
Supplementary Material:
Coupling Vision and Proprioception for Navigation of Legged Robots

Zipeng Fu*1 Ashish Kumar*2 Ananye Agarwal1 Haozhi Qi2 Jitendra Malik2 Deepak Pathak1

1Carnegie Mellon University 2UC Berkeley

1. Locomotion Policy Details

Base Policy & Env-Factor Encoder Architecture: We fol-
low the implementation of [3]. The base walking policy is a
multi-layer perceptron (MLP) with 3 hidden layers. The in-
put is the current state xt ∈ R30, previous action at−1 ∈ R12

and the extrinsics vector zt ∈ R8 and the output is 12-dim
target joint angles. The dimension of hidden layers is 128.
The extrinsics vector zt is estimated by an environment fac-
tor encoder. The environment factor encoder is a 3-layer
MLP (256, 128 hidden layer sizes) and encodes et ∈ R17

into zt ∈ R8.

Adaptation Module Architecture: The adaptation module
first embeds states and actions into 32-dim vector using a
2-layer MLP. Then, a 3-layer 1-D CNN convolves the rep-
resentations across the time dimension to capture temporal
correlations in the input. The input channel number, output
channel number, kernel size, and stride of each layer are
[32, 32, 8, 4], [32, 32, 5, 1], [32, 32, 5, 1]. The flattened CNN
output is linearly projected to estimate ẑt.

Learning the Walking Policy: We jointly train the base
policy and the environment encoder network using PPO [5]
for 15, 000 iterations (1.2B sample, 24 hours) each of which
uses batch size of 80, 000 split into 4 mini-batches. We then
train the adaptation module using supervised learning with
on-policy data. We run the optimization process for 1000
iterations (80M samples, 3 hours) and use Adam optimizer
[2] to minimize MSE loss. The batch size is 80, 000 split up
into 4 mini-batches.

Reward Function: The reward at time rt is defined as the
sum of the following quantities:

• Velocity Matching: −|vx − vcmd
x | − |ωyaw − ωcmd

yaw |
• Energy Consumption: −τT q̇
• Lateral Movement: −|vy|2
• Hip Joints: −‖qhip‖2

The corresponding scalings are 20, 0.075, 1 and 0.2. The
survival bonus is set by a simple rule as 10 + 20(vcmd

x +
ωcmd
yaw).

We list the ranges of command linear velocity and angu-

Task Command Linear Velocity
Range (m / s)

Command Angular Velocity
Range (rad / s)

Curve Following [0.15, 1.0] [-0.4, 0.4]
In-Place Turning [0, 0.15] [-0.6, 0.6]

Table 1. Command velocity range for curve following and in-place
turning.

lar velocity in Supplementary Table 1. We re-sample the
command velocities within a single episode with probability
0.004.

2. Safety Advisor Details

Hyperparameters: Velocity changes in Fall Predictor and
the size of obstacles in Collision Detector are set by simple
rules. For instance, (a) if a fall is predicted, the safety advi-
sor module decreases the velocity limit by a large amount
(we pick 0.2 m/s), so the robot can slow down quickly; (b)
otherwise, it increases the velocity limit by a small amount
(we pick 0.05 m/s) for conservative speed up; (c) the size of
obstacles in Collision Detector (9cm x 3cm) is set to roughly
be the size of the head of the robot. Additional real-world
experiments [link] show that if the obstacle is set to be larger,
the robot will take a more conservative path around the un-
expected obstacle. If the obstacle is set to be smaller, the
robot takes a shorter path but risks colliding legs with the
unexpected obstacle.

Network Structure: Similar to the adaptation module, both
the collision detector and fall predictor module share the
same architecture and embed states and actions into a 32-
dim vector using a linear layer. Then, we use 3 layers of
1D convolutions with input channels, output channels and
strides [32, 32, 8, 4], [32, 32, 5, 1], [32, 32, 5, 1]. The output
is a sigmoid scalar.

Training Data and Environments: The scalar sigmoid out-
put predicts a probability value, indicating whether the robot
collides with an obstacle in the Obstacle Detector, or if the
robot falls at time t + 100 and 0 otherwise (note that one
simulation time-step is 0.01s) in the Fall Predictor. We
train both modules in an self-supervised fashion by collect-

https://youtu.be/OAEOZV76PcY

ing data from robot walking / colliding with the obstacles
/ falling down. Data are collected given random command
linear/angular velocity commands in environments with ran-
domly sampled frictions, terrain roughness and payload val-
ues from the following list:

• Coefficient of Friction: [0.1, 0.6, 1.1, 1.6, 2.1].
• Payload: [1.2, 2.4, 3.6, 4.8, 6.0] (kg).
• Rough Terrain z-scale: [0.01, 0.08, 0.14, 0.23] (m).
• Linear Velocity: [0, 0.5, 1.0] (m/s).
• Angular Velocity: [−0.4, 0.0, 0.4] (rad/s).

We train both Obstacle Detector and Fall Predictor for 145k
iterations with a batch size of 1000. At simulation test time,
we run both the collision detector and fall predictor at 5Hz
whereas for deployment on robot we train a lightweight ver-
sion using only the last 20 timesteps of observation history
and run it at 10Hz.

3. Visual Planner Details
We command the angular velocity for our robot and the

baseline LoCoBot using the following equation:

ωcmd
t = Kp · (θtargett − θt) +Kd · (ωtarget

t − ωt) (1)

whereKp = 1,Kd = 0.02, ωtarget is set to 0. The command
angular velocity is clipped to the range in Supplementary
Table 1 before being sent to the locomotion policy in order
to be consistent with the training setting. We also observe
that when the linear speed is low (less than 0.1m/s), the
locomotion policy is unable to make in-place turns with a
small commanded angular velocity, due to the imperfection
of our locomotion policy. Thus in this case we clip the ab-
solute value of the commanded angular velocity to be at
least 0.4 to compensate this imperfection. We empirically
observe a higher performance even when the command is
sub-optimal, mainly because our planning algorithm oper-
ates in a relatively high frequency and can soon correct the
angular velocity command as soon as the linear velocity
becomes large enough.

4. LoCoBot Baseline &
Discrete Planner Details

We import the PyRobot URDF model [4]. Both our
method and the LoCoBot use a control frequency of 100Hz
and a planning frequency of 10Hz. We follow [1] to con-
vert commanded linear and angular velocity to the angular
speed of the left and right wheel of the LoCoBot. We set
the forward action of the discrete planner at 0.6 m/s after
we measured the average speed of the continuous planner
in the same evaluation environment is around 0.6 m/s. The
low level controller is also a PD controller with Kp = 10,
Kd = 0.05. The controller gain is adjusted so that no ob-
vious motion jerk happens during movement. Since the
control of wheeled robot is simpler and more accurate, we

500500 500

500

190goal direction Robot
Position

193

192

gradient direction

Figure 1. An example of local minima produced by the map. The
gray square represents the non-traversible areas. The white square
represents the traversible regions. The number in each square
represents the cost on that point. At the current position, the robot
will orientes to the bottom left which the linear velocity commands
will command 0 velocity, in which case the robot got stuck in the
local minima.

do observe the LoCoBot being more likely to stuck in local
minima in the cost map (an illustration is shown in Sup-
plementary Figure 1). For our robot, since the locomotion
policy is not perfect and the legged robot is harder to control
compared with LoCoBot, it sometimes can get out of the
local minima due to the noisy movement, which is the reason
why we perform better in the perfect flat ground (Table 4 (a)
and (b) in the main text). However, we want to emphasize
again that our point here is not to show our robot performs
slightly better than baseline in the flat ground. Instead, what
we show is the ability to traverse and navigate over difficult
terrains where LoCoBot easily fail (Table 4 (c), (d), and (e)
in the main text).

References
[1] Gregory Dudek and Michael Jenkin. Computational principles

of mobile robotics. Cambridge University Press, 2010. 2
[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 1
[3] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik.

RMA: Rapid Motor Adaptation for Legged Robots. In RSS,
2021. 1

[4] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,
Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav
Gupta. Pyrobot: An open-source robotics framework for re-
search and benchmarking. arXiv:1906.08236, 2019. 2

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017. 1

