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ETH Zürich

andrey@vision.ee.ethz.ch

Radu Timofte
JMU Würzburg, ETH Zürich
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Abstract

Monocular depth estimation has been studied as a
classic and learning based computer vision problem for
decades. However, little attention received the efficiency
and the deployment of methods on mobile hardware. All
publicly available datasets have severe limitations related
to their applicability to camera data captured with real mo-
bile devices. For instance, the main issues with current
datasets include (but not exhaustively) low quality of im-
ages due the cameras or collection methods, domain specifi-
cally generated datasets as is the case for autonomous driv-
ing, small number of samples, sparse depthmaps, etc. In
response, we introduce PhoneDepth, a novel dataset that
aims to take advantage of modern phones hardware and
professional stereo cameras. Depthmaps are acquired from
three sources: Time of Flight sensor, Dual Pixel sensor
and stereo camera; while the images correspond to mobile
phone photos. We prove its high value by training neu-
ral networks with multiple depth supervision, fine-tuning
on other datasets and for depth refinement. Along with the
dataset we present benchmark models and a toolbox to fa-
cilitate the dataset usage.

1. Introduction
The understanding of an environment in the 3D world

has been studied for a number of years in the computer vi-
sion community due to its wide range of applications in-
cluding robotics, mapping, measuring, etc. For instance,
early methods focused merely in the optical characteristics
of cameras, including techniques such as SLAM, structure
from motion (SfM), visual odometry [12, 23, 26]. These
generally acquire sparse data, are computationally demand-
ing and require special equipment to compute real scale
data. Furthermore, they depend on many parameters that
need to be set manually according to the application or sce-
nario in mind.

Furthermore, there exist some hardware based ap-
proaches to solve this problem such as RGB-D cameras that
provide dense depthmaps but have low resolution and small

range of measurement as stated by [19, 20, 33]. LIDAR
is another hardware technology able to acquire highly accu-
rate depthmaps although quite sparse and with a high sensor
cost [7, 18].

It is natural then that camera based approaches are de-
sirable to improve performance, resolution and costs of
depth estimation solutions. In this context, multiple deep-
learning based methods have been developed for monocular
depth estimation where only a single image or stream for a
single camera is used to render corresponding depthmaps.
The accuracy of deep learning algorithms tends to outper-
form more classical methods, however they also tend to
need heavy computing hardware for example in the cases
of [8, 13, 31, 34].

Data is the center of deep-learning algorithms, and as
such a crucial part for advances in visual depth estima-
tion. However, it is significantly difficult to acquire due
to special equipment needs, calibration, non-trivial post-
processing, etc. Hence, available datasets tend to be spe-
cialized into some niche which increases biases to this geo-
metric problems. For instance, KITTI [29], Cityscapes [6]
and Synthia [24] show predominantly self-driving datasets,
Megadepth [17] includes mostly touristic places, NYU [21]
focuses on domestic indoor scenarios, being MAI [14] and
Megadepth [17] the broader in context.

Additionally, these datasets are acquired with out-dated
technologies, neglecting newer cameras, resolutions and
hardware now available in mobile devices such as factory-
calibrated cameras, in-built time of flight sensors (ToF) and
modern camera sensors. Therefore, we find the need to ac-
quire a new dataset that leverages these technologies to im-
prove depth acquisition in mobile devices.

In this paper, we propose a novel dataset with multiple
depth sources meant to especially aid deep learning prob-
lems for light-weight networks to be used with mobile and
hardware restricted devices.

2. Related work
Even though there are multiple depth-from-image learn-

ing based techniques, the datasets used have been relatively
stagnant. Therefore, there has been a somewhat tacitly ac-
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cepted over-fitting to these contexts. We here describe a
selection of the most important datasets in the domain, their
drawbacks and advantages. Table 1 summarizes their main
characteristics.

MAI. The Mobile AI depth estimation challenge
dataset [14] provides with image to depthmap correspon-
dences. It comprises of 8K samples that were acquired in
outdoors environments using a ZED-camera for both color
image and depthmap collection. They all have VGA reso-
lution (640x480), which is quite low compared to cameras
in phones. RGB images are collected as regular 8-bit pho-
tos while depthmaps are represented as 16bit images, giving
enough bit-depth to represent the ZED-camera sensor accu-
racy of 0.2m at distances below 8m.

Megadepth. The Megadepth dataset [17] was intro-
duced as one of the largest datasets for the monocular depth
estimation problem with a total of 130K images among
which 100K are depthmaps and 30K ordinal. Ordinal im-
ages simply indicate relative depth order between two con-
textual objects in the same image. They collect images
from an internet dataset of photos taken from different lo-
cations and follow 3D estimation with classical methods
such as Multi-view-stereo (MVS) and Structure from Mo-
tion (SfM). Outliers are filtered in multiple stages based on
applying more conservative constraints to the MVS prob-
lem and using semantic filtering. They use a categorization
of foreground, background and sky objects to automatically
eliminate semantically inconsistent pixels. The depthmaps
are partially dense in the sense that they are filtered in a way
that large continuously valid pixels are present in the image.
However, most images have large portions of invalid pixels
that are masked out. Furthermore, the quality of the color
images is dubious since they are all photos collected from
the internet. Hence, motion blur, noise, and lack of detail
in the photos are common issues in this dataset that would
propagate inaccuracies through the 3D reconstruction pro-
cess.

NYU. As the first dataset that collected dense-depth
samples for images, the NYU dataset [21] has been a popu-
lar option. Their main aim was to acquire data to understand
surfaces and their interactions in 3D environments. How-
ever, part of the dataset corresponds to images with corre-
sponding depthmaps. It was collected from video record-
ings of Microsoft’s Kinect devices including an RGB source
and a structured-light based depth source. As the videos are
not static, the number of images is severely pruned to a to-
tal number of 1449 image-depth correspondences (synchro-
nized). The resolution of these images is VGA (640×480)
which alike MAI, is quite low if we compare them to cur-
rent phones’ camera resolutions. Furthermore, due to the
low number of samples this dataset provides, deep learn-
ing approaches often over-fit as shown in [1]. Additionally,
this dataset is only representative for indoor environments,

which are generally easier to learn than outdoors due to a
lower variance in the image distribution.

Make3D. This dataset presented in [2, 25] was the pio-
neer for single-image depth estimation. It contains 534 im-
ages separated as 400 training as 134 testing. Images have a
constant size of 2272×1704 which is representative of mod-
ern phone cameras. However, the depth maps resolution is
very low for detailed structures (305×55) as they were col-
lected with custom-made 3D laser scanner. Furthermore,
images are collected in a variety of similar outdoors scenes,
given some degree of variance in the dataset distribution.
Unfortunately, the size of this dataset is quite reduced and
even though it was used for training in early methods, it
was later adopted mostly for generalization testing in works
such as [10, 17].

Cityscapes. With another learning task, the Cityscapes
dataset proposed in [6] mainly for semantic segmentation
contains a range of images collected in 50 different cities.
Each instance of this dataset comprises a semantically la-
belled stereo pair. Therefore, for depth prediction purposes,
the semantic labels are usually disregarded and the stereo
pair is used to retrieve depth information. Each image has
a resolution of 1024×2048 adding up to a total number
of 20K frames. Mostly unsupervised and self-supervised
methods use this dataset including works in [3,5,9,10,31].
From these, all except from the second show that pre-
training on Cityscapes results in better results when fine-
tuning especially on KITTI. However, it has been shown
that in semi-supervised methods (where some ground-truth
is available for training in the form of sparse depth usually)
accuracy is improved dramatically due to the inevitable un-
certainties of stereo-matching especially in occluded re-
gions. This is evidenced for example in studies such as
[7, 16, 32] where they experience significant performance
improvements.

KITTI. As the most well known self-driving dataset,
KITTI [29] presents with images and their corresponding
dense depthmap. The depthmaps are acquired by projecting
points scanned via a LIDAR sensor into calibrated camera
frames. Even though the LIDAR sensor used is of high res-
olution, the depthmaps acquired are still sparse and missing
some details that are usually dealt with by leveraging inter-
polation or sparse supervision. The dataset provides a total
of 93k samples corresponding to 56 scenes and with a res-
olution of 1224×368. It is also used to benchmark differ-
ent geometric tasks for autonomous driving including visual
odometry and stereo learning as it also has some sequences
with ground truth pose.

DDAD. Another self-driving related dataset is the so
called Dense Depth for Autonomous Driving (DDAD) pre-
sented in [11]. This dataset was collected with a simi-
lar set-up to KITTI but on a fleet of cars over multiple
cities in the United States and Japan. The samples con-
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tain monocular images covering the 360 degrees around
the car as well as high density LIDAR scan covering the
same range. The depthmaps projected to each image are
not dense, in fact they are sparser than KITTI. However,
the images are of higher quality and resolution with im-
age sizes of 1936×1216. Additionally, the different di-
rections of the cameras provide different street perspectives
that KITTI lacks. In total, it provides with 16600 samples
each containing 6 images and a 360 degree synchronized
LIDAR scan that can be projected to each image frame.

nuScenes. The nuScenes dataset [4] compiles a range of
streams also related to autonomous driving. It is the public
dataset that collects the most number of data-streams in its
domain. It includes 360 degree coverage around the vehicle
with cameras, a LIDAR sensor and radars. It additionally
includes 3D location of 23 semantic classes present around
each scene. The dataset collects 93k fully annotated images
from which they also form 13 sample sequences. The im-
ages have a resolution of 1600×900 and the LIDAR scans
can be projected to the images although the depthmaps re-
sulting are quite sparse. since the laser scanner only has 32
beams meaning very limited vertical resolution.

In general, all datasets that serve single-image depth es-
timation have caveats of different characteristics given the
collection difficulty and sometimes hardware restrictions.
Common issues include too small datasets, low image reso-
lution, and highly sparse depthmaps. Furthermore, no other
dataset collects depth from multiple sensor sources neither
with the aim of aiding depth estimation in mobile phones
and real-time.

3. PhoneDepth Dataset
In this section, we present a novel PhoneDepth dataset

and describe its contents, data collection and processing se-
tups.

3.1. Dataset Description

The dataset is composed of 6035 image sets containing
1202 outdoor and 4833 indoors scenes. The data was col-
lected using two modern smartphones and a professional
ZED stereo camera [22] that demonstrates an average depth
estimation error of less than 0.2m for objects located closer
than 8 meters. All the dataset was acquired in the city of
Zürich. Indoors samples were captured inside university
and residential buildings adding up to a total of 17 build-
ings. Each building includes on average 20 sites. Out-
door images correspond to sidewalk views, houses, facades,
parks, gardens, etc. of 8 neighborhoods from which 3
were highly urban and 5 suburban. The phones used were
a Huawei P40 Pro with a dedicated Time-of-Flight (ToF)
depth sensor, and a Google Pixel 2 device estimating depth
maps using the dual pixel technology. In the next sections,
these phones are named as Phone 1 and Phone 2, respec-

Figure 1. Sample data from the PhoneDepth dataset (the left col-
umn corresponds to Phone 1, right - to Phone 2). From top to bot-
tom: the original RGB phone image, phone depth map, projected
depth from the stereo camera, and corresponding confidence map.

Figure 2. The rig setup used for the dataset collection. Phone 2 is
on the left, Phone 1 is on the right, and the Zed camera is in the
middle. A portable laptop is also shown on this photo.

tively. All devices were mounted on a rig to fix their rela-
tive position and get an accurate projection of the captured
stereo depth maps to phone frames.
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(a) Stereo image (b) Stereo depthmap

(c) Phone image (d) Calibration based projection (e) Dense matching

Figure 3. Depiction of depth transfer from stereo frames to phone frames

Each collected image set from the PhoneDepth dataset is
composed of the following data:

1. Two original full-resolution RGB photos captured us-
ing the standard mobile cameras installed in the con-
sidered smartphones;

2. Two coarse depth maps acquired with mobile sensors
(ToF and dual-pixel) installed in the Huawei P40 Pro
and the Google Pixel 2 phones;

3. RGB image, an accurate HD-resolution 16-bit depth
map and the associated confidence map collected with
the ZED stereo camera.

Figure 1 demonstrates the collected data taken from a
sample set. Note that the depth maps obtained with phones
hardware tend to be inaccurate due to the small space they
need to be fit into. Additionally, phone sensors have a lim-
ited bit-depth of 8-bits, thus quantization artifacts are usu-
ally an issue (see Phone 2 depth), though they might show
a better edge sharpness than the stereo depth maps.

3.2. Data collection protocol

To ensure a high quality of the dataset, we performed the
data collection following several important steps. First, a
special dataset collection software was developed to acquire
phone and stereo camera data synchronously while requir-
ing no manual manipulations with the devices. Next, we ex-
plored numerous indoor and outdoor scenes during 21 days,
within which the tripod height was varied to get perspective

variations. Finally, during the dataset collection period, the
rig was standing still and only scenes with no motion were
captured to avoid invalid depth predictions and projections
due to objects movement. Hence, strict sensor synchroniza-
tion was not needed.

3.3. Image/Depth sources

This subsection provides the resolutions and some other
characteristics of the captured data. Phone 1 collects RGB
photos of resolution of 4096×3072px, while its ToF sen-
sor captures depthmaps of size 1027×768 with a field of
view (FOV) of 78 degrees. Phone 2 retrieves photos and
depthmaps of resolution 2686×2016, and its dual pixel sen-
sor has a FOV of 55 degrees. Lastly, the ZED camera and its
custom software allows to acquire images and depthmaps of
resolution 1280×720px with a 90 degree FOV. We analyzed
the features from its SDK used to obtain dense depthmaps
and disabled the texture confidence filtering option while
allowed for 90% stereo matching confidence. Furthermore,
we set the measuring depth to lie between 0.2 and 10m to
avoid excessive depth uncertainty.

3.4. Depth transfer

The last step to get our dataset was to project the stereo
based depthmaps to the corresponding phone frames. To do
so, we used the state-of-the-art deep learning based dense
matching technique called the PDCNet [28]. This method
estimates a dense flow field relating two images and allows
to transfer depthmaps between images having a different ge-
ometry / field of view by using a homography based model
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Dataset Samples Image res-
olution

Depth res-
olution

Image source Depth source Confidence
map

True
depth

depthmap
density

Context

MegaDepth 121K (19K
ordinal)

1400x1000
(avg)

1400x1000
(avg)

Internet images (mostly
tourist style)

MVS No No Medium Landmark tourist
attractions

MAI 7385 640x480 640x480 ZED Camera ZED Camera
(Stereo)

No Yes High City Outdoors
(Zurich)

NYU 1449 640x480 640x480 Microsoft Kinect Microsoft Kinect No True High Indoors rooms
Make3D 534 2272x1704 305x55 Custom 3D scanner Custom 3D scan-

ner
No Yes High Outdoors (cam-

pus, street)
Cityscapes 20K 2048x1024 Inexistent

(stereo
pairs)

HDR stereo videos Inexistent (from
stereo)

No No Not pro-
vided

Cities roads

KITTI 93K 1224x368 1224x368 Stereo Pair LIDAR No Yes Medium Cities road (self-
driving)

DDAD 16.6K 1936x1216 30k points
per frame

6 cameras 360 degree LIDAR (Luminar
H2)

No Yes Medium Cities roads (self-
driving)

nuScenes 93K 1600x900 32 beam
LIDAR

6 cameras 360 degree LIDAR No Yes Low Cities roads (self-
driving)

PhoneDepth
(ours)

6035 4096x3072
and
2686x2016

1027x768,
2686x2016
and
960x720

Huawei P40 Pro, Pixel 2 ToF, Dual pixel,
Professional
stereo

Yes Yes High Outdoors + in-
doors

Table 1. Comparison of depth estimation datasets.

after the dense matching is performed. We use PDCNet
to compute flow maps from the stereo images to each of
the phone images. Then, depthmaps from the stereo pair
are projected to the phone frames using these flow maps,
allowing us to generate fine-grained depthmaps for each
phone image. Furthermore, PDCNet also provides confi-
dence maps for each correspondence, which we also trans-
fer to the phone frames thus providing depth confidence to
our projected images. It is also worth mentioning that this
matching was performed on 960×720 images, which is the
final resolution of our depthmaps.

We show the benefits of using this depth transfer method-
ology by comparing the above results to the depthmaps gen-
erated by performing geometrically-based cameras calibra-
tion and then projecting the depthmaps represented as point-
clouds to the image frames. Figure 3 shows how the dense
matching method is able to transfer smooth and accurate
depthmaps against the calibration based projection.

3.5. Remarks

Finally, we put the PhoneDepth dataset in comparison
with the current datasets used for the depth estimation prob-
lem and highlight their characteristics in Table 1. We would
like to emphasize that the PhoneDepth is the only dataset
containing data from mobile depth sensors, and the only one
with more than one source of depth / confidence maps. The
latter could be used to improve convergence via giving less
importance to low confidence (inaccurate) regions.

4. Experiments
In this section we describe the models, training setup and

experiments and discuss the achieved results validating the
proposed PhoneDepth dataset.

4.1. Models and training setup

Models. Four different models were trained in different
ways to show the value of our dataset. The first one is Fast-
Depth presented in [30]. The second model is Park model,
winner of the MAI 2021 challenge [14]. The third model
uses a U-net topology with EfficientNetB4 [27] as encoder
and the decoder part of Park (EffnetB4-park). Lastly, to
take advantage of the depthmaps that these phones have
available on run-time, we present the task of depth refine-
ment. As so, the fourth model is a combination of EffnetB4-
park with a light-weight multi-level encoder that extracts
features of the depthmap to then be concatenated with the
EfficientNet outputs and fed into the decoder. The depth
encoder is composed of DepthSepCov → Upsize →
BN → Concat → DepthSepConv → BN blocks,
where up-sizing is performed bi-linearly (further details on
this model in the supplementary materials). These four
models run with latencies of 10, 5, 99 and 253 ms respec-
tively as measured by the AI Benchmark app [15] on a
Huawei P40 Pro phone GPU after default Tensorflow-lite
optimization.

Loss. The loss utilized for training is the one presented
by MegaDepth and is composed of three parts: data loss,
gradient loss and ordinal loss. Losses and error metrics are
computed on the original resolution of the dataset images
by performing bi-linear resizing to the models’ output. Or-
dinal loss is ignored for datasets without ordinal samples.
For cases where two separate depthmaps are used for su-
pervision, data loss is applied to the stereo depthmap and
gradient loss is applied to the phone depthmap.

Data. We use samples from Phone 1 in our dataset to
perform our experiments. We expect similar results when
using Phone 2.
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Hyper-parameters. We use Adam optimizer with
0.00005 learning rate. We train up to 65 epochs on
Megadepth and 120 on the others. Then, we choose the
epoch with the best validation scale invariant RMSE (si-
RMSE).

4.2. Double depth supervision

Our first set of experiments shows how using both
streams of depth from our PhoneDepth dataset as su-
pervision (phone and stereo-camera projection), improves
performance. Hence, we train networks with regular
Megadepth loss (excluding ordinal) as baseline and com-
pare them with models trained with data loss on the pro-
jected depth (as more precise) and gradient loss on the
phone depth. Table 2 depicts that training with this modality
improves performance of models. Note that there is special
benefit for very small models (Fastdepth and Park).

Model si-RMSE RMSE Avg rel

Fastdepth 0.2433 0.07755 0.2362
′′ ′′ double depth 0.2371 0.07545 0.2283
Park 0.2468 0.08095 0.2363
′′ ′′ double depth 0.2283 0.07317 0.2196
EffnetB4-park 0.2071 0.06890 0.1909
′′ ′′ double depth 0.2005 0.06512 0.1927

Table 2. Depth estimation results on PhoneDepth.

4.3. Pretraining and transfer

To validate to which extent the performance on other
benchmarks can benefit from our dataset, we use the dou-
ble depth trained versions of the models in the previous
section and fine-tune them to the Megadepth (MD) and
MAI datasets and compare with the models trained from
scratch on MD and MAI, respectively. Table 3 shows the
results and we can overwhelmingly see that pretraining on
our dataset improves the results on MD and MAI datasets
for most cases. An exception is for Park model which is
small and does not benefit from the pretraining on MD, a
dataset with significant differences in content distribution
and depthmaps when compared with MAI and PhoneDepth.

4.4. Depth refinement

Our last experiment corresponds to defining a differ-
ent stream of training with this dataset, namely depth-
refinement. This has not been analyzed at all in the realm of
mobile devices, so our dataset provides great value in this
sense. The aim is to make use of the raw depth acquired by
phone sensors as an input as well as the raw color image.
Hence, our dataset provides with two ways of training for
depth refinement: Using stereo-projected depth only (ID2P)
for supervision or using both stereo and phone depth for

Model Dataset si-RMSE RMSE Avg rel

Fastdepth MAI 0.2562 3.062 0.1910
′′ ′′ fine-tuned MAI 0.2552 3.061 0.1884
Park MAI 0.2802 3.244 0.2131
′′ ′′ fine-tuned MAI 0.2570 3.046 0.1909
EffnetB4-park MAI 0.2046 2.926 0.1635
′′ ′′ fine-tuned MAI 0.2005 2.554 0.1459
Fastdepth MD 0.0780 2.425 0.05458
′′ ′′ fine-tuned MD 0.0757 2.312 0.05256
Park MD 0.0773 2.419 0.05374
′′ ′′ fine-tuned MD 0.0793 2.574 0.05550
EffnetB4-park MD 0.0525 1.749 0.03477
′′ ′′ fine-tuned MD 0.0501 1.676 0.03277

Table 3. Test depth estimation results on MAI and MD for the
models trained from scratch or with pretraining on PhoneDepth
and finetuning on MAI and MD train datasets, resp.

supervision (ID2DP). Table 4 shows the results after train-
ing (with loss as described in section 4.1) compared to the
benchmark (I2P) trained only with stereo depth for super-
vision. Note that there are performance improvements of
more than 11% compared to the benchmark. Consequently,
it is a potentially important task to investigate in further re-
search.

Model Train
method

si-RMSE RMSE Avg rel

EffnetB4-park I2P 0.2071 0.06890 0.1910
EffnetB4-
DepthEnc-park

ID2P 0.1836 0.06083 0.1707

EffnetB4-
DepthEnc-park

ID2DP 0.1837 0.06034 0.1735

Table 4. Depth refinement results on PhoneDepth.

5. Conclusion
In this paper, we present the first depth estimation and

refinement dataset specific for mobile devices. It collects
depthmaps from two different phones and a professional
stereo camera (hardware and software) considered as truth
source. Compared to other publicly available datasets in
the domain, ours is the first one to also include confidence
maps. It also has superb depthmap density and multiple
depth sources while collecting indoors and outdoors sam-
ples, characteristics missing in other datasets. Lastly, we in-
troduce the depth-refinement task, which facilitated by our
dataset has not been explored in mobile devices, especially
within the machine learning domain. We expect that our
dataset aids further developments in geometric and high ac-
curacy 3D measurement tasks on mobile devices.
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