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Abstract

An increasing number of artificial intelligence (AI) ap-
plications involve the execution of deep neural networks
(DNNs) on edge devices. Many practical reasons moti-
vate the need to update the DNN model on the edge device
post-deployment, such as refining the model, concept drift,
or outright change in the learning task. In this paper, we
consider the scenario where retraining can be done on the
server side based on a copy of the DNN model, with only
the necessary data transmitted to the edge to update the de-
ployed model. However, due to bandwidth constraints, we
want to minimise the transmission required to achieve the
update. We develop a simple approach based on matrix fac-
torisation to compress the model update—this differs from
compressing the model itself. The key idea is to preserve
existing knowledge in the current model and optimise only
small additional parameters for the update which can be
used to reconstitute the model on the edge. We compared
our method to similar techniques used in federated learn-
ing; our method usually requires less than half of the update
size of existing methods to achieve the same accuracy.

1. Introduction

The significant progress in AI has been due in large part
to the resurgence of deep neural networks (DNNs), partic-
ularly convolutional neural networks (CNNs) and variants
thereof. As the complexity and breadth of problems that
are solvable in an end-to-end manner by DNNs increase,
the DNN architectures (“models”) themselves are becoming
deeper [18,19,25,61] and wider [64,65,74], which demand
greater computational resources to execute.

On the other hand, there is a trend to deploy DNNs in the
field through edge computing devices, such as embedded
GPUs and FPGAs. This is due to the growing popularity
of concepts such as AI on the edge [6, 41, 44, 51], which
emphasises processing closer to the source of the data to
minimise latency and reduce data transfer, and embodied
AI [5, 15, 55], which focusses on building intelligent agents
that can explore and interact with the environment.

The gap in computational capability between centralised

Figure 1. Illustrating update compression to alleviate bandwidth
constraints for updating DNN models on the edge.

processing systems and edge computing devices has mo-
tivated research in making complex DNNs feasible on
the latter platforms. Significant attention has been de-
voted to compressing DNNs to reduce their memory con-
sumption and/or accelerate their execution. Major cat-
egories of such methods include pruning and sparsifica-
tion [20, 21, 43, 69, 76], quantisation [4, 39, 46, 50, 56],
knowledge distillation [7, 22, 53, 68, 73], low-rank optimi-
sation [8, 14, 31, 32, 34, 52], and architecture search [16, 24,
45, 57, 63, 66, 67, 72, 75]. A common observation is that
many complex DNNs are over-parametrised, hence allow-
ing substantial compression [9, 29, 54, 60].

Another important requirement is updating the DNN on
the edge after deployment. Numerous practical reasons,
such as refining the model using new data, concept drift, or
outright changes to the learning task, make updating DNN
models unavoidable in machine learning applications. In
this paper, we consider the specific scenario where
• The (new) training data and supervision labels are avail-

able on the central processing system (the “server”);
• Communication between server and edge can be unreli-

able or costly, which discourages large data transfers.
Many applications fall under this setting, e.g., AI-enabled
sensor networks, field robotics, autonomous driving cars,
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intelligent drone fleets, etc. The scenario argues for retrain-
ing the DNN on the server based on a clone of the deployed
DNN, then transmitting only the new parameter values to
update the model on the edge, as illustrated in Fig. 1.

Update compression To mitigate the communication
bottleneck, it is vital to compress the model update such
that the data can be transferred as bandwidth-efficiently as
possible. Note that this aim differs from compressing the
model itself; indeed, even if the deployed DNN is already a
compressed model, it is still worthwhile to seek to transfer
as little as possible to the edge to accomplish the update,
particularly when recurrent updates are required.

A simple solution is to apply lossless compression tech-
niques [58] on the model changes. However, this misses the
potential gains via using more strategic model refinement
that directly compresses the update during retraining.

Our contributions Towards the above end, we inject the
goal of update compression in the model refinement step
itself. We propose a compact refinement technique based
on re-parameterisation of DNN layers, which allows to ex-
press the model changes in terms of a small set of new pa-
rameters and to preserve a large part of model knowledge
in the form of frozen buffers. On the edge side, a recon-
stitution step integrates the learnt update package with the
preserved knowledge and reconfigures the model. The pro-
posed method is illustrated in Fig. 1 and 2.

We examined the trade-off between update size and im-
pact on inference accuracy to illustrate the superiority of
our method over existing update compression techniques.
In our classification experiment our method lifts the test ac-
curacy of the initial model by ≈ 9% with an update pack-
age equivalent to 0.5% of the model parameters, while com-
peting methods requires 2 to 40 times bigger update pack-
ages to achieve the same lift. Moreover, our experiments
show that our model is less reliant on parameter redundancy
than existing techniques, which is more suitable for com-
pact models deployed on resource limited edge devices.

2. Related Work
In this section, we briefly survey the related literature.

We focus on three main research directions: Model com-
pression techniques that create small-scale versions of large
DNNs. Update compression methods that allow efficient
transmission of model parameters in client-server architec-
tures. Split computing approaches that divide a DNN model
into two parts that execute in the client and server coopera-
tively.

2.1. Model Compression

The execution of deep-learning models on edge devices
has attracted much attention in the last few years [6]. Edge
devices are often limited by memory, processing and power

constraints that motivate the development of compressed
DNN models.

Compressing a model can benefit memory footprint and
processing time, with often a minor decrease in classifica-
tion performance [10]. There are six main categories of
model compression techniques: quantisation, network slim-
ming, weight pruning, low-rank factorisation, knowledge
distillation and neural architecture search. We list below
a few prominent works from each category.

Quantisation reduces the number of bits used to repre-
sent the network weights [4, 39, 46, 50, 56]. Network slim-
ming removes the least important channels from convo-
lutional layers [21, 69, 76]. Weight pruning removes the
least significant connections in the model [20]. Low-rank
factorisation use matrix/tensor decomposition to estimate
the informative parameters of the DNN model [8, 14, 31,
32, 34, 52]. Knowledge distillation trains a more compact
neural network to reproduce the output of a larger net-
work [7, 22, 53, 68, 73]. Neural architecture search uses
a search procedure to automatically design efficient mod-
els [16, 24, 45, 57, 63, 66, 67, 72, 75].

While the above mentioned techniques are capable of ef-
fectively compress the model size and, consequently, the
update size, they are likely to be less efficient for update
compression because the scenario is different: for update
compression it does not require the whole model parame-
ters to be updated which means the model can store aside
useful information and only change what is necessary.

2.2. Model Update Compression

Besides hardware constraints, edge devices often rely
on network communication to exchange data, model pa-
rameters and predictions. However, network communica-
tion can be costly, unreliable and energy-hungry. Improv-
ing communication efficiency is a research topic that has
been explored in various client-server DNN architectures
such as Federated Learning (FL) [49] and, more generally,
distributed SGD [71].

Our work assumes that training data is available at the
server, which has the computational power to retrain the
DNN model. In contrast, Federated Learning requires that
training data, including class labels, be available at the
client devices. These devices have the computational power
to update the model locally. The server receives the model
updates from multiple clients and averages these updates.

The main approaches for model update compression can
be divided in three groups: low-rank update, random mask-
ing and gradient-based techniques.

The low-rank update was used as an update compression
method in FL by [33]. It consists in decomposing the gra-
dient tensor in two matrices, L and R, with a rank r. L
is generated randomly, and R is optimised during training.
After training, L is compressed as a random seed and trans-
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mitted with R to the server.
Random masking defines a random sparsity matrix and

requires the training to update the non-null entries in such
a sparse matrix [33]. Like the low-rank update method, a
random seed defines the sparse pattern transmitted to the
server with the non-zero entries.

Gradient-based techniques aim to reduce the communi-
cation burdens during training via gradient quantisation [3,
59], sparsification [33,62], or both [12,17]. However, com-
pressing communication during training differs from com-
pressing communication for model update, as model train-
ing requires many iterations whereas the latter only allows
for a one-off data transmission.

2.3. Split Computation

Split Computing (SC) [48] is a framework that divides
the DNN model into head and tail models, which are ex-
ecuted in the edge device and server, respectively. SC is
attractive when compressed models for edge devices cannot
achieve the same level of accuracy as their full counterpart
models. SC has two main limitations: the inference time
becomes the sum of inference time on client and server plus
the communication latency, and the need for a “bottleneck”
layer in the first model layers. The bottleneck layer provides
a cutpoint for the head and tail models with a compact rep-
resentation that reduces communication overhead.

The straightforward splitting of the DNN as suggested
by [28, 30, 36] can result in either transferring a large part
of the processing burden to the edge device or transmit-
ting a larger volume of data on the network. Distilling the
head section of DNN and introducing a bottleneck within
the distilled head model as suggested in [47] can mitigate
this problem and decrease the computational cost and the
required bandwidth considerably.

3. Problem setting

We consider the problem of performing bandwidth effi-
cient updating for a DNN on an edge device deployed in the
field. As depicted in Fig. 1, the setting consists of a central
server and an edge device, between which there is a commu-
nication bandwidth limit. We assume that the central server
has no restriction in computational resources while the edge
device has limited resources and can only perform inference
and light-duty computation.

Pre-deployment For concreteness, we focus on classifier
models C(·|θ) with parameters θ. Also, since our work con-
centrates on update compression and not model compres-
sion (see Fig. 1 on the distinction), we assume that C(·|θ)
is already a lightweight model suitable for edge devices.

Let D1 = {(Xi, Yi)}N1
i=1 denote the initial training

dataset. At the pre-deployment stage, training C with D1

results in model parameters θ1

θ1 = argmin
θ

ℓ(θ,D1), (1)

where ℓ is some loss function for training C, such as cross-
entropy loss. The classifier C(·|θ1) is then loaded onto the
edge device and deployed to the field.

Post-deployment After deployment, the central server
has accumulated a larger dataset D2 = {(Xi, Yi)}N2

i=1,
where N2 > N1 and D2 ⊃ D1. The goal is to update C on
the edge device, currently with parameters θ1, with the new
dataset D2, subject to a data transmission bottleneck.

Let ∆ denote the update package to be sent from the
server to the edge device. A basic method is to retrain C
using D2, and let ∆ be the set of all model parameters, i.e.,

∆ = argmin
θ

ℓ(θ,D2).

At the edge upon receiving ∆, θ1 is discarded and we sim-
ply equate θ2 = ∆ and insert it into C(·|θ2) to complete the
model update. However, in this case ∆ will always be the
set of all parameters even for a small incremental update.
The key to generating more compact updates lies in reusing
the learnt knowledge embedded in θ1, as we will show next.

4. Update compression
Instead of densely retraining the whole model, we would

like a compact refinement algorithm that produces a com-
pact update package ∆ using the current model C(·|θ1) and
new dataset D2

∆ = compact-refine(C(·|θ1), D2), (2)

so that it can be efficiently transmitted to the edge device.
At the edge side, upon receiving the compact update pack-
age ∆, the current model C(·|θ1) incorporates ∆ and recon-
stitutes the updated model

C(·|θ2) = reconstitute(C(·|θ1),∆). (3)

The overall pipeline of such a update compression scheme
is demonstrated in Fig. 2.

4.1. Compact refinement

To achieve compact refinement, we first re-parameterise
the current network in a way such that

1. the new learnable parameters are much fewer than the
original ones; and

2. the model can be effectively updated by refining the
new parameters with the new dataset D2.

To this end, we focus on the network’s convolutional
(Conv) layers and fully connected (FC) layers, as main-
stream DNNs largely consist of these two types of layers.
Other types of layers, such as batch normalisation [26], are
not targeted for update compression in our method.
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Figure 2. A schematic pipeline of the proposed post-deployment update compression framework. To achieve compactness of the update
package, we propose to re-parameterise the model into a learnable part and a frozen part. The learnable parameters facilitates the compact
refinement and the frozen data enables the edge device to recycle knowledge from existing model.

Low Rank Approximation (LRA) We first describe
the compact refinement algorithm using a baseline re-
parameterisation method LRA before we introduce the pro-
posed techniques. Let ϕl ⊂ θ denote the weight tensor of
layer l, which is either a Conv or FC layer. Note that ϕl

does not include the bias terms bl of the layer. If the layer
has bias terms, they are not aimed for update compression in
our method and remain as learnable parameters. We firstly
re-arrange ϕl to a matrix of size o × i. For Conv layers, o
is the number of output channels and i is the product of the
number of input channels and the size of the kernel along
each dimension, e.g., the kernel height and the kernel width
for the 2D case. For FC layers, o is simply the number of
output features and i the input features.

The matrix ϕl is then decomposed using SVD:

ϕl = U · diag(s) · V T , (4)

where U ∈ Ro×m, V ∈ Ri×m, m = min(o, i), s ∈ Rm×1

is the vector of singular values sorted in descending order,
and diag(s) is the m×m square matrix of 0s except for the
diagonal entries which are specified by s.

For either Conv or FC layers, the arrangement of ϕl can
be viewed as o rows of filters with length i. Consequently,
the decomposed U , V and s can be viewed as a mapping
matrix, a matrix of base filters, and a weight vector respec-
tively, the latter indicating the importance of each base filter.

The decomposition of ϕl can result in even more param-
eters if U, s, and V are directly used as new parameters. To
achieve compactness, we adopt LRA to encode the original
parameters. Let U1:r denote the o×r matrix which consists
of the first r columns of U , and s1:r denote the r × 1 vec-
tor of the first r entries in s. We then define a new set of
learnable parameters for the layer

ϕ′
l = {L,R}, (5)

where
L = U1:r · diag(s1:r), R = V T

1:r. (6)

Figure 3. Illustration of different re-parameterisation methods.

Note that this does not change the network’s architecture.
After a Conv or FC layer is re-parameterised, for each for-
ward propagation during the refinement process, the layer’s
weight tensor ϕl is firstly computed with ϕ′

l using a recover-
weight() routine

ϕl ← recover-weight(ϕ′
l) (7)

= L ·R. (8)

The layer then performs normal forward processing. For
backward propagation in such layers, only gradients with
respect to ϕ′

l are computed instead of ϕl, since ϕl is now
an intermediate variable rather than a leaf variable in the
computational graph. The LRA re-parameterisation method
is conceptually illustrated in Fig. 3 row 1.

By re-parameterising all Conv and FC layers, the net-
work’s new learnable parameters become

θ′ =
(
θ \ {ϕl}Ll=1

)
∪ {ϕ′

l}Ll=1, (9)

where L is the total number of Conv and FC layers in the
network. Note that θ′ includes the network’s original pa-
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rameters that are not targeted for compact refinement, e.g.,
bias terms, batch-norm parameters.

Finally, the update package ∆ is obtained via refining θ′

from its current values with D2

∆ = argmin
θ′

ℓ(θ′, D2). (10)

The LRA approach could use a small rank r to achieve
compactness

|∆| = |θ′| ≪ |θ|. (11)

However, since it does not reuse any existing knowledge
from θ1 it can result in severe underfitting if r is too small.
LRA can be viewed as a network compression method
which is similar to previous works [11, 27, 32, 37, 42]. It
is thus considered as a baseline method in our experiments.

Mapping Learning (ML) To further reduce the number
of learnable parameters used in refinement while perform-
ing effective update, we propose to recycle part of previ-
ously learnt knowledge embedded in θ1. We obtain L and
R the same way as Eq. (6) with rank r. The matrix R con-
sists of the most important r rows of base filters learnt from
D1. It is thus possible to utilise these base filters and only
learn a new mapping for the model to adapt to dataset D2.

Therefore, the re-parameterisation of ϕl should produce
a set of learnable parameters ϕ′

l and a set of frozen data ϕ∗
l

which stores the recycled knowledge:

ϕ′
l = L, ϕ∗

l = R. (12)

The frozen data ϕ∗
l is stored in the network as a buffer,

which participates in forward computation but does not re-
quire gradient computation in back-propagation. Conse-
quently, the recover-weight() routine is given by

recover-weight(ϕ′
l, ϕ

∗
l ) = ϕ′

l · ϕ∗
l = L ·R. (13)

Knowledge Augmentation (KA) To maximally preserve
previously learnt knowledge in order to minimise the update
size, we propose to freeze both U and V in Eq. (4), and only
refine on s as free parameters. However, the base filters V
and its mappings U learnt from D1 are likely to generalise
poorer than they could have if they were learnt from D2,
because a larger training set is usually beneficial as it is less
likely to cause overfitting.

To let the model learn to adapt to D2 whilst preserving
current knowledge U and V , we propose to augment U and
V with additional columns for capturing the “knowledge
drift” between D1 and D2. Let U ′ ∈ Ro×n denote the aug-
menting vectors and [U,U ′] ∈ Ro×(m+n) denote the aug-
mented mapping matrix. Similarly let V ′ ∈ Ri×n be the
augmenting vectors and [V, V ′] ∈ Ri×(m+n) be the aug-
mented filter matrix. Note that both U and V are frozen and
only U ′ and V ′ are learnable parameters.

Let s′ ∈ R(m+n)×1 denote the augmented weight vector
where the whole vector is treated as learnable parameters.
The layer is thus re-parameterised as

ϕ′
l = {U ′, s′, V ′}, ϕ∗

l = {U, V }, (14)

and the recover-weight() routine is

recover-weight(ϕ′
l, ϕ

∗
l ) = [U,U ′]·diag(s′)·[V, V ′]T . (15)

An illustration of this re-parameterisation method is given
in Fig. 3 row 3. The motivation of this design is to maxi-
mally reuse previous knowledge by freezing U and V , and
at the same time allowing them to be updated by learning
the augmenting vectors and incorporating them using the
re-learned weights s′.

After re-parameterisation we initialise ϕ′
l in a way such

that the refinement process starts from the current accuracy
level. The refinement process starts with a weight tensor

ϕl ← [U,U ′] · diag(s′) · [V, V ′]T (16)

which could be abruptly different from the original ϕl be-
cause U ′, s′ and V ′ are initialised randomly. To avoid a sig-
nificant drop in accuracy at the beginning of refinement, we
let s′1:m = s and U ′, V ′ and s′m+1:m+n be small random
values that are close to 0 for initialisation.

Algorithm 1 compact-refine(C(·|θ), D)

1: θ′ ← θ
2: for l in {1, ...,L} do
3: ϕl ← layer l weight tensor in θ1
4: ϕ′

l, ϕ
∗
l ← re-parameterise(ϕl)

5: θ′ ← (θ′ \ ϕl) ∪ ϕ′
l

6: end for
7: ∆← argminθ′ ℓ(θ′, D)
8: return ∆

The overall procedure of compact refinement is sum-
marised in Algorithm 1, with the re-parameterise() routine
and the recover-weight() routine depending on the specific
method employed.

4.2. Model reconstitution

Once the edge device receives ∆, it then incorporates
∆ to update its current model. This process is described
in Algorithm 2. For all non Conv or FC layers, the edge
device updates their parameters with new values from ∆.
For Conv and FC layers, their weights are recovered using
the new values of the learnable parameters ϕ′

l from ∆ and
the values of the frozen data ϕ∗

l obtained by decomposing
the current model weights θ1.

An additional desirable feature of the proposed KA
method is that, once the edge device reconstitutes the up-
dated model the augmenting vectors are integrated into the
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Algorithm 2 reconstitute(C(·|θ1),∆)

1: θ2 ← {all non Conv/FC layers in ∆}
2: for l in {1, ...,L} do
3: ϕl ← layer l weight tensor in θ1
4: ϕ′

l, ϕ
∗
l ← re-parameterise(ϕl)

5: ϕ∆
l ← layer l free parameters in ∆

6: ϕl ← recover-weight(ϕ∆
l , ϕ

∗
l )

7: bl ← layer l bias in ∆
8: θ2 ← θ2 ∪ {ϕl, bl}
9: end for

10: return C(·|θ2)

weight tensor by the recover-weight() routine and thus can
be discarded. This prevents the edge device to store more
and more augmenting vectors as a result of repetitive up-
dates, which eliminates the requirement of maintenance
over time for expanding its memory capacity.

5. Experiments

In this section we conduct various experiments to eval-
uate the performance of update compression with the pro-
posed methods, as well as competing methods.

5.1. Competitor methods

We compared the proposed update compression algo-
rithms to two techniques used in Federated Learning, Ran-
dom Mask (RM) [33] and Low-Rank Update (LRU) [33],
as well as a compression method Filter Pruning (FP) [40].

RM For the RM method we generate a random binary
mask for the entire model parameters. The proportion of
parameters that are selected by the mask is controlled by
a hyper-parameter P . We then refine the model on D2 by
updating only the selected parameters while keeping the un-
selected ones frozen. The update package size is counted as
the number of selected parameters. We ignore the size of
the mask as it can be represented by a random seed.

LRU To implement LRU we firstly decompose the weight
tensor of each Conv and FC layer to two matrices L and R
with rank r in the same way as Eq. (6). We then replace
the values of R with random numbers and fix them. Dur-
ing refinement L is initialised with small values and L · R
is added to the layer’s original weight tensor, i.e., L · R
learns the changes of the current weight tensor, as described
in [33] Sec.2. The update size of LRU is all the L matrices
and other free parameters (such as bias, Batch-Norm layers,
etc). Again we ignore the size of the random matrices R as
they can be represented by random seeds.

FP The FP method prunes whole filters as well as their
connected feature maps in the network. The size of the
pruned model is dependent on a compression rate c and the
layers selected for the pruning plan. In this experiment we
only consider Conv and batch normalisation layers in the
pruning plan. We count all remaining parameters after prun-
ing into the update size.

5.2. Update compression for classification models

We evaluate update compression methods for two clas-
sification tasks. The first one uses the CIFAR10 [1, 35]
dataset on a ResNet18 [18] model and the second one classi-
fies the MNIST [2, 38] dataset with a modified tiny-ResNet
model. Since we are mainly concerned with the power-
and bandwidth-constrained application, the CIFAR10 and
MNIST datasets with low-resolution images are a good
choice The tiny-Resnet architecture is composed of a fea-
ture extractor with three layers, each layer consists of a ba-
sic residual block and a classifier that include one fully con-
nected layer. Similarly, the VGG-tiny architecture is com-
prised of a feature extractor that contains a sequence of con-
volutional layers with 16, 16, 32, and 64 outputs, each is
followed by a max-pooling layer. Besides, one fully con-
nected layer is on top of them. For both tasks we use a
proportion p of the training set as D1 and the whole train-
ing set as D2. The model is initially trained with D1 and
then updated using D2 with various update methods. We
then test the updated model with the testing set and report
its accuracy against the update size. The proportion for D1

is p = 0.2 for the CIFAR10 experiment and p = 0.02 for
MNIST, as MNIST is a much easier dataset and a higher
p would make the accuracy gap between the initial model
and the refined model too small for the experiment. The
initial test accuracy of the model trained with D1 is 77.5%
for ResNet18 on CIFAR10 and 95.5% for tiny-ResNet on
MNIST. The results of this experiment is shown in Fig. 4.
Note that in this experiment the purpose is not to push the
test accuracy as high as possible, but to compare the updat-
ing efficiency among different methods, i.e., achieving high
accuracy with a small update size.

Fig. 4a shows that KA has the highest accuracy for up-
date size below 2%, while ML performs best with update
size between 2% to 5%. The curves of RM and LRU are
much more to the right hand side than KA’s, which means in
order to achieve the same accuracy, RM and LRU requires
2 to 3 times larger update packages than KA. The low rank
approximation nature of ML makes it deteriorates quickly
when update size shrinks below 1%. On the other hand, KA
is much more robust for small update size thanks to its aug-
mentation mechanism. For the compression method FP, its
accuracy at update size 20% is just similar to that of KA at
update size 1%. Results in Fig. 4b tell a similar story where
KA has the highest accuracy for the smallest update, closely
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(a) CIFAR10 classification with ResNet18. Results of RM and LRU
are averages of 6 runs and their 90% confidence intervals are plotted.

(b) MNIST classification with tiny-ResNet. Results of RM and LRU
are averages of 6 runs and their 90% confidence intervals are plotted.

Figure 4. The update size versus test accuracy after refinement. Update size is measured as a proportion between the number of new
parameters (|θ′|) and the number of original parameters (|θ|).

followed by ML. In contrast, it takes RM and LRU at least
twice as big an update size as KA’s for the same accuracy.

Note that in both experiments the LRA baseline is capa-
ble to achieve the highest accuracy when given enough pa-
rameter size but performs poorly at a low update size. This
indicates that knowledge recycling has its pros and cons:
while it can be super efficient in terms of update size, meth-
ods like LRA without preserving any old knowledge can
achieve higher accuracy when given enough parameters.

5.3. The effect of parameter redundancy

Besides knowledge recycling, we suspect that another
factor contributing to the effectiveness of update compres-
sion is parameter redundancy, which allows the model to
adapt to the new dataset by updating only a small fraction
of parameters. However, for edge devices models deployed
on them are usually optimised, distilled, or compressed to
perform the target task well enough while minimising re-
source consumption. Therefore, update compression meth-
ods should be robust to the lack of parameter redundancy.

We repeat the CIFAR10 experiment on a customised
VGG-tiny [61] model, a much smaller model than
ResNet18 with only 26554 parameters, to test different up-
dating methods on compact models that do not have a lot of
parameter redundancy. The result in Fig. 5 shows that the
gap between KA and the two competing methods RM and
LRU is clearly wider than that in ResNet18. This suggests
that with a small model the lack of parameter redundancy
has restricted the performance of RM and LRU, while the
proposed KA is less affected by the small model size, which
is attractive for resource limited edge devices.

To further test this hypothesis, we compare KA, RM
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Figure 5. The update size versus test accuracy after refinement on
VGG-tiny.

and LRU on different models with parameters ranging from
136K to 23M. For each model, we set the hyper-parameter
n of KA to 3 and let the update size of RM and LRU to be
similar to but no less than KA’s. We use 20% of CIFAR10
training set as D1 and 100% as D2. We report the accuracy
lift as well as other experimental details in Table 1.

For all models in Table 1 regardless of their size, KA
outperforms RM and LRU consistently with an equal or
smaller update size. Furthermore, as the model becomes
more and more compact the accuracy lifts of all methods
tend to be smaller as well, supporting our hypothesis about
parameter redundancy. This effect is especially obvious for
RM, which can hardly lift accuracy for small models. In
contrast, KA is less reliant on parameter redundancy and
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Model Method Update size Update % Model size Acc. lift Refined acc. Init acc.
VGG-small KA 7413 5.44 136266 2.28 78.68 76.4
VGG-small RM 7413 5.44 136266 0.02 76.42 76.4
VGG-small LRU 7878 5.78 136266 1.45 77.85 76.4
VGG-medium KA 14672 2.72 539786 2.83 80.97 78.14
VGG-medium RM 14681 2.72 539786 0.07 78.21 78.14
VGG-medium LRU 15638 2.90 539786 1.44 79.58 78.14
MobileNetV2 KA 122632 5.34 2296922 3.67 87.92 84.25
MobileNetV2 RM 122660 5.34 2296922 3.18 87.43 84.25
MobileNetV2 LRU 128734 5.60 2296922 3.54 87.79 84.25
ResNet18 KA 127939 1.14 11173962 9.67 87.16 77.49
ResNet18 RM 128378 1.15 11173962 8.97 86.46 77.49
ResNet18 LRU 135670 1.21 11173962 9.02 86.51 77.49
ResNet50 KA 310656 1.32 23520842 6.57 84.34 77.77
ResNet50 RM 312837 1.33 23520842 4.61 82.38 77.77
ResNet50 LRU 327185 1.39 23520842 6.16 83.93 77.77

Table 1. Accuracy lift on different models. Update size and model size are both measured in number of parameters.

remains effective for models of all sizes.

5.4. Effectiveness of knowledge renewal

All three methods of KA, RM, and LRU reuses signif-
icant old knowledge to achieve update compression. RM
keeps all unselected parameters and only learns selected
ones to update the model, while LRU renews the old model
by learning to approximate the residuals of the old param-
eters. We evaluate the effectiveness of knowledge renewal
amongst the three different techniques in the circumstance
that the model is compact and there is little parameter re-
dundancy. We train a VGG-tiny model with different initial
training set size, i.e., |D1| ranges from 0.1 to 0.7 of |D2|.
We then perform update compression to the model with dif-
ferent techniques and report their accuracy lifts after refine-
ment with D2. For KA the hyper-parameter n is set to 1.
For RM and LRU their update size are set to be as close as
but not less than KA’s.
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Figure 6. Initial training set size vs accuracy lift on VGG-tiny. The
initial training set size is computed by |D1|/|D2|.

Fig. 6 shows that while the gap between the initial set
D1 and the target set D2 enlarges, KA is more effective
in learning new knowledge to update the model than RM
and LRU, even when parameter redundancy is lacking. This
implies the KA update strategy would benefit applications
where D2 grows ever larger over time.

6. Limitations
The proposed update compression methods only targets

Conv and FC layers. It is unable to handle models that
largely consist of other types of layers, such as RNN [13],
LSTM [23] and Transformer [70]. Due to limited resources
and paper space, we have also limited our experiments to
classification tasks and small to medium size models, the ef-
fect of practical application of our methods outside of these
settings requires further testings.

7. Conclusion
In this paper we address the problem of server-to-

edge device model update with a limited communication
bandwidth. The proposed update compression framework
achieves superior communication efficiency via novel com-
pact refinement and reconstitution techniques. Experiments
further show that our method is robust to the lack of param-
eter redundancy.
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