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Abstract

VQA (Visual Question Answering) model tends to make
incorrect inferences for questions that require reasoning
over world knowledge. Recent study has shown that train-
ing VQA models with questions that provide lower-level
perceptual information along with reasoning questions im-
proves performance. Inspired by this, we propose a novel
VQA model that generates questions to actively obtain aux-
iliary perceptual information useful for correct reasoning.
Our model consists of a VQA model for answering ques-
tions, a Visual Question Generation (VQG) model for gen-
erating questions, and an Info-score model for estimating
the amount of information the generated questions contain,
which is useful in answering the original question. We train
the VQG model to maximize the “informativeness” pro-
vided by the Info-score model to generate questions that
contain as much information as possible, about the answer
to the original question. Our experiments show that by in-
putting the generated questions and their answers as addi-
tional information to the VQA model, it can indeed predict
the answer more correctly than the baseline model.

1. Introduction
Visual Question Answering (VQA) [3,11] is a task of an-

swering questions about an image, and is considered to be a
crucial task for evaluating the semantic image comprehen-
sion level of an image recognition model. Generally, VQA
models are designed such that given an image and a ques-
tion about the image, the model outputs a plausible answer
from these two inputs [3, 7, 12, 35].

Unfortunately, the performance of the VQA models is
not perfect, and the model often makes incorrect predic-
tions. In particular, it has been pointed out that for questions
that require reasoning over world knowledge, the VQA
model tends to answer incorrectly or for the wrong rea-
sons [22, 29]. For example (Figure 1), to answer the ques-
tion “What season is it?”, the VQA model needs a reasoning
process that “there is snow on the ground in the image, so it

Is there snow on the ground?
Sub Question

yes!

✅ winter !

What season is it?
Main Question

❌ fall

Figure 1. An illustration of our proposed “asking the informative
sub-question” framework. When only the main reasoning question
like “What season is it?” is input to a VQA model, the model
may make a wrong prediction. Even in such a case, our proposed
system generates a sub-question related to the main-question and
acquires information to make correct reasoning.

is winter.” However, it is difficult to train a VQA model to
acquire such a reasoning process.

In order to have the model acquire such reasoning abil-
ity, [29] proposed a method that utilizes not only a rea-
soning questions but also Perception questions. Perception
questions are questions only require visual perception abil-
ity, such as “Is there snow on the ground?” in Figure 1.
They constructed a novel dataset that contains Perception
questions associated with reasoning questions and train the
model to answer both types of the questions simultaneously.

Inspired by their idea, we study the method of asking the
perceptual questions that are useful for the model to make
correct reasoning. Specifically, our Visual Question Gen-
eration (VQG) model generates a “sub-question” about an
image and a reasoning question about the image (refer to
as “main-question”). By obtaining answers to the generated
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sub-questions from someone else, the model can obtain the
information necessary to make correct reasoning.

For example, when the main reasoning question is “What
season is it?” and the VQA model initially predicts the an-
swer as “fall” (Figure. 1), the VQG model generates a sub-
question (“Is there snow on the ground?”) that helps the
VQA model predict the answer to the main-question. If the
model can obtain an answer to the sub-question (“yes”), the
VQA model would be able to make a correct prediction;
“winter”, for the main-question using the sub-question and
the answer as an additinal information.

Our proposed pipeline consists of three components:
Target VQA model, Info-score model, and VQG model.
First, we design the Target VQA model so that it can re-
ceive both types of input: main-question only (main-only),
and main-question and sub-question (main+sub). When the
input is main-only, the Target VQA model predicts the main
answer to the main-question, as in the standard VQA model.
On the other hand, when the input is main+sub, the Tar-
get VQA model predicts the main answer using the sub-
question and its answer as additional information in addi-
tion to the main-question. Then, the Info-score model pre-
dicts the informativeness of the sub-question. Here, we in-
troduce the concept of info score to quantify the amount of
useful information the sub-question provides to answer the
main-question. The info-score is defined as the difference
between the loss value when the input to the Target VQA
model is “main-only” and the loss value when the input is
“main+sub.” Finally, we train the VQG model to generate
a sub-question from the main-question. To generate a sub-
question that can obtain as much information as possible,
we train the VQG model by using reinforcement learning
with info-score as a reward.

Our contribution is summarized as follows:

1. We propose a novel active VQA method, which gen-
erates perceptual sub-questions and obtains their an-
swers from others to serve as auxiliary information to
the main-question.

2. We propose “info-score” that measures the amount of
information about the main-question can be obtained
by the generated sub-question, and train a VQG model
using it as a reward.

3. We evaluate the effectiveness of the proposed method
by checking its performance when sub-questions gen-
erated by the VQG model are input to the Target VQA
model.

2. Related Work
2.1. Reasoning Ability of VQA Model

In VQA, the model is supposed to make reasoning based
on the input image and question to answer the question.

However, it has been pointed out that the model might not
learn the inference process based on the image and question
content, but capture the bias of the image and language [1,
2, 9, 14, 39]. In order to solve this problem, researchers
have focused on the consistency of model responses to sim-
ilar inputs (e.g., perturbed inputs [1, 9], or rephrased ques-
tions [10, 14, 30], perceptual sub-questions [29]). Our re-
search is motivated by [29], which is the study of adding
perceptual sub-questions to the reasoning questions. Per-
ceptual sub-questions are defined as the questions that can
be answered from visual content of the image. Thus, it is
expected that we can obtain a model that can correctly per-
form visual reasoning by training the model to correctly an-
swer such sub-questions. In their method, the model utilizes
human-annotated sub-questions, for which a suitable sub-
question must exist in the dataset. We tackle the problem by
making the model capable of dynamically generating useful
sub-questions.

2.2. VQG as Data Augmentation

There are several studies that used VQG methods to aug-
ment the data for VQA. In these studies, the methods for
obtaining new questions can be roughly grouped into three
categories: applying rule-based operations (e.g., word re-
placement) to existing questions [5,9,13,37], applying para-
phrasing models such as back-translation models to existing
questions [14, 30, 34], and directly learning VQG models
that generate questions from images [24, 36]. Some stud-
ies [24, 31] have tried to perform efficient data augmenta-
tion with VQG by incorporating active learning that takes
into account the uncertainty of the prediction.

However, the major difference between our method and
existing studies is when to use the augmented data. In the
existing studies, newly generated questions were added to
the training data to be used in the training phase of the VQA
model. In this case, for the VQA model to benefit from the
questions generated by the VQG model, it is necessary to
generate a considerable amount of questions in advance and
train the VQA model with them, which is a time-consuming
task. In our method, however, the generated questions are
used only during the inference phase of the VQA model.
Therefore, the performance improvement can be obtained
immediately without additional training of the VQA model.

2.3. VQA with Additional Information

Several studies have aimed to improve the performance
of VQA models by adding additional information (e.g.,
scene graphs [6, 8, 32] or knowledge databases [23, 25, 26])
to the input in addition to the VQA questions.

Another effort that is similar to this work used im-
age captions as additional textual information about the
image. Some studies in this stream include those that
use a caption generator trained separately from the VQA
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What season is it?
Main Question (qm)

Is there snow on the ground?
Sub Question (qs)

yes
Sub Answer (as)

Target VQA
Model

✅ winter
Main Answer (am)

What season is it?
Main Question  (qm)

VQG
Model Is there snow on the ground?

Sub Question (qs)
Teacher 

VQA Model yes
Sub Answer (as)

RL loss

Info-score Model

Main Question  (qm)

Main Answer  (am)

Figure 2. The overall framework of our model. The VQG model generates a sub-question from an image and a main-question. Since we
aim to generate questions that contain as much information about the main-question as possible, the VQG model is trained by reinforcement
learning with info-score as the reward. The Target VQA model takes the generated sub-question and sub-answer as input in addition to the
main-question, and predicts the main-answer by using the added information.

model [15, 18, 19], and those that jointly train VQA and
caption generation [38]. However, in order to obtain the in-
formation required for a question in such a study, the scene
graph generating model or the caption generating model
must already know the information that contains the answer
to the question. In this study, we use the strategy of “asking
additional questions to others” to obtain additional informa-
tion. Therefore, our approach differs from the above studies
in that it is not necessary to prepare a model that already
knows the information of the answer to the question.

3. Methods
The overall model is shown in Figure. 2. We refer to

the two types of questions used in this study as follows: qm
(“main-question”) is the reasoning question that is initially
asked to the VQA model, and qs (“sub-question”) is the
perceptual question that is expected to give additional infor-
mation to that question. Our goal is to use the VQG model
to generate a sub-question that contains more helpful infor-
mation as possible, for answering the main-question. Here,
we use the term “informativeness” to mean the amount
of information the sub-question and its answer as (refer as
“sub-answer”) contain to estimate the answer to the main-
question.

Our model consists of the following three parts: (1) Tar-
get VQA model A, (2) Info-score model I, and (3) VQG
model G. A is the VQA model whose performance is to

be improved in this study. We define “info-score” I as a
metric to quantify informativeness, that is, how close the
prediction made by the target VQA model is to the correct
answer, when the sub-question and sub-answer is addition-
ally input to the Target VQA model. I is a regression model
that predicts the info-score when a certain “sub-question” is
input to a certain “main-question”. Then, G generates a sub-
question that will improve the info-score as much as possi-
ble. We optimize G using reinforcement learning loss with I
as a reward to maximize the informativeness obtained from
the generated questions.

In the inference phase, we input the sub-question gener-
ated by the VQG model and sub-answer to the Target VQA
model, in addition to the image and main-question. Ideally,
the sub-answer should be provided by humans, but in this
study, we have another VQA model called Teacher VQA
model to provide sub-answer instead of humans.

3.1. Target VQA Model

The Target VQA model A predict the answer for the
main-question, am (referred to as “main-answer”), i.e.,
am = A(v, q). Here, v is the input image, q is the input
text to the model. This model normally takes as input an
image and a question about it, predicts the answer to the
question, like the standard VQA model. In this study, the
input to the Target VQA model could be one of two types:
(A) main only, or (B) main + sub. In case (A), the input
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text q is the main-question qm. While in case (B), q is the
conjunction of the main-question, the sub-question, and the
sub-answer.

q =

{
qmain = qm (A) (main only)

qmain+sub = [qm; qs; as] (B) (main + sub)
(1)

Note that the Target VQA model is trained to predict the
answer to the main-question am in both cases.

In order to build such a model, we have designed a VQA
model based on UNITER [7], a multi-modal Transformer
model that has demonstrated high performance in various
vision and language tasks. We compute the probablity of
the main-answer by using a two-layer MLP on top of cross-
modality feature h obtained by UNITER:

h = Enc(v, q) (2)
PA(am | v, q) = σ(MLP(h)) (3)

where Enc is a UNITER encoder and σ is a sigmoid func-
tion.

The original UNITER encoder was designed to accept
only a single question as the input. We make a modifica-
tion to the input format such that sub-questions and sub-
answers can also be used as inputs. Specifically, we add
special tokens indicating the type of input texts ([MAIN
Q], [SUB Q], and [SUB ANS], respectively) at the begin-
ning and concatenate all of them as necessary. That is,
in the case of “main-only”, the input text to the model
is written as {[MAIN Q], wqm

1 , wqm
2 , . . . }. On the

other hand, in the case of “main+sub”, the input text
to the model is written as {[MAIN Q], wqm

1 , . . . ,
[SUB Q], wqs

1 , . . . , [SUB ANS], was
1 , . . . }. Here,

wqm
i , wqs

i , was
i denotes the i-th word of the main-question,

sub-question, and sub-answer, respectively. Our loss func-
tion for the Target VQA model is a binary cross-entropy
loss with soft target scores [7, 35], following the original
UNITER VQA model.

LA(v, q) =− am logPA(am | v, q)
− (1− am) log(1− PA(am | v, q))

(4)

3.2. Info-score Model

The Info-score model I uses an image v, a main-
question qm, and a sub-question qs as inputs, and predicts
the info-score I , i.e., I = I(v, qm, qs).

In order to train this model, we first calculate the ground-
truth info-score for a pre-trained Target VQA model. The
info-score is a quantitative measure of how close to the
correct answer the Target VQA model is able to output in
the “main + sub” case, compared to the “main-only” case.
Specifically, info-score is defined as the difference between

the output of the loss function when the input is “main-
only” and when the input is “main+sub”. Given qm, qs,
and as, the ground-truth info-score is calculated as follows:

IGT = LA(v, qm)− LA(v, [qm; qs; as]) (5)

where LA is the loss function for the Target VQA model.
Since the loss value becomes smaller as the output of the
model comes closer to the distribution of the correct answer,
a larger value of info-score indicates that the sub-question
contains more information.

Then, we train the Info-score model to predict the info-
score from the image, main-question, and sub-question.
This model is used during the training of the VQG model
to estimate the info-score to be used as a reward to train
the VQG model. The Info-score model is a combination
of a multimodal encoder based on UNITER and a head de-
signed to perform regression of the info-score. Following
some existing studies on NLVR2 [33], which is a binary
classification task for multi-modal inputs, we use the pair
method [16,20,40] to encode the image, the main-question,
and the sub-question. In this method, each pair of (image,
main-question) and (image, sub-question) are fed into the
encoder, and the decoder takes the concatenation of the out-
put of the encoder to make a prediction. The regression
head of the decoder uses two layers of MLPs and a sigmoid
function as the activation function in the final layer:

hm = Enc(v, qm) (6)
hs = Enc(v, qs) (7)

Î = σ(MLP([hm; hs])) (8)

where hm and hs are fused feature for the image and main-
question and the image and the sub-question, respectively.
Note that we normalized the info-score of the training data
so that the maximum value was 1 and the minimum value
was 0. The model is trained by minimizing the binary cross
entropy loss.

3.3. VQG Model

The VQG model G is an encoder-decoder model that
uses an image v and a main-question qm as input and gener-
ates a sub-question qs, i.e., qs = G(v, qm). The encoder, as
in the previous models, uses the UNITER encoder to encode
multimodal context information of images and texts. The
decoder is designed based on the decoder of BART [17],
which is a text-generation model using a Transformer. The
BART decoder consists of several blocks of Transformers,
each of which is composed of a self-attention and a cross-
attention layer. In the early phase of training, the model is
trained in a teacher-forcing manner using sub-questions of
the training data. Here, the loss function is computed as the

4684



following cross-entropy loss.

LLM = −
|y|∑
n=1

logPG(yn | y<n, v, qm). (9)

Here, yn is the n-th word of the ground-truth sub-question.
To further improve the informativeness of the generated

sub-questions, we train the VQG model with a reinforce-
ment learning (RL) loss, that uses the info-score obtained
by the info-score model as a reward. The reinforcement
learning loss is expressed as the following equation.

LRL = −(Î − Îb)
∑

logPG(yn | y<n, v, qm) (10)

We follow self-critical sequence training method [28] for
the calculation of LRL. Here, Îb is the baseline reward that
is introduced to stabilize the training, which is, the result of
the info-score for the greedy-decoded sub-question. Î is the
info-score computed for the questions generated by sam-
pling based on the multinomial distribution of the words
output by the model. Thus, the model is motivated to gen-
erate sub-questions that have a higher info-score than those
generated by greedy-decoding.

Training with RL loss alone may increase the info-score;
however, this loss does not consider the fluency of the
output sentences, which may corrupt the generated sub-
questions. To avoid this, we train the model with a com-
bination of cross-entropy loss and RL loss, that is,

L = γLLM + (1− γ)LRL (11)

where γ is the hyperparameter for balancing the loss values.

3.4. Teacher VQA Model

Ideally, our pipeline should be run in a human-in-the-
loop setting, where humans provide answers to questions
generated by the VQG model. However, it is not feasible
to ask humans to answer all of the generated questions each
time we conduct a model evaluation. Therefore, we create
a Teacher VQA model AT that provides sub-answers to be
fed to the Target VQA model.

The architecture of the Teacher VQA model is essen-
tially the same as that of the Target VQA model. The
Teacher VQA model must have fairly high performance
due to its role of providing sub-answers on behalf of hu-
mans. Therefore, we feed the model with the ground-truth
main-answer as additional oracle information, i.e., as =
AT (v, [qs; qm; am]). Note that the oracle main-answer is
only available when the Teacher VQA model provides sub-
answers and is not seen from the Target VQA model. This
model is trained to minimize the binary cross entropy loss

yes/no what other all

train 161,140 18,447 19,567 199,154
val 17,894 2,055 2,191 22,140

Table 1. Number of questions per type after re-splitting the VQA-
Introspect dataset.

as follows:

LT =− as logPAT (as | v, qm, am, qs)

− (1− as) log(1− PAT (as | v, qm, am, qs))

(12)

4. Experiment
4.1. Dataset

We used VQA-Introspect [29] dataset for our experi-
ments. The VQA-Introspect is a dataset constructed by ad-
ditionally annotating the perceptual sub-questions for rea-
soning questions included in the VQA v1 and v2 datasets [3,
11]. We associated the main-question and sub-question in
their dataset in a one-to-one manner, and obtained 199,154
(main-question, sub-question) pairs as training data and
22,140 pairs as validation data. For detailed analysis of
the results, we categorized the main-question types into
“yes/no”, “what”, and “other”. The number of questions
per type are listed in Table. 1.

4.2. Implementation Details

The encoder for all models is the Transformer encoder,
which has a common structure based on UNITER. We use
the bottom-up top-down image features [4] extracted by
Faster R-CNN [27]. The number of object regions is adap-
tively set between 10 and 100, and the feature dimension
is set to 2,048. The number of Transformer blocks in
the encoder and decoder is set to 12, and the number of
hidden units in the each Transformer block is set to 768.
We use the AdamW optimizer [21] with the parameters
(β1 = 0.9, β2 = 0.999). The initial learning rate is set
to 8.0×10−5 for the Target VQA model, 3.0×10−5 for the
Info-score model, and 5.0× 10−5 for the VQG model.

We employ the cosine annealing scheduling, where
warm-up is performed for 10% of the entire training steps.
We train the Target VQA model for 12K steps with a batch
size of 84, Info-score model for 3K steps with a batch size
of 48. For the VQG model, we train the model with only
LLM for the first 30 epochs, and then train it also with LRL

for the following six epochs. For the hyper-parameter γ,
which balances the LM loss and RL losses, we run experi-
ments with γ ∈ {0.05, 0.1, 0.5} and report the results for
the case γ = 0.5, which gives the best results. The training
of the VQG model took approximately 17 hours on a single
Tesla A100 GPU.
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Accuracy Comparison with UNITER baseline
Overall yes / no what others UNITER ✗ \ Ours ✓ (↑) UNITER ✓ \ Ours ✗ (↓)

UNITER (baseline) 69.71 76.97 45.73 46.08 - -
Ours 77.12 85.60 47.22 50.77 10.75 3.338

Ours w/o RL 76.20 84.20 47.61 51.54 10.07 3.582
Ours w/o answer 70.21 77.33 46.02 47.46 4.313 3.812

Ours with GT 81.92 87.46 59.34 66.76 14.25 2.03

Table 2. Evaluation based on the performance of the Target VQA model when it is given the questions generated by each model. The left
columns show the accuracy of the overall evaluation set and the accuracy of each question type. The right columns show the ratio of the
Target VQA model to answer correct/ wrong answers when compared to the UNITER baseline (i.e., without sub-questions). In the former
case (UNITER ✗ \ +sub ✓), a larger number indicates better performance; in the latter case (UNITER ✓ \ +sub ✗), a smaller number
indicates better performance.

4.3. Training Details of Info-score Model

We calculate the ground-truth info-score IGT from a pre-
trained Target VQA model to train the Info-score model.
It should be noted that the dataset used to train the Target
VQA model contained sub-questions that were considered
to be related to the main-question to some extent. This
means that the training dataset is unlikely to contain any
sub-questions that are useless for the main-question, which
may result in a significant data imbalance in the info-score.

To avoid this imbalance problem, we perform mini-batch
negative sampling. During training, for a given main-
question, we randomly select a sub-question associated with
a different main-question in the same mini-batch to be the
negative sample sub-question. When a positive sample is
input to the model, the model is trained to minimize the bi-
nary cross-entropy loss calculated on the ground-truth dis-
tribution of the main-answer, as in any other standard VQA
model. When a negative example sub question is input to
the model, we train the model to output a uniform distribu-
tion with all zero values.

4.4. Compared Approaches

We compare our model with UNITER baseline, where
the Target VQA model makes predictions from the main-
question only. In this setup, no additional information is
input other than the main-question, which is the same as
the usual experimental setup for VQA that has been used in
many existing studies.

In addition, we conduct ablation studies with following
ablation models: w/o answer and w/o RL. In w/o answer
setting, we do not use the sub-answer predicted by Teacher
VQA model. This enables us to investigate whether the use
of sub-answers as well as sub-questions is intrinsically im-
portant in terms of acquiring information about the main-
question. Specifically, we use a special unknown token, in-
stead of the answer from the Teacher VQA model, as an
input to the Target VQA model. In w/o RL setting, the

Target VQA model uses the sub-question generated by the
VQG model as an additional input, but in this case, the VQG
model is not trained on the RL loss, but only on the LM
loss. This experimental setup was designed to see whether
RL loss with info-score as a reward would generate more
informative question.

Finally, we report the result of with GT setting. In this
setting, the Target VQA model uses the ground-truth sub-
question as an additional input. We can consider this to be
an upper bound, since sub-questions and sub-answers are
provided by humans, not by the model.

4.5. Results and Discussions

4.5.1 Performance of the Target VQA Model

Table 2 lists the performance of the model compared to
other approaches.

First, we evaluate how the performance of the Target
VQA model changes when the sub-questions generated by
the VQG model are used as additional inputs. The results
show that using the sub-questions generated by the VQG
model as additional information indeed helps to improve
the performance of the Target VQA model (see UNITER
vs. the others). Further, adding RL loss, which uses the
info-score as an reward, can improve the effectiveness of
the sub-question (see Ours vs. Ours w/o RL). The results
further show that, it is important to have appropriate an-
swers to the sub-questions to obtain information (see Ours
vs. Ours w/o answer). Also, in the case of Ours w/o an-
swer, there is some improvement in performance compared
to UNITER baseline. This is probably because the gener-
ated sub-questions themselves also contain additional infor-
mation about the main-questions.

We further show the accuracy for each question type.
The methods that add sub-questions (Ours w/o RL, Ours)
show significant performance improvement compared to
UNITER baseline for “yes/no” type. For “what” and
“other” type questions, our method with RL shows slight
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Comparison with UNITER baseline per sub-question type
yes/no what other

BLEU-4 Info-score (↑) Num. ∆Acc.(%) Num. ∆Acc.(%) Num. ∆Acc.(%)

w/o RL 18.25 1.88× 10−5 19,868 10.08 2,110 0.25 162 8.64
Ours 18.66 3.58× 10−5 20,529 11.09 1,457 3.33 154 5.68

Ours with GT - 1.03× 10−4 19,553 17.82 2,008 13.53 579 21.08

Table 3. Evaluation of the VQG model in terms of the quality of the generated questions, the informativeness, and the properties of the
generated sub-questions. In the right columns, the number of sub-questions generated is shown for each question type. In addition, for
each question type, the column ∆Acc. shows an improvement in the accuracy of the main-answer predictions compared to the baseline.

performance drop compared to UNITER baseline and w/o
RL. The importance of sub-answer can be seen from the
fact that when there is no appropriate answer to the sub-
question, the performance degrades for all question types.

We also analyze how adding sub-questions changes the
results compared to the UNITER baseline. We observe
the same trend here, as in the previous experiments, that
models using reinforcement learning outperform the oth-
ers. In the case where the model makes incorrect predic-
tions in UNITER baseline and correct predictions with sub-
questions (UNITER ✗ \ +sub ✓), the results are better in
Ours with RL than w/o RL and w/o answer. When the
model answered correctly in UNITER baseline and incor-
rectly with sub-question (UNITER ✓ \ +sub ✗), the VQG
model with RL also performed better than the model with-
out RL and without answer.

4.5.2 Performance of the VQG Model

In this section, we discuss the performance of the VQG
model. The results are listed in Table 3.

When compared with the BLEU score, which indicates
how well the correct and generated sentences match, the
model w/o RL has a slightly higher value. As for the info-
score, which indicates how informative the generated sub-
questions are, we can see that our model with RL can indeed
obtain a higher info-score. From these results, we can say
that our model is successful in generating more informative
questions without sacrificing the fluency of the generated
sentences. The right columns of the table list the proper-
ties of the generated sub-questions categorized by question
type. The values of ∆Acc. indicates an improvement in
the accuracy of the predictions by the Target VQA model
compared to the UNITER baseline. Based on the value
of ∆Acc. of GT, the question types of sub-questions that
help improve the performance of the Target VQA model
are other > yes/no > what. Comparing the number of
generated sub-questions between Ours w/o RL and Ours,
the number of “yes/no” type questions increased in Ours,
while the number of “what” type questions decreased. From
these results, it can be said that our model tends to generate

more questions that are likely to improve the performance
of the Target VQA model, and fewer questions that are not
likely to contribute to performance improvement. As for the
“other” type questions, there are few questions even in GT,
thus, the VQG model probably could not learn to generate
them in large numbers.

4.6. Qualitative Results

In Figure 3, we show some examples of the gener-
ated sub-questions, the sub-answer provided by the Teacher
VQA model, and the final prediction made by the Target
VQA model. Generally, we can say that our VQG model
is able to generate perceptual sub-questions related to the
image and the main-question. In some cases, the model
without RL generates questions that are related to the image
and the main-question, but do not help to answer the main-
question (e.g., “is there a fork on the plate?” in the upper left
example). Even in such a case, we can see that our model is
able to generate informative questions (e.g., “is the fork on
the left?”). In other cases, as in the example in bottom right,
the VQG model may generate a question that is relevant to
the image but not much relevant to the main-question. One
possible reason for this is that the multi-modal encoder of
the VQG model may not be able to encode the text infor-
mation properly. We believe that we can further improve
the sub-question generation that reflects the content of the
main-question by developing an encoder that better encodes
the image and text information.

5. Conclusion
In this study, we propose an informative perceptual sub-

question generation method to improve the VQA perfor-
mance. We define the info-score to quantitatively mea-
sure the usefulness of sub-questions, and created a model
to estimate the info-score from the main-questions and sub-
questions. By training our model using reinforcement learn-
ing with info-score as a reward, we were able to acquire
useful information to answer the main-question and achieve
performance improvement of the VQA model.

Future challenges include to extend this research to ac-
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main-question : on which side of the 
plate is the fork? 
sub-question : is there a tined utensil to 
the left of the pizza?

GT main-answer : left 
UNITER baseline pred :❌ right 

===== w/o RL ===== 
sub-question : is there a fork on the 
plate? 
sub-answer (by oracle) : yes 
main-answer : ❌ right 

===== Ours ===== 
sub-question : is the fork on the left? 
sub-answer (by oracle) : yes 
main-answer : ✅ left

main-question : how bright is the 
room?
sub-question : is there light reflecting 
off the door?

GT main-answer : very 
UNITER baseline pred : ❌ bright 

===== w/o RL ===== 
sub-question : are there any lights on 
in the room? 
sub-answer (by oracle) : yes 
main-answer : ❌ bright 

===== Ours ===== 
sub-question : is there a lot of light in 
the room? 
sub-answer (by oracle) : yes 
main-answer : ✅ very

main-question : what season of the year 
is it? 
sub-question : is there snow?

GT main-answer : winter 
UNITER baseline pred :❌ summer 

===== w/o RL ===== 
sub-question : is there snow on the 
ground? 
sub-answer (by oracle) : yes 
main-answer : ✅ winter 

===== Ours ===== 
sub-question : is there snow outside? 
sub-answer (by oracle) : yes 
main-answer :✅ winter

main-question : which seems the most 
modern element in the room? 
sub-question : what object in the room is 
electric?

GT main-answer : microwave 
UNITER baseline pred :❌ on right 

===== w/o RL ===== 
sub-question : is there a microwave on 
the counter? 
sub-answer (by oracle) : yes 
main-answer :✅ microwave 

===== Ours ===== 
sub-question : is there a microwave in 
the kitchen? 
sub-answer (by oracle) : yes 
main-answer :✅ microwave

main-question : how well are the 
elephants able to hide? 
sub-question : is the surrounding 
vegetation taller than the elephants?

GT main-answer : not well 
UNITER baseline pred :❌ very 

===== w/o RL ===== 
sub-question : are the elephants in 
the wild? 
sub-answer (by oracle) : yes 
main-answer :❌ crossed 

===== Ours ===== 
sub-question : is there a lot of 
space between the elephants? 
sub-answer (by oracle) : no 
main-answer : ❌ crossed

main-question : what is peeking out of 
the grass? 
sub-question : what color is the bear?

GT main-answer : bear 
UNITER baseline pred :❌ cow 

===== w/o RL ===== 
sub-question : what color is the grass? 
sub-answer (by oracle) : green 
main-answer :❌ cow 

===== Ours ===== 
sub-question : is there grass on the 
ground? 
sub-answer (by oracle) : yes 
main-answer :❌ cow

Figure 3. Some qualitative examples of the results. The top part of each result shows the ground-truth annotations and the prediction
result by the Target VQA model in UNITER baseline. The middle part shows the sub-question generated by our model, the sub-answer
predicted by the Teacher VQA model, and the prediction results of the Target VQA model with additional inputs of the sub-question and
the sub-answer. In the lower part, the results using the sub-questions generated by the model without RL loss are shown.

quire information by generating multiple sub-questions.
However, asking too many questions would be burdensome
to the answerer, thus, future research will require to con-
sider the trade-off between efficiency (i.e., how few ques-
tions to ask) and accuracy.
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