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A. Additional Details in Benchmark Setup

Dataset and benchmark setup. In order to construct our
benchmark, we start from the 118,287 images in the training
split of the MS-COCO dataset [6]. We split the images with
a 4:1:1 ratio for the train/validation/test sets. Our bench-
mark is designed for the task of composing the concepts
(which are object categories in this work) specified in the
input queries for image retrieval. For this aim, we need to
generate compositions of individual concepts that are well
presented in a sufficient amount of images to serve for the
retrieval. We choose 8:2:2 as the splitting thresholds for the
train/validation/test splits. This means that a composition
of concepts is valid only if it is present in at least 8 of the
images in the training set, and 2 of the images in the val-
idation and testing sets respectively. These values ensure
that there is enough diversity in the training phase and also
multiple correct answers (i.e. more than 1) in the evaluation
phase. Using these thresholds allows us to find 1000 viable
compositions for using either 2, 3 or 4 input queries. Algo-
rithm A details the process of generating a compositions of
k inputs. We will release our benchmark upon acceptance.
Training. During training, for every concept (i.e. category)
in the compositional inputs, we randomly choose an image
id containing that concept, and also randomly pick either
the visual or textual the modality to represent it. The target
image is chosen randomly from the images that contain all
the k concepts specified in the inputs, but the modality is
fixed to visual as we aim to solve an image retrieval task.
Evaluation. At test time, we evaluate for composing k in-
puts (with k fixed for an evaluation setup). The test queries
are described by k concepts and we generate all the test
queries randomly to obtain a roughly equal mix of modal-
ity combinations. For example, for k = 2, we will have
around 25% cases for each modality mixture in {image-
image, image-text, text-image, text-text}.

We also establish evaluation setups to test the model’s
ability of recognizing unseen compositions for retrieval,
as well as testing the model’s ability of identifying feasi-
ble/infeasible compositions. For the case of testing unseen

compositions, we use k = 2 and generate 100 compositions
of different concepts for training and 500 new compositions
of different concepts for testing, where the concepts at test
time are seen during training but their compositions are un-
seen. We choose to use only 100 compositions for the train-
ing phase but 500 unseen compositions to simulate a more
challenging evaluation setup. For testing the model’s ability
of identifying feasible/infeasible compositions, we build the
evaluation setup upon the data generated for the seen com-
positions scenario for k = 2. On top of the 1000 compo-
sitions, we generate an additional 250 unseen compositions
and 250 infeasible compositions. An infeasible composi-
tion is defined as infeasible given that it is not found in any
image across all the images in the dataset.

B. Numerical Results
We present the numerical results used to generate Fig-

ure 4 in the main paper. Figure 4 shows the model perfor-
mance when being trained to compose two inputs but tested
on composing a varying number of inputs (i.e. 2, 3 and 4).
We present these numerical results in Table A.

C. Additional Evaluation

Training with more inputs. In the main paper, we explored
the scenarios where we train our model to compose two and
three query inputs. However, our model formulation is not
limited to a fixed number of inputs. Hence, we further ex-
plore the scenario where we train the models to compose
four query inputs here. Table B contains the results for
the top performing models when trained to compose four
query inputs and be evaluated on a seen composition setup.
As we can see, our model MPC achieves the best perfor-
mance on the composition of multimodal and text-only in-
puts, obtaining a R@5 of 5.98%/8.46% vs 4.76%/7.40% by
the best competitor MRN. Although MPC does not surpass
TIRG on the compositions of image-only inputs, its perfor-
mance is quite close to TIRG, obtaining a R@5 of 2.76%
vs 3.40%. Another interesting observation is that while
the other probabilistic model PCME+addition performs rel-
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Algorithm A Algorithm for generating a compositions of k concepts (i.e. categories)

compositions set← empty set ▷ initialize a set to store the compositions of k concepts
num of compositions← 0 ▷ record the number of found compositions in dataset
target num of compositions← 1000 ▷ expected number of compositions to be found
threshold {train/val/test} ← 8 : 2 : 2 ▷ minimal numbers of compositions in the train/val/test splits
while num of compositions < target num of compositions do

cur composition← sample k categories w/out replacement ▷ get images for the current composition of k concepts
images {train/val/test} ← get {train/val/test} images that contain “cur composition”
if len(images {train/val/test) ≥ threshold {train/val/test} then

if cur composition not in compositions set then
compositions set.insert(cur composition) ▷ add a found composition to the set
num of compositions ++

end if
end if

end while

Input modalities images only multimodal texts only
Number of inputs 2 3 4 2 3 4 2 3 4

MRN [4] 28.17 6.55 0.97 34.84 7.88 1.49 42.48 8.01 2.57
TIRG [7] 31.58 7.52 0.16 26.85 5.60 0.03 51.43 4.94 0.00
PCME [2] + addition 21.85 10.19 4.87 29.41 15.65 7.95 44.43 20.34 11.48

MPC 36.52 18.93 6.17 48.23 27.73 11.85 69.42 41.02 14.35
Table A. Numerical results of model performance trained for composing 2 inputs but evaluated for composing 2, 3, and 4 inputs. Results
are accompanied to Figure 4 in the paper. Metrics: R@10 (%).

Method
images only multimodal texts only

R@5 R@10 R P R@5 R@10 R P R@5 R@10 R P
MRN [4] 2.11 5.19 0.50 4.76 8.44 1.03 7.40 11.78 1.51
TIRG 3.40 6.98 0.63 4.73 7.98 0.97 7.10 9.67 1.21
PCME + addition 0.00 0.16 0.01 0.13 0.19 0.31 0.00 0.00 0.00

MPC 2.76 5.52 0.59 5.98 10.03 1.30 8.46 16.77 1.95
Table B. Evaluation of composing four query inputs for image retrieval on a seen composition setup.

atively well when composing two or three inputs, its perfor-
mance degrades when composing four inputs. This suggests
that composition with addition is weaker at preserving the
information from more inputs, while our MPC model for-
mulation with probabilistic composer can better capture the
additive information from the increasingly more inputs.
Evaluation on Fashion200k. In the main paper, we showed
how our model is capable of composing queries of arbi-
trary sizes and modalities. In this section we want to show-
case the performance of our model on the problem of im-
age retrieval using image and attribute-based text feedback
[1, 5, 7]. This is a slightly different setting than our original
problem, as in this case the aim is to model the interactions
between the image and text queries instead of adding them
together. Fashion200k [3] is a dataset that contains around
200k images of fashion products. Each image is tagged with
a set of attributes. Using these attributes, [7] generated pairs
of products that differ by only one attribute. The text mod-
ifications are generated using the attribute that is different
between the 2 products. Table C contains the results on the
Fashion200k dataset. We limited our comparisons to meth-

Method R@1 R@10 R@50
Relationship 13.0 40.5 62.4
Film 12.9 39.5 61.9
MRN 12.3 39.4 60.9
TIRG 14.1 42.5 63.8
PCME + addition 1.8 11.4 27.3

MPC 14.6 45.4 66.0
Table C. Retrieval results on the Fashion200k dataset.

ods that are capable of modeling the original task in the
paper. Other methods [1, 5] have better performance, but
use complex network architectures, specialized on this task,
that can not be used to model arbitrary queries. Because
of this, we chose to not add them to the comparison. As
we can see, our model MPC achieves the best performance
among the compared methods. We can also see that using
simple additions of probabilistic embeddings (i.e. PCME
+ addition) is not capable of modeling the interactions be-
tween the image and text parts of the query, leading to poor
results. These results show that our MPC also generalizes
well on the other benchmark dataset Fashion200k.
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