19,29,37].
Some of the recent papers [1, 25] have also explored self-
supervised learning to learn a common multi-modal embed-
ding space. While learning features from raw data is not the
focus of our work, we believe that any progress in this di-
rection will lead to an improvement in the retrieval accuracy
of non-deep methods, as also validated in [26].

From the above discussion, we can observe that both
non-deep as well as deep learning based methods have been
actively explored in parallel for cross-modal matching and
retrieval tasks by the research community, which indicates
the utility of both the directions given the widespread appli-
cability of such methods in diverse domains and experimen-
tal conditions. Ours is a non-deep learning based approach
and is closely related to two popular extensions of CCA:
MVCCA [15] and MLCCA [26]. MVCCA [15] is a gener-
alization of CCA to multi-view (two or more views) data,
however it cannot use multi-label annotations and addition-
ally requires explicit associations among samples from dif-
ferent modalities. In [13], multi-label annotations were
used in an indirect way by considering them as an additional
view, and then the original formulation of MVCCA was em-
ployed to learn the common embedding space. However,
this results in a single multi-way association of samples and
thus fails to utilize the many-to-many relationships implicit
in multi-label data. In MLCCA [26], rather than consider-
ing multi-label annotations as another view, these are con-
sidered as a common ground to establish many-to-many as-
sociations among samples from diverse modalities, and thus
does not require explicit pairing among cross-modal sam-
ples at the time of training. However, one major limitation
of MLCCA is that it is applicable to only two views and
cannot learn a single common embedding space when data
contains three or more views. We address this limitation of
MLCCA by presenting a generalization of of MVCCA that
does not require explicit associations among samples from
different modalities and uses multi-label annotations to es-
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tablish such associations analogous to MLCCA. However,
unlike MLCCA, it is capable to learn a common embedding
space using data containing any number of (two or more)
views. As our method carries the desired characteristics of
both MVCCA and MLCCA, we call it Multi-view Multi-
label CCA (or MVMLCCA).

3. Preliminaries
Below, we first discuss the notation and problem set-up

that we use in the subsequent parts of the paper, and then
we present an overview of MVCCA.

3.1. Notation and Problem set-up

Suppose we are given data D = {D1, . . . ,Dn} in n
modalities (e.g., audio, video, text, etc.). In the pth modal-
ity (p ∈ {1, . . . , n}), the dataset Dp = {(Sa

p , Y
a
p )}

mp

a=1

consists of mp pairs of samples and corresponding label-
(sub)sets respectively. Each sample Sa

p is represented by
a real-valued feature vector xa

p in a dp-dimensional space
Xp = Rdp , and each Y a

p denotes a set of labels associated
with the sample Sa

p such that Y a
p ⊆ Yp, where Yp denotes

the vocabulary of discrete labels that describe the semantic
space of the pth modality.

We assume that the semantic labels in all the vocabu-
laries are represented by unique feature vectors in a sin-
gle/common feature space. Precisely, each label y ∈ Yp

(∀p) is represented by a feature vector z in an l-dimensional
feature space Z = Rl, which is common across all the n
vocabularies. For example, this space could be a simple
one-hot encoding space in case of a common vocabulary
across all the modalities, or a Word2Vec [23] or GloVe [24]
embedding space in case of partially or non-overlapping vo-
cabularies across modalities. This way, a label-set Y a

p =

{ya1p , . . . , yakp } of k labels (the value of k may be differ-
ent for different samples) maps to a set of corresponding
feature vectors Za

p = {za1p , . . . , zakp } that represent those
labels. Thus, another way to represent the dataset in the pth

modality can be Dp = {(xa
p, Z

a
p )}

mp

a=1.
For each modality p, our objective is to learn a projec-

tion function Fp(x
a
p;Wp) : Xp → X, that projects an input

feature vector xa
p into another d-dimensional space X = Rd

such that the semantic correlations among all the modalities
are jointly maximized in this space. In this paper, we as-
sume that each Fp is a linear function of the input feature
vector, i.e., Fp = W⊤

p xp, where Wp ∈ Rdp×d denotes the
learned projection matrix.

3.2. Overview of Multi-view CCA

As discussed earlier, MVCCA [15] does not make use
of semantic information in the form of multi-label anno-
tations. Further, it requires explicit associations/pairings
among samples from all the modalities, thus restricting the

number of samples in all the modalities to be the same; i.e.,
m1 = m2 = . . . = mn. Let us assume this to be m. The
objective of MVCCA is to learn the projection matrices Wp

that project the input vectors into the common embedding
space X such that after projection, the total distance among
all pairs of associated samples is minimized; i.e.,

min
W1,...,Wn

n∑
p,q=1
p ̸=q

1

m

(
m∑

a=1

||W⊤
p x

a
p −W⊤

q x
a
q ||2F

)
(1)

s.t. W⊤
p ΣppWp = I, w⊤

puΣpqwqv = 0,

p, q = 1, .., n, p ̸= q, u, v = 1, .., d, u ̸= v,

where Σpq = 1
m

∑m
a=1 x

a
px

a
q
⊤ denotes the covariance ma-

trix between the (paired) samples in the pth and qth modal-
ity, and wpu is the uth column of Wp. Note that the number
of columns in each Wp is equal to d, which is the dimen-
sionality of the resulting common embedding space. The
solution of the above optimization problem is given by the
following generalized eigenvalue problem:Σ11 . . . Σ1n

...
. . .

...
Σn1 . . . Σnn


w1

...
wn

 = λ

Σ11 . . . Σ1n

...
. . .

...
Σn1 . . . Σnn


w1

...
wn

 ,

(2)
where wp denotes a column of Wp (p = 1 . . . n).

3.2.1 Retrieval

The output of the above equation is a matrix W of size
d′ × d′, where d′ = d1 + d2 + . . .+ dn. In this matrix, the
first column denotes the concatenation of the first/topmost
eigenvector (the one with the maximum eigenvalue) corre-
sponding to each modality, the second column denotes the
concatenation of the second-top eigenvector corresponding
to each modality, and so on. Thus, W can be thought of as a
vertical concatenation of the matrices W

′

p (p = 1, . . . , n) of
size dp×d′. For the pth modality, we obtain a d-dimensional
embedding using the projection matrix Wp ∈ Rdp×d,
which is obtained by picking the first d columns from W

′

p.
Thus, the projection of a sample xa

p into the common em-
bedding space X is given by W⊤

p x
a
p. In this space, since

the projected data points are directly comparable, we can
perform retrieval by nearest-neighbour search using some
similarity measure such as the cosine similarity.

4. Multi-view Multi-label CCA
Inspired by MVCCA, in this section we present our ap-

proach for leaning a common embedding space using multi-
view and multi-label data. However, rather than requiring
explicit associations among samples from different modali-
ties, we make use of multi-label semantics to compute these
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associations. Analogous to MVCCA, our objective is to
learn the projection matrices Wp,∀p ∈ {1, . . . , n} that
project the input vectors into X such that after projection,
the total distance among all pairs of semantically similar
samples are minimized. We formulate this as below:

min
W1,...,Wn

n∑
p,q=1
p ̸=q

1

mp ×mq

(
mp∑
a=1

mq∑
b=1

Γab
pq

)
, (3)

where Γab
pq = g(Za

p , Z
b
q) ||W⊤

p x
a
p −W⊤

q x
b
q||2F,

s.t. W⊤
p ΨppWp = I, w⊤

puΨpqwqv = 0,

p, q = 1, .., n, p ̸= q, u, v = 1, .., d, u ̸= v,

where wpu is the uth column of Wp as in Eq. 1, g(Za
p , Z

b
q)

denotes the label-set similarity function which gives the de-
gree of similarity between two sets of labels (where each
label is denoted by a feature vector), and Ψpq denotes the
weighted covariance matrix between the pth and qth modal-
ities and is computed as below:

Ψpq =
1

mp ×mq

mp∑
a=1

mq∑
b=1

g(Za
p , Z

b
q)x

a
px

b
q

⊤
(4)

The solution of the optimization problem in Eq. 3 is given
by a generalized eigenvalue problem similar to Eq. 2 ob-
tained by replacing Σpq with Ψpq . The output will be a
matrix W of size d′ × d′, where d′ = d1 + d2 + . . . + dn,
using which retrieval can be performed similar to that in
MVCCA. Note that analogous to MLCCA [26], the seman-
tic information available in the form of discrete multi-label
annotations is required by MVMLCCA only at the time of
training, and only data points are needed to perform match-
ing during testing/retrieval.

From the optimization problem in Eq. 3, we can observe
that if we assume g(·, ·) to be binary function such that it is 1
only when the corresponding samples are explicitly paired
in the training data and 0 otherwise, we get the optimiza-
tion problem of MVCCA as in Eq. 1 (scaled by a positive
factor). Based on these observations, MVMLCCA can be
considered as a generalization of MVCCA [15]. Also, the
procedure of retrieval in MVMLCCA during testing is the
same as that in MVCCA (Section 3.2.1). Specifically, we
first project a given feature vector into the common embed-
ding space using the corresponding projection matrix, and
then rank the samples in the retrieval set based on their co-
sine similarity scores.

Remarks: Here, we should note two points about MVML-
CCA (these also apply to MVCCA): (a) The projection ma-
trix for a sample from a particular modality is applied to it
individually, which means we can compute the embeddings
of samples in a given modality independent of samples in

other modalities, thus allowing any-to-any modality match-
ing. (b) The projection matrices for multiple modalities can
be concatenated vertically and applied to the concatenated
feature vectors (in the same order) from the correspond-
ing modalities to obtain the joint multi-modal embedding in
the same common embedding space, thus allowing many-
to-many modality (i.e., uni-modal, cross-modal and multi-
modal) matching.

4.1. Label-set Similarity

Recall that our approach does not require the vocabular-
ies across different modalities to be the same; instead we as-
sume that each label is represented by a unique feature vec-
tor which encodes the semantics of that label in a common
feature space Z2. This is a relaxed and practically feasible
constraint; e.g., using this, we can learn a unified multi-
modal embedding space of audio, image and text samples,
each tagged with labels from non-overlapping vocabularies.

During training, for a given pair of samples, we are given
two corresponding labels-sets Y a

p and Y b
q . These are de-

noted by the corresponding sets of label feature vectors Za
p

and ZB
q . We consider two scenarios where either we have

a common vocabulary or have distinct vocabularies across
different modalities. (1) In the first scenario, we assume the
label vocabularies of all the modalities are the same, i.e.,
Y1 = Y2 = . . . = Yn. To represent labels in this case, we
use a simple one-hot encoding. Specifically, we assume that
each label is represented by a binary (0/1) one-hot encod-
ing vector in an l-dimensional feature space Z = {0, 1}l.
Using this, a label-set Y a

p = {ya1p , . . . , yakp } of k labels
maps to a set of corresponding one-hot encoding vectors
Za
p = {za1p , . . . , zakp } that represent those labels. (2) In

the second scenario, we assume that the label vocabularies
of all the modalities are different, though in the same lan-
guage. In this case, each label y ∈ Yp (∀p) is represented
by a real-valued feature vector z in an l-dimensional fea-
ture space Z = Rl. This feature space is common across all
the n vocabularies; e.g., this space can be a Word2Vec [23]
or GloVe [24] embedding space. This way, a label-set
Y a
p = {ya1p , . . . , yakp } of k labels is mapped to a set of corre-

sponding real-valued feature vectors Za
p = {za1p , . . . , zakp }

that represent those labels.
In both the above scenarios, to get a single feature repre-

sentation zap of a label-set Y a
p , we take summation of vector

representations of all the labels within that set. To compute
similarity between two label-sets Y a

p and Y b
q , we want the

similarity function g to return a high value when they are
similar and a low value when they are not. With this ob-
jective, we compute similarity using a squared exponential

2In general, this space may also support multi-lingual labels (e.g., la-
bels in English and French), thus allowing comparison of labels across lan-
guages. However, in our experiments, we use datasets with vocabularies
from a single language; i.e. English.
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based function as below:

g(Za
p , Z

b
q) = exp

(
−||zap − zbq||22

2σ

)
, (5)

where σ denotes the bandwidth parameter and is set to 1 in
our experiments. We note that g can also be defined as a
multi-instance matching function [34] where the objective
would be to compute similarity between two bags of fea-
tures Za

p and Zb
q , and can be explored in the future.

4.2. Computational Complexity

Let us assume that the maximum number of data
points in all the modalities is M (i.e., M =
max(m1,m2, . . . ,mn)), the maximum input feature di-
mensionality of data points in all the modalities is ∆ (i.e.,
∆ = max(d1, d2, . . . , dn)), and the total input feature di-
mensionality of data points in all the modalities is D (i.e.,
D = d1 + d2 + . . . + dn). Then, the asymptotic com-
putational complexity of computing a cross-modal covari-
ance matrix is O(M2∆2). Next, since the dimensionality of
each label feature vector is l, the asymptotic computational
complexity of computing the function g(·, ·) for one pair of
label-sets will be approximately O(l). Finally, since the size
of the generalized eigenvalue problem is D × D (which is
independent of the number of training data points in indi-
vidual modalities), the asymptotic computational complex-
ity of the eigenvalue decomposition problem is O(D3). By
combining these, the asymptotic computational complexity
of MVMLCCA is O(n2l2M2∆2 + D3). It is clear that a
naive implementation of MVMLCCA will not scale to large
datasets. However, our block-wise distributed implementa-
tion, inspired by [3, 12], makes it scalable to large datasets.

5. Experiments

5.1. Datasets and Features

We use two multi-label and multi-modal datasets in our
experiments: IAPRTC-12 and MS-COCO.

IAPRTC-12 [8]: It is a multi-label dataset comprising
19,627 image-text pairs, labeled by a vocabulary of 291
semantic labels. Each text corresponds to captions in En-
glish, which are also translated in German and Spanish lan-
guages. Thus, it can be considered as a multi-modal dataset
comprising associated samples from four modalities. The
train/test split is of 17,665/1,962 samples respectively. For
representing images, we use the output of the penultimate
layer of the ResNet101 [16] model pre-trained on the Ima-
geNet dataset [7]. The captions are represented using sum-
mation of 300-dimensional vector representation of each
word in the caption. For English captions, we used the
Word2Vec [23] model pre-trained on the Google News data.

For German and Spanish captions, we use the correspond-
ing pre-trained models from fastText [4].

MS-COCO [20] : This dataset contains 123,287 images,
out of which 82,783 comprise the training set and the re-
maining 40,504 comprise the validation set. Each image is
described using five different captions in English. Each pair
of an image and its five captions is annotated with a subset
of labels from a vocabulary of 80 labels. Similar to earlier
works, we report results on the validation set. For repre-
senting images, we use the output of the penultimate layer
of the pre-trained ResNet101 model as before. For repre-
senting text, we take average of summation of word vectors
in all the five captions corresponding to each image.

5.2. Evaluation Metrics

We use two evaluation metrics in our quantitative anal-
yses depending on whether the label vocabularies across
modalities are same or different: (a) Mean Average Pre-
cision or mAP in case of common vocabulary, and (b)
Weighted Mean Average Precision or Weighted mAP in
case of non-overlapping vocabularies.

Mean Average Precision: The mAP is a widely used eval-
uation metric in information retrieval, object detection, ob-
ject segmentation, etc. It is calculated as the average of av-
erage precision (or AP) over all the queries. The AP is cal-
culated by finding the area under the Precision-Recall curve.
In our task, we consider a retrieved sample as a true posi-
tive if at least one label in its ground-truth label-set matches
with a label from the query’s ground-truth label-set follow-
ing [26]. As only the top few ranked samples are relevant
in a retrieval task, we calculate the AP only for the top 50
retrieved samples for each query q as below:

APq =
1

NRt

NRlv∑
k=1

Pq(k)×maskq(k) (6)

Here, k denotes the rank in the retrieved samples, NRt de-
notes the number of retrieved samples (50 in our case),
NRlv denotes the number of relevant samples, Pq(k) de-
notes the precision at cut-off k, and maskq(k) is a function
that returns 1 if the retrieved sample at rank k is relevant to
the query and 0 otherwise. Finally, the mAP is calculated
as the average of AP over all the queries:

mAP =
1

Q

∑
q

APq , (7)

where Q denotes the total number of queries.

Weighted mAP: Inspired by weighted precision introduced
in [38], weighted mAP is a modification of mAP and is used
when the label vocabularies across the query and retrieval
sets are non-overlapping. In such cases, we use label rep-
resentations (e.g., Word2Vec [23]) to quantify similarity in
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IAPRTC-12

Task CCA MLCCA MVCCA MVMLCCA

Image→Text 0.4080 0.4358 0.4259 0.4247
Text→Image 0.4108 0.4407 0.4301 0.4273

Average 0.4096 0.4383 0.4280 0.4260

MS-COCO

Task CCA MLCCA MVCCA MVMLCCA

Image→Text 0.9112 0.9158 0.7335 0.9031
Text→Image 0.9395 0.6868 0.7739 0.9275

Average 0.9254 0.8013 0.7537 0.9153

Table 2. Cross-modal retrieval results (mAP) on the IAPRTC-12
and MS-COCO datasets (Section 5.3.1).

the semantic space. We denote the query’s label-set as Yq ,
and the label-set of the ith retrieved sample as Yri . For a
given query, all the retrieved samples are considered as a hit
with a similarity h. Then, h is calculated as the maximum
cosine similarity value between all pairs of labels in Yq and
Yri . Using this, we compute weighted AP as:

APw
q =

1

NRlv

NRt∑
k=1

h(Yq, Yrk)× Pq(k)×maskq(k) (8)

Finally, weighted mAP is calculated by averaging weighted
AP over all the queries.

5.3. Results and Discussion

We evaluate the proposed approach and compare it with
three baseline methods (CCA [18], MVCCA [15] and ML-
CCA [26]) under different set-ups. Please refer to the re-
spective papers for more details on these methods.

5.3.1 Cross-modal Retrieval

This is the most popular set-up which is being followed by
the papers addressing the problem of cross-modal retrieval,
where there are samples from two modalities and they are
annotated with labels from a common/single vocabulary. In
this experiment, we consider images from both IAPRTC-
12 and MS-COCO as one modality. In case of IAPRTC-12
dataset, we consider English captions as the second modal-
ity. In case of MS-COCO dataset, we merge all the five
captions corresponding to each image into a single para-
graph and compute the text representation as described in
Section 5.1. The results of this experiment are shown in
Table 2. From the results, we can make the following ob-
servations: (a) On the smaller IAPRTC-12 dataset, the re-
sults obtained using different methods do not vary much.
Specifically, MLCCA achieves the best performance, while

Dataset CCA MLCCA MVCCA MVMLCCA

IAPRTC-12 9 251 12 353
MS-COCO 47 7600 68 7500

Table 3. Training time (in seconds) comparisons on the IAPRTC-
12 and MS-COCO datasets.

MVCCA and MVMLCCA are slightly inferior to it. (b) On
the larger MS-COCO dataset, the results using CCA and
MVMLCCA are comparable, while those using MLCCA
and MVCCA are significantly low. Interestingly, MVCCA
does not outperform the standard CCA. As also noted by
Ranjan et al. [26], this suggests that it is better to use multi-
label semantic information in an explicit way rather than
using it as another modality as in [13]. (c) While the exper-
imental set-up of both MLCCA and MVMLCCA is exactly
the same, the difference in their results signifies the concep-
tual difference between the two approaches. (d) Overall, we
can observe that rather than relying on strong supervision
in the form of explicit associations between cross-modal
samples as in CCA and MVCCA, MVMLCCA is able to
achieve competitive results on both the datasets by effec-
tively utilizing weak supervision available in the form of
multi-label semantics.

Training time comparison: In Table 3, we compare the
training time of all the four methods on both the datasets. It
is important to note that in all of our experiments, we use
the fast implementation of MLCCA (Fast MLCCA) pro-
vided by its authors, as the original MLCCA is not scal-
able to large datasets such as MS-COCO. This scalability in
MLCCA is achieved by computing an approximate covari-
ance matrix that considers only the 50 nearest neighbours
of a given sample. Rather than adopting a similar approxi-
mation, we use a block-wise distributed implementation of
MVMLCCA that makes it memory efficient and also helps
in achieving training time comparable to that of MLCCA
as evident from Table 3. As expected, this is significantly
higher than that of CCA/MVCCA as both MLCCA and
MVMLCCA need to compute associations between sam-
ples using multi-label semantics during the training phase.
After training, since all the four approaches return one fea-
ture embedding matrix per modality, the testing/retrieval
time is the same for all.

5.3.2 Multi-modality Cross-modal Retrieval

This is an extension of the previous set-up where during
the training phase, we assume availability of samples from
multiple (more than two) modalities which are annotated
with labels from a single vocabulary, and during the test-
ing phase, we perform cross-modal retrieval between dif-
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Task CCA MLCCA MVCCA MVMLCCA

Image→English 0.6104 0.6982 0.5754 0.5912
Image→German 0.5366 0.5350 0.5471 0.4157
Image→Spanish 0.5504 0.5413 0.5511 0.4278
English→Image 0.6526 0.5887 0.6437 0.6537
English→German 0.5653 0.5428 0.5658 0.4251
English→Spanish 0.5755 0.5525 0.5704 0.4411
German→Image 0.5786 0.4428 0.4838 0.4250
German→English 0.5642 0.3090 0.4090 0.3022
German→Spanish 0.5441 0.5222 0.4961 0.3738
Spanish→Image 0.5831 0.4352 0.4815 0.4267
Spanish→English 0.5679 0.3150 0.4029 0.3005
Spanish→German 0.5387 0.5079 0.4892 0.4127

Average 0.5721 0.4976 0.5180 0.4329

Table 4. Cross-modal retrieval results (mAP) using different pairs
of modalities of the IAPRTC-12 dataset (Section 5.3.2).

ferent pairs of modalities. For this experiment, we consider
all the four modalities available in the IAPRTC-12 dataset
(i.e., RGB images, English captions, German captions and
Spanish captions), which leads to availability of four associ-
ated views for each data point. This results in twelve cross-
modal retrieval tasks (two for each pair of modalities). It is
important to note that in this set-up, both MVCCA and the
proposed MVMLCCA involve one-time training and learn
a single model using samples from all the modalities simul-
taneously (each model contains one feature embedding per
modality). However, since CCA and MLCCA are applica-
ble to only two-modality datasets, we need to learn their
embeddings for each pair of modalities separately. This re-
sults in learning six models - one for each pair of modalities.
This is quite likely to reduce the amount of noise introduced
because of the presence of multiple modalities, thus giving
both CCA and MLCCA an advantage over MVCCA and
MVMLCCA. This also means that the results of CCA and
MLCCA are not directly comparable to those of MVCCA
and MVMLCCA, however we include them for complete-
ness and also to demonstrate the effectiveness of multi-
modal learning in one-pass compared to learning individ-
ually from bi-modal data.

In Table 4, we show the results for all the twelve cross-
modal retrieval tasks. We can observe that: (a) CCA
achieves the best results on an average as it learns one model
at a time using a pair of modalities and strong supervision
in the form of explicit associations between samples. (b)
MVCCA, which learns using all the four modalities simul-
taneously, however still uses strong supervision in the form
of explicit associations among samples from all the modal-
ities, achieves the second best results on an average. This
reduction in performance compared to CCA validates our

Task CCA MLCCA MVCCA MVMLCCA

Image→Image 0.5403 0.7678 0.7179 0.7175
English→English 0.5497 0.6615 0.6531 0.6647
German→German 0.5552 0.5804 0.5824 0.5418
Spanish→Spanish 0.5701 0.5940 0.5896 0.5376

Average 0.5538 0.6509 0.6358 0.6154

Table 5. Uni-modal retrieval results (mAP) using different modal-
ities of the IAPRTC-12 dataset (Section 5.3.2).

hypothesis that learning with a large number of modalities
simultaneously introduces noise in the learning process, as
each sample is now being pulled by multiple samples from
other modalities. (c) The performance of MLCCA, which
learns using a pair of modalities at a time analogous to
CCA, however uses weak supervision in the form of multi-
label annotations for computing associations between sam-
ples, is significantly inferior to CCA on an average. This
result indicates that though MLCCA is practically more fea-
sible than CCA (since in the real-world scenarios, it is easier
to obtain weak supervision in the form multi-label seman-
tics compared to strong supervision in the form of explicit
pairings of cross-modal samples), the sample associations
computed using multi-label annotations are not as good as
those obtained using explicit pairings of samples. (c) By
comparing the results of MLCCA with MVCCA, we can in-
fer that the reduction in performance due to non-availability
of explicit associations of samples across all the modalities
can be controlled by reducing the amount of noise in the
training process by considering only a pair of modalities at
a time rather than considering all of them. (d) The perfor-
mance of MVMLCCA is the least among all the compared
methods on an average. This is as expected since MVML-
CCA does not make use of explicit associations among sam-
ples as in CCA and MVCCA, and learns a model using sam-
ples from all the modalities simultaneously and not from a
pair of modalities at a time as in CCA and MLCCA. How-
ever, it is practically the most feasible algorithm among all
for the real-world scenarios, where we have abundant sam-
ples in different modalities tagged with a variety of semantic
labels, which we will examine further in the next section.

For completeness, we also show the results for uni-
modal retrieval in Table 5. In this case, both CCA and ML-
CCA learn a feature embedding separately for each modal-
ity assuming both the input and output modalities to be the
same, whereas MVCCA nd MVMLCCA use the previously
learned embeddings (as in Table 4). These results show that
MVMLCCA performs favourably compared to other meth-
ods, and further strengthen our understanding of the practi-
cal advantages of MVMLCCA compared to other methods.
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5.3.3 Multi-Vocabulary Multi-modality Cross-modal
Retrieval

In this set-up, we consider the multi-vocabulary situation
where the samples in different modalities are annotated with
labels from different (non-overlapping) vocabularies, and
also there are no associations among them. For this, we
use a fusion of the IAPRTC-12 and MS-COCO datasets,
by considering only the RGB images and English cap-
tions from the MS-COCO dataset, and German and Spanish
captions from the IAPRTC-12 dataset. This leads to six-
teen cross-modal retrieval tasks by considering all possible
pairs of input and output modalities (including uni-modal
retrievals). Note that since now we do not have explicit
pairings among samples from different pairs of modalities,
CCA and MVCCA will not be applicable in this set-up.
Also, in this case, since we need to use a real-valued feature
representation (e.g., Word2Vec) for representing and com-
paring labels, which was not explored in the original imple-
mentation of MLCCA, we modify it appropriately for our
comparisons. Similar to the set-up in Section 5.3.2, while
MVMLCCA learns a a single embedding for each modality
by using samples from all the modalities simultaneously,
MLCCA learns a separate model for each pair of modalities
which leads to learning separate (and thus better optimized)
embeddings for each given modality when it is paired with
different modalities including uni-modal retrieval tasks.

In Table 6, we show the results for different tasks in
terms of weighted mAP. From these results, we can observe
that in this challenging set-up, MVMLCCA marginally
outperforms MLCCA on an average, though it is much
more relaxed than MLCCA. These results, along with
the non-applicability of CCA and MVCCA in this set-up,
indicate that MVMLCCA not only relaxes all the con-
straints/assumptions required by the competing methods but
also achieves good empirical results, and thus can be prefer-
ably adopted for all practical cross-modal retrieval tasks.

6. Summary and Conclusion

Although CCA [18] was introduce more than eight
decades back, it is still considered as the first baseline in
a variety of cross-modal matching and retrieval tasks. This
widespread popularity of CCA has led to the development
of several extensions of CCA in the past that attempt to
address some of its limitations. In this paper, motivated
by the limitations of CCA and two of its popular exten-
sions MLCCA [26] and MVCCA [15], we have presented
MVMLCCA which can be considered as a true general-
ization of CCA for learning multi-modal embeddings us-
ing multi-label data. MVMLCCA can accommodate any
number of modalities and does not require explicit associ-
ations among samples from diverse modalities during the
training phase. Rather, it relies on weak supervision avail-

Task MLCCA MVMLCCA

COCO Image→COCO Image 0.9508 0.9570
COCO Image→COCO Caption 0.9560 0.9632
COCO Image→IAPR German 0.6753 0.6759
COCO Image→IAPR Spanish 0.6682 0.6747
COCO Caption→COCO Image 0.9655 0.8691
COCO Caption→COCO Caption 0.9783 0.9801
COCO Caption→IAPR German 0.6770 0.6762
COCO Caption→IAPR Spanish 0.6670 0.6742
IAPR German→COCO Image 0.6827 0.6929
IAPR German→COCO Caption 0.6899 0.6871
IAPR German→IAPR German 0.8200 0.8359
IAPR German→IAPR Spanish 0.7762 0.8230
IAPR Spanish→COCO Image 0.6826 0.6925
IAPR Spanish→COCO Caption 0.6899 0.6882
IAPR Spanish→IAPR German 0.7804 0.8224
IAPR Spanish→IAPR Spanish 0.8111 0.8392

Average 0.7794 0.7845

Table 6. Cross-modal retrieval results (weighted mAP) using
multi-vocabulary and multi-modality data (Section 5.3.3).

able in the form of multi-label annotations to compute such
associations. Extensive experiments demonstrate that the
proposed MVMLCCA approach successfully captures the
semantics of large-scale multi-modal datasets, and thus can
be an attractive solution for building flexible and scalable
cross-modal retrieval systems.
Limitations and Potential Negative Social Impact:

One limitation of our method is that it depends on ad-
ditional meta-data in the form of multi-label annotations.
While we do not have any empirical evidence that com-
pares the efforts between annotating a database with labels
and making pairwise correspondence with samples from an-
other modality, we believe that the former is both easier and
cheaper than the latter. Another limitation is that in all the
experiments, we assume the multi-label annotations to be
available in the English language, which may not hold for
a large amount of digital content. However, this limitation
may be overcome by using an appropriate machine transla-
tion or multi-lingual word-embedding system. Also, as true
with all computational learning based techniques, our ex-
periments consumed substantial energy generated by burn-
ing of fossil fuels and thus warmed our planet. However,
we hope that our non-deep learning based approach man-
aged to keep it low compared to computationally intensive
deep learning based techniques.

Acknowledgement: YV would like to thank the Depart-
ment of Science and Technology (India) for the INSPIRE
Faculty award 2017.

4708



References
[1] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider,
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