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A. Supplementary Material
This supplementary material contains the implementa-

tion details (Section A.1) and the complete ablation studies
(Section A.2) of our work.

A.1. Implementation Details

Referring Expression Segmentation. Following previous
work [1, 6, 9, 11], we limit the maximum length of expres-
sions to 20. We set input image size to 512 × 512 and
640 × 640 for training and inference phase respectively.
We use the first four layers of DeepLabv3+ with ResNet-
101 backbone, pre-trained on COCO dataset by exclud-
ing images appear on the validation and the test sets of
UNC, UNC+ and G-Ref datasets similar to previous work
[4, 7, 12]. Thus, our low-level visual feature map I has the
size of 64×64×64×1032 in training, and 80×80×1032
in inference phase, both including 8-D location features. In
all convolutional layers, we set the filter size, stride, and
number of filters (ch) as (5, 5), 2, and 512, respectively.
The depth is 4 in the multimodal encoder part of the net-
work. We apply dropout regularization [10] to language
representation r with 0.2 probability. We use Adam opti-
mizer [5] with default parameters. We freeze the DeepLab-
v3+ ResNet-101 weights. There are 32 examples in each
minibatch. We train our model for 20 epochs on a Tesla
V100 GPU with mixed precision and each epoch takes at
most two hours depending on the dataset.
Language-guided Image Colorization. Unless otherwise
speficied, we follow the same design choices applied for the
referring expression segmentation task. We set the number
of language-conditional filters as 512, replace the LSTM
encoder with a BiLSTM encoder, and we use the first two
layers of ResNet-101 trained on ImageNet as image encoder
to have a similar model capacity and make a fair comparison
with the previous work [8]. We set input image width and
height to 224 in both training and validation. Thus, the low-
level visual feature map has the size of 28×28×512, and we
don’t use location features. Additionally, in our experimen-
tal analysis, we consider the same design choices with pre-

vious work [8, 13]. Specifically, we use LAB color space,
and our model predicts ab color values for all the pixels of
the input image. We perform the class re-balancing proce-
dure to obtain class weights for weighted cross entropy ob-
jective. We use 313 ab classes present in ImageNet dataset,
and encode ab color values to classes by assigning them to
their nearest neighbors. We use input images with a size of
224× 224, and output target images with a size of 56× 56
which is same with the previous work.

A.2. Ablation Studies

We performed additional ablation experiments on refer-
ring expression segmentation task in order to understand the
contributions of the remaining components of our model.
We share results in Table A1. Each row stands for a dif-
ferent architectural setup. Horizontal lines separate the dif-
ferent ablation studies we performed, and first column de-
notes the ablation study group. Columns on the left deter-
mine these architectural setups. ✓on the Top-down column
indicates that the corresponding setup modulates top-down
visual branch with language, and similarly ✓on the Bottom-
up column indicates that the corresponding setup modulates
bottom-up visual branch with language. Depth indicates
how many layers the multi-modal encoder has. Layer in-
dicates the type of language-conditional layer used. Visual
and Textual indicates which visual encoder and textual en-
coder used for the corresponding setup, respectively. The
remaining columns stand for results.
Network Depth (2). We performed experiments by varying
the depth size of the multi-modal encoder. We originally
started with the depth size of 4. Increasing the depth size
slightly increased the scores for some metrics, but more im-
portantly, decreasing the depth size caused the model to per-
form worse than the bottom-up baseline. This happens be-
cause decreasing the depth size shrinks the receptive field of
the network, and the model becomes less capable of draw-
ing conclusions for the scenes that requires to be seen as a
whole in order to fully understand.
FiLM vs. Language-conditional Filters (3). Another
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# Top-down Bottom-up Depth Layer Visual Textual p@0.5 p@0.6 p@0.7 p@0.8 p@0.9 IoU

1
✓ 4 Conv ResNet-50 LSTM 66.40 58.59 49.35 36.01 13.42 58.06

✓ 4 Conv ResNet-50 LSTM 71.40 65.14 57.36 45.11 19.04 60.74
✓ ✓ 4 Conv ResNet-50 LSTM 75.12 70.08 63.32 50.50 22.29 63.59

2
✓ ✓ 3 Conv ResNet-50 LSTM 69.96 63.13 55.04 41.33 15.98 60.23
✓ ✓ 4 Conv ResNet-50 LSTM 75.12 70.08 63.32 50.50 22.29 63.59
✓ ✓ 5 Conv ResNet-50 LSTM 75.56 70.59 63.82 51.68 22.84 63.52

3 ✓ ✓ 4 Conv ResNet-50 LSTM 75.12 70.08 63.32 50.50 22.29 63.59
✓ ✓ 4 FiLM ResNet-50 LSTM 71.18 65.14 57.32 44.66 18.75 61.12

4 ✓ ✓ 4 Conv ResNet-50 LSTM 75.12 70.08 63.32 50.50 22.29 63.59
✓ ✓ 4 Conv ResNet-50 BERT 75.60 70.39 63.05 49.93 21.16 63.57

5 ✓ ✓ 4 Conv ResNet-50 LSTM 75.12 70.08 63.32 50.50 22.29 63.59
✓ ✓ 4 Conv ResNet-101 LSTM 76.67 71.77 64.76 51.69 22.73 64.63

Table A1. The complete ablation studies on the UNC validation set with p@X and overall IoU metrics.

method for modulating language is using conditional batch
normalization [2] or its successor, FiLM layers. When we
replaced language-conditional filters with FiLM layers in
our model, we observed ≈2.5 IoU decrease. This is natural,
since the FiLM layer can be thought as grouped convolu-
tion with language-conditional filters, where the number of
groups is equal to number of channels / filters.
LSTM vs. BERT as language encoder (4). We also exper-
imented with BERT [3] as input language encoder in addi-
tion to LSTM network. We update BERT weights simulta-
neously with the rest of our model, where we use a smaller
learning rate for BERT (0.00005). We use the CLS out-
put embedding as our language representation r, than split
this embedding into pieces to create language-conditional
filters. Our model achieved similar quantitative results us-
ing BERT as language encoder. This points out a language
encoder pre-trained on solely textual data might be sub-
optimal for integrating vision and language.
The impact of the visual backbone (5). We first start
training our model with DeepLabv3+ ResNet-50 backbone
pre-trained on Pascal VOC dataset. Then, we pre-trained a
DeepLabv3+ with ResNet-101 backbone on COCO dataset
by excluding the images appear on the validation and the
test splits of all benchmarks similar to the previous work
[4,7,12]. We only used 20 object categories present in Pas-
cal VOC. Thus, using a more sophisticated visual backbone
resulted with ≈ 1 improvement on the IoU score.
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