
RenderSR: A Lightweight Super-Resolution Model for Mobile Gaming
Upscaling

Tingxing(Tim) Dong, Hao Yan, Mayank Parasar, Raun Krisch
Samsung Austin Research Center

tim.dong, hao.yan, m.parasar, r.krisch@samsung.com

Abstract

Mobile game play can be a prime use case where
an efficient SR network can lead to both performance
boosts and power savings. In this paper, we present
RenderSR (RSR), a bandwidth aware super-resolution
network designed for use in mobile game upscaling. We
explore how different factors affect the resulting image
quality: color space, the inclusion of the depth channel,
sharpening. With a 40K parameter size, RenderSR without
sharpening achieves a PSNR value difference ranging -0.41
to 0.36dB from several much larger SR models. RenderSR
with sharpening super resolved large objects such as rocks,
buildings, tree trunks are almost identical to the ground
truth. Based on our performance experiment, we propose
that RenderSR upscales the GPU rendered image on NPU
or DSP on the mobile SoC.

1. Introduction and background

Compared to a PC with a dedicated power supply,
mobile phone with battery is a power constrained device.
Previous research shows that the GPU has far higher
power consumption than other components on a mobile
SoC (System on a chip) when users are mobile gaming
[23]. Recently, more and more phone companies have been
releasing phones with high refresh rates, such as 120Hz,
while most mobile games are still around 30-60 FPS. This
large gap requires that the GPU must render fast enough
to satisfy the display’s throughput. One natural way is to
let the GPU render at a lower resolution to catch up with
the screen refresh rate. However, the number of pixels
on mobile devices is also growing very fast, and more
and more 2K (1440p) screen phones are on the market.
For comparison, most PC games are on just 1080p or 2K
resolution. Users require mobile phones to deliver both high
quality and fast frames at the same time. Therefore, there
is an increasing demand for image upscaling for mobile
gaming.

Traditional upscaling methods are based on interpolation
filters and are not able to deliver satisfying image quality
(IQ). SRCNN [16], ESPCN [28], EDSR [24], RealSR
[13] FALSR [14], MoreMNAS [15], ProSR [30], and
ESRGAN [29], etc people resort to neural-networks (NN)
to upscale images and achieve much better IQ. An overview
of different NN models can be seen in [11], [31], [32].
There are models [25], [12], [17] optimized for mobile
devices. An overview of mobile optimized models can be
seen in 2021 Mobile AI workshop reports [21] and [20].
Such upscaling methods are commonly referred to as super-
resolution. Most of them target camera photo datasets
like DIV2K and assume the low-resolution (LR) and high-
resolution (HR) images have a bicubic degradation.

However, the different resolution image users see in the
game is not a simple pixel interpolation but the number of
pixels rendering difference. Therefore, the dataset needs
to be obtained from GPU actual pipelines. Unlike photo
dataset which only has HR, and corresponding LR can be
obtained easily by a bi-cubic downgrade. Obtaining LR
and HR frame-to-frame mapping from GPU rendering is not
easy but subject to various factors like various FPS, physical
animation, etc. SR is a well-known ill-posed problem [26],
when the mapping from LR-HR is not well established, this
ill-posed problem will become even worse. In our work, we
target on NN based super-resolution on mobile gaming.

2. RenderSR implementation
2.1. RenderSR model architecture: bandwidth

aware design

While the accuracy and speed of super-resolution neural
networks have improved drastically over recent years, the
resulting networks like mentioned above are too large for
use on mobile devices. Our ultimate goal is to achieve real-
time rendering on mobile gaming. So RSR is designed
to be lightweight. RenderSR is wider and shorter: four
layers but the number of channels is relatively large in
middle layers. Previous research [10] [27] show the wider
version of the network can achieve similar and even better in

3087



accurancy and outperform the deeper version of the network
in performance as long as appropriate training. The wider
and shorter version can maximize the underlying GPU
parallelisim and minimize the latency. Since our intension
is to upscale per frame, our batch has to be one during
inference. Unlike other models who reply on increasing
batch size to saturate GPU, RenderSR increases the number
of channels.

Yet, increasing channels leads to a larger intermediate
layer buffer which can be a challenge for mobile SoC’s
bandwidth. By channel 64, RenderSR’s intermediate buffer
is 128 MB assuming upscaling a 540p frame to 1080p. Each
128 MB buffer will be loaded (read or written) 5 times, so
the memory footage is 640 MB. The flagship Qualcomm
Snapdragon 888 memory bandwidth is 51.2 GB/s [4]. So
the upper-bound time is 12.5ms by bandwidth which is the
headroom left for RenderSR doubling native 1080p FPS
which will be discussed in section 4 in details. Therefore,
the hyperparameter, the number of channels cannot go
beyond 64 which is the upper limit. Users can customize
the model by going down if they have a lower end mobile
SoC. In this paper, we use 64 by default.

The first two 3x3 convolution layers are for feature
extracting and the transposed convolution layer for
reconstruction as in Figure 1. The last step is a sharpen
filter. The Rectified Linear Unit (Relu) activation function is
used after each convolution. The transposed convolution is
also referred to as a deconvolution layer in many literatures
[33]. Instead of outputting smaller dimensional feature
maps as in regular convolutions, transposed convolution
layers generate larger dimensional feature maps. Transpose
convolutiion determines the upscaling factor, in our paper,
we use the upscaling factor to 2x2 (width x height).
Transposed convolution is algorithmically similar to a
3x3 convolution and can be implemented using the
im2col, GEMM. By using this transposed convolution
layer to perform upscaling at the end, RenderSR saves on
computation by performing the majority of its operations
on the lower dimensional image space.

The sharpen filter is not trained by but a dedicated filter.
The sharpen factor can be tuned by end users. If factor is
0, basically means sharpen is turned off. The input can be
in the RGB or YCbCr color space. The output has the same
color space. The inputs are normalized to be in the floating
point [-1, 1] range in a pre-preprocessing step. The output
is then denormalized back to the corresponding color space.

RenderSR reflects the latest progress in industry and
academia. It is vastly different from 2014 SRCNN [16]
in many aspects. SRCNN has 3 layers, and up-scales
image first before convolution. RenderSR has 4 layers and
convolution first and up-scales later. SRCNN reconstructs
with convolution. RenderSR reconstructs with transposed
convolution. SRCNN’s filter size is big 9, 5 while

RenderSR filter is small 3x3. SRCNN works on YCbCr
space and only trains one channel Y, while RenderSR works
on RGB color space and even depth channel and train all 3
or 4 channels. RenderSR has a sharpen layer while SRCNN
does not. Mostly, RenderSR targets on GPU rendering
frames instead of SRCNN’s camera photos.

Figure 1. RenderSR architecture.

2.2. Training dataset collection

Our first challenge is training dataset collection. To our
knowledge, there are no gaming datasets publicly available
yet. Training datasets is critical, since without correct
datasets models would not be able to learn and make
correct predictions. For camera photo dataset, LR images
can be easily obtained by down-scaling the correpsonding
HR images. HR is also called ground truth (GT). We
use both terms interchangeably throughout this article.
However, the LR-HR mapping in games is not a simple
pixel interpolation, and we want the NN models to learn
real rendering rather than better interpolation. Therefore,
the LR and HR frame pairs need to be obtained from actual
rendering. In our experiment, we collected two training
datasets: Aztec Ruin, Zen Garden.

Aztec Ruins (AR) comes with Gfxbench5 [3]. Users can
download and run the benchmark at different resolutions
and dump the screenshots in corresponding resolutions.
However, your underlying GPU will not always give you the
same FPS, and thus the frame screenshot obtained would be
off in content and cause the training dataset to be misaligned
and non-useable. Fortunately, by having a license to access
their source code we were able to get around this issue
by locking the FPS and time intervals and re-building and
running the demo. After locking these values, each different

3088



run was guaranteed to generate the same frame for each
scene. We run on offline mode and dump the TGA format
file from the frame buffer. We finally collected a dataset
including about 10,000 images.

Zen Garden (ZG) is a game making engine UE4 product
[2]. ZG has a lot of physical anomalies as other real games:
random birds, flower petal dropping, swimming fish and
2D icons overlay. Achieving an LR-HR one to one exact
mapping is even harder than AR. We do not have special
license to get a special build but have to modify UE4 setting
and examine ZG source code to disable these anomalies and
2D overlay to capture a consistent dataset. We re-built ZG
in UE4 and packaged it into a game ready mode. Then we
ran the game in benchmarking mode and dumped the screen
shots. The entire dataset includes 800 images.

2.3. Training details

9/10 of the dataset is used for training. 1/10 is used for
testing. Random images are selected to present the result.
Each game has separate trained weights. We think it is a tiny
overhead, as a game can be hundreds GBytes size, while the
RenderSR wight size is only in KB.

During the training, the input image is converted to PNG
format and randomly cropped size of 96x96 or 128x128.
These tiles are augmented by horizontal flips, and 90-
degree rotations to ensures our network’s robustness and
generalization capability. Users can choose a bigger tile size
but we do not input the whole image into training because
features learning and pixel-mapping are more local than
global. Notice that the tile size does not affect the number
of weight parameters which is determined only by kernel
filter sizes and in/out channel sizes of each layer.

We trained our model with the ADAM optimizer with
β1 = 0.9 , β2 = 0.999, and ϵ = 10e − 8. We set the mini-
batch size as 16 for training. The learning rate we initialized
with piecewise constant decay with boundaries of 200000
and values [1e-3, 1e-5]. We compared with different
initializers and found that Glorot uniform delivered the
highest PSNR (peak signal-to-noise ratio) value. We chose
L1 loss because it provided better convergence than L2 [11].
We implemented our networks on top of the Tensorflow
framework with versions tf1.4 and later migrated to tf2.3.
Our model was trained on an NVIDIA Quadro P5000 GPU.
It takes over 8 hours to train a dataset with 300,000 training
steps.

3. Experiments and Results
3.1. Y only training vs RGB color space

We experimented on the Aztec Ruins datasets with two
types of color space: YCbCr and RGB. YCbCr training was
first adopted in SRCNN, where the model was trained on
only the Y channel of images as the authors claimed that

human eyes are more sensitive to the luminance channel.
Training on only the Y channel of images can save extra
compute power compared to training on all three channels
in the very first layer. We initially adopted this approach.
However, compared to the model trained on all three RGB
channels, the resulting IQ of Y channel-only is obviously
worse than RGB as shown in Figure 2, the edge on leaves
are jagged compared to the RGB color space results. While
it would not be easy to distinguish the RGB results from the
GT if they were not side by side. Therefore, we decided to
train RGB color space in all of our later experiments.

3.2. RenderSR vs other methods

RenderSR vs Bicubic: We compared RenderSR
with bicubic interpolation and GT in Figure 3, where
RenderSR achieves much better image quality than bicubic
interpolation. Bicubic result loses the shape of leaves and
the edge is very blurry. While the RenderSR maintain the
shape of leaf and the bar edge is distinct. The average PSNR
of RenderSR is 28.11 far better than bicubic 23.45. We
testified, even with a smaller set of parameters, RenderSR
can achieve very much better visual quality than naive
bicubic upscaing.

Table 1. Model name, number of parameters, and average PSNR
on the Zen Garden dataset

Model Parameters Avg PSNR (dB)
Bicubic N/A 23.45

RenderSR w/o sharpen 40k 28.11
RenderSR with depth buffer 41k 28.30

MoreMNAS-A 1039k 28.606
MoreMNAS-B 1118k 28.593

FALSR-A 1021k 28.524
FALSR-B 326k 28.540
FALSR-C 408k 28.557
EDSR-16 1369k 28.711
EDSR-4 483k 28.489
EDSR-2 335k 28.279
EDSR-1 262k 27.94

RenderSR vs other large NN models: Because other
models do not have sharpen stage, we turn off RenderSR
sharpening here. We compared the parameter sizes
and PSNR values on the ZenGarden dataset in Table 1.
RenderSR’s PSNR is only slightly smaller than the other
large models. EDSR-X [24] and FALSR-X from Xiaomi
[14] have multiple residual blocks configuration, where X
represents number of residual blocks. They are significantly
bigger and thus we do not think fit power-constrained
devices. A randomly picked tile is shown in Figure 4.
By zooming in, we found FALSR-A has a better contrast

3089



Figure 2. Left to right: Y channel, RGB, GT. Y channel-only model gives aliased leaf edges, while RGB model and GT are almost
identical.Best viewed on a screen.

Figure 3. A random clip by zooming in very details. Best viewed on a screen

and details which is not so surprising, since FALSR-A is
25x larger in size than RenderSR. But there are artifacts
on the branches, and more alias on white strips which are
less apparent in RenderSR. Overall, FALSR-A has better
details but appears more alias. RenderSR is more smooth.
Artifacts are a common issue for SR espeically for large
models which tend to learn too many features [29] and
fill the details with the features they have learned. To
improve RenderSR’s contrast, we instroduce depth buffer
and sharpen filter in the next two sections.

3.3. RenderSR with depth buffer

The pixel depth [1] records the distance between camera
and objects and can be extracted from the GPU rendering
pipeline. This is a major difference than photo dataset
where depth information is almost impossible to obtain
from RGB pictures without metadata attached in general.
Figure 5 shows results with and without the depth channel.
The depth channel improves the PSNR value by 0.19dB and
provide better contrast, like the branch is darker and the red
flower pedal is more saturated. Also the pedal and branch
are less fuzzy. We calculated the RMS contrast value in
Table 2. By including depth channel, the RMS contrast

value increases by 0.29 and comes closer to GT. So training
with depth channel can be a promising techniques. But
including depth needs extra storage and increase the model
size (only in the first layer) slightly.

Table 2. RMS (root mean square) contrast value of each image

Bicubic RSR w/o depth RSR w/t depth GT
38.67 39.70 39.99 40.69

3.4. RenderSR with sharpening

The reason of adding a sharpeing layer is that the first
three layers of RSR optimizes toward a norm loss and
tends to mix the image’s low frequency and high frequency
signals. The sharpening filter can filter high frequency
out and blocks certain low high frequency which makes
the image crisper. Users can replace with any sharpen
filters they want. Here, we chose the Contrast Adaptive
Sharpening (CAS) filter originally from AMD [6]. CAS
is contrast aware algorithm, where areas that are already
sharp are sharpened less, while areas that lack detail can

3090



Figure 4. A random clip of Zen Garden. Best viewed on a monitor

Figure 5. Results of adding scene depth as the fourth channel besides RGB.Best viewed on a monitor and zoom in

be sharpened more. In this way, we gain both contrast and
sharpeness for RenderSR.

During this paper writing, AMD enhanced CAS to create
FidelityFX™ Super Resolution (FSR) by adding an edge
adaptive spatial upsampling pass [8] . Different from NN
models, FSR is not learning based but interpolation based

algorithm. AMD open-sourced their tool [7] so we can
compare our RSR result with FSR. FSR provide a scaling
option raning from 1.3 to 2 per dimension. Here, we
compare FSR 2x2 upscaling since RenderSR upscales 2x2.

Figure 6 shows a random scene of Zen Garden: AMD
FSR upscaling, RenderSR without Sharpen, and RenderSR

3091



with CAS sharpen and GT. Figure 7 shows RenderSR with
sharpen vs GT. Notice FSR also has a sharpening stage.

Large objects: like buildings, rocks, tree trunk, cloud
and mountains. In our opinions, large objects are most
gamers’ first focus when they are actively gaming. We
first ask our reached viewers’ subjective judgement for
Figure 6. Everyone reaches a consensus: RSR w/t sharpen
>RSR w/o sharpen >FSR. The top left FSR is the most
blurry one and lack most texture and details (zoom in 3
rectangles). Compared to RenderSR with the same level
of details (top right), a sharpen stage (bottom left) block
certain low frequencies and increase the clearness of the
texture on the rock and pedals and make it more crispy
(zoom in rectangle box with rocks and flowers). Someone
even say RenderSR is better than GT. The sharpening factor
is in a tunable range of [0, 1.0]. Sharpen will cause certain
info lose, so users need to find a sweet spot. We tuned
between several factors, 0.0, 0.3, 0.5, 0.7 and 1.0. We finally
found 0.7 is a good one for ZG.

Tiny objects: By zooming in the rectangle containing
the leaves in Figure 6. RenderSR fills in much more details
than FSR. RenderSR recognized more distinct leaves than
FSR which blend them together. But only the GT has the
most details and can distingush every single leaf. Although
RenderSR with sharpen is crispy but still lack GT’s level
details. RSR is not as good at distinguishing very tiny
objects as large ones , especially when they are clustered
together like grass as in Figure 7. The reason is due to
RenderSR’s capacity, it is very hard for a 40K NN network
to extract such tiny features.

PSNR vs human perception: Figure 6 also shows the
PSNR value in bracket. The human being’s perception
order is different than PSNR value order. That indicates
agian that PSNR is not a reliable metric for human
being’s subjective image quality as also reported by other
researches [19], [18], [9], etc. The reason is PSNR is based
on pixel-pixel comparision but not feature level human can
perceive. Yet, PSNR can be as a sanity check as it usually
first increases with human being’s perception and then no
longer correlates.

4. Performance requirement
Not every game is equal in the cost of rendering. Super

resolution target for ”hard” rendering games. When the
native rendering is expensive, gamers gain benefits from
SR. Here we assume the native rendering is only at 20
FPS (50ms) and 1/4 of the resolution is 80 FPS (12.5ms),
and end game users wish to achieve 40 FPS (25ms) in
SR, considering human needs at least 30 FPS to feel
comfortable. This gives SR a headroom of 12.5ms.

Desktop GPU: we first implement a RenderSR inference
engine with OpenCL 2.0 on a discreet entry level AMD
Navi 5500XT GPU with datatype fp32. To upscale a

540p frame to 1080p, RenderSR’s takes 13.88 ms with
each layer break-down as shown in Table 5. 13.88 ms is
quite close to the headroom metioned above. So a human
eye friendly 1080p SR gaming (assume this game’s native
1080p is only 20 FPS) is quite feasible on a desktop GPU,
especially considering that 5500XT is an entry level card.
Navi 5500XT’s fp32 performance is 5.2 TFLOPs.

Mobile SoC: Table 3 is the result of RenderSR on
Snapdragon 865 via AIBenchmark v5.0.1 by running
custom model [22]. We can choose CPU, TFLite GPU
Delegate and NNAPI for acceleration, and the other options
like Qualcomm QNN or other vendors libraries all gray
out and cannot be enabled. Due to the time limit, we
have not get a chance to successfully quantized our model
to int8. Table 3 shows the current optimal path is via
GPU delegate fp16. AIbenchmark reports data of upscaling
a 128x128 image to 256x256 while RenderSR aims to
upscale image 960x540 to 1920x1080. If assuming the time
increases linearly with image size, RenderSR needs 200ms
to upscale 540p. Linear is a conservative estimation, since
some overhead like kernel launching is constant. Yet even
exclusing overhead factors, there is a still big gap between
mobile GPU’s hundred ms to desktop’s 13.8ms.

Table 3. AI Benchmark timing results of RenderSR: upscale 128
to 256

Processors fp16 (ms) fp32 (ms)
CPU 22.9 30
TFLite GPU
Delegate

6.33 8.31

NNAPI 10 11

NN is a compute intensive workload. The flagship
mobile GPU on Qualcomm Snapdragon is 1.37 TFLOPs
in compute power [4] still far behind entry level desktop
GPU. Such existing gap turns us to other acceleartors on
the SoC. Recently mobile SoC vendors intergrate dedicated
AI acceleartors such as Samsung Exynos neural processing
unit (NPU) [5] or Qualcomm hexagon digital singnal
processor (DSP) [4] to do AI workload. NPUs and DSPs
are capable of dozens of TFLOPs at a lower power budget
as in Table 4. By delegating workload to NPU (or DSP), the
GPU can be freed and previous idle NPU will be utilized.
Compare to GPU only solution, GPU-NPU solution can
save both time and power by careful pipelining. The
main issue is the latency between the GPU and NPU.
NPU takes input from GPU, upscales it and hands over to
GPU to perform the folloswing pipeline. The headroom
left is only a few milliseconds and the synchronization
overhead between them must remain low. Developing such
an inference engine on NPU or DSP is beyond this paper’s

3092



Figure 6. PSNR is in bracket. The human being perception order is different than PSNR order. Best viewed on a monitor and zoom in.

scope currently and need specific implementation for each
vendor.

Conclusions

We designed a bandwidth-aware super-resolution model
targeting mobile phone gaming. To make sure our model
learn rendered pixel difference rather than interpolation,
we collected two datasets from GPU rendering pipeline

Table 4. Some hardware TFLOPs capability

Navi 5500XT mobile GPU
Qual S888 [4]

mobile
NPU [5]

5.2 1.37 > 10

3093



Figure 7. Left to Right: GT, RenderSR. RSR is excellent with big objects like rocks, tree trunks, clouds on the sky, and buildings but not
as good for tiny grasses clustered together. Best viewed on a monitor

Table 5. RenderSR (OpenCL) on AMD Navi 5500XT GPU:
upscale a 540p to 1080p frame

Layers Time (us)
Layer 1 3322
Layer 2 4303
Layer 3 6201

Sharpen Layer 54.8
Total 13.88 (ms)

where LR-HR pairs were aligned by controlled setitng up
and modifying source code of game engine. We explored
a set of techniques including color space, depth buffers,
sharpening to optimize the PSNR, and human perceptual
image quality. We found that by including depth buffer,
the image constrast can be effectively improved. We
demonstrated by just 40K parameters (compared to GB
sized games), RenderSR can achieve much better visual
quality than bicubic and other interpolation based filters
like FSR. Compared to many large NN models, RenderSR
can achieve reasonably good image quality and has less
artifacts. For large objects, RenderSR with sharpening
delivers close to ground truth quality.

References
[1] Depth expressions. 4
[2] Epic zen garden in epic content - ue marketplace. 3
[3] Gfxbench - unified cross-platform 3d graphics benchmark

database. 2

[4] Qualcomm details the snapdragon 888. 2, 6, 7
[5] Samsung introduces game changing exynos 2200 processor

with xclipse gpu powered by amd rdna 2 architecture. 6, 7
[6] Amd fidelityfx - contrast adaptive sharpening, Dec 2021. 4
[7] https://github.com/gpuopen-effects/fidelityfx-fsr, Dec 2021.

5
[8] https://gpuopen.com/fidelityfx-superresolution/, Dec 2021.

5
[9] Adel Almohammad and Gheorghita Ghinea. Stego image

quality and the reliability of PSNR. In Khalifa Djemal and
Mohamed A. Deriche, editors, 2nd International Conference
on Image Processing Theory Tools and Applications, IPTA
2010, 7-10 July, 2010, Paris, France, pages 215–220. IEEE,
2010. 6

[10] Md. Zahangir Alom, Theodore Josue, Md Nayim Rahman,
Will Mitchell, Chris Yakopcic, and Tarek M. Taha. Deep
versus wide convolutional neural networks for object
recognition on neuromorphic system. In 2018 International
Joint Conference on Neural Networks, IJCNN 2018, Rio de
Janeiro, Brazil, July 8-13, 2018, pages 1–8. IEEE, 2018. 1

[11] Saeed Anwar, Salman H. Khan, and Nick Barnes. A deep
journey into super-resolution: A survey. ACM Comput. Surv.,
53(3):60:1–60:34, 2020. 1, 3

[12] M. Ayazoglu. Extremely lightweight quantization robust
real-time single-image super resolution for mobile devices.
In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 2472–
2479, Los Alamitos, CA, USA, jun 2021. IEEE Computer
Society. 1

[13] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei
Zhang. Toward real-world single image super-resolution:
A new benchmark and a new model. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019,

3094



Seoul, Korea (South), October 27 - November 2, 2019, pages
3086–3095. IEEE, 2019. 1

[14] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and
Qingyuan Li. Fast, accurate and lightweight super-resolution
with neural architecture search. In 25th International
Conference on Pattern Recognition, ICPR 2020, Virtual
Event / Milan, Italy, January 10-15, 2021, pages 59–64.
IEEE, 2020. 1, 3

[15] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective
reinforced evolution in mobile neural architecture search.
In Adrien Bartoli and Andrea Fusiello, editors, Computer
Vision - ECCV 2020 Workshops - Glasgow, UK, August,
2020, Proceedings, Part IV, volume 12538 of Lecture Notes
in Computer Science, pages 99–113. Springer, 2020. 1

[16] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional
networks. IEEE Trans. Pattern Anal. Mach. Intell.,
38(2):295–307, 2016. 1, 2

[17] Zongcai Du, Jie Liu, Jie Tang, and Gangshan Wu. Anchor-
based plain net for mobile image super-resolution, 2021. 1

[18] Fernando A. Fardo, Victor H. Conforto, Francisco C. de
Oliveira, and Paulo S. Rodrigues. A formal evaluation
of PSNR as quality measurement parameter for image
segmentation algorithms. CoRR, abs/1605.07116, 2016. 6

[19] Quan Huynh-Thu and Mohammed Ghanbari. The accuracy
of PSNR in predicting video quality for different video
scenes and frame rates. Telecommun. Syst., 49(1):35–48,
2012. 6

[20] Andrey Ignatov, Andres Romero, Heewon Kim, Radu
Timofte, Chiu Man Ho, Zibo Meng, Kyoung Mu Lee,
Yuxiang Chen, Yutong Wang, Zeyu Long, Chenhao Wang,
Yifei Chen, Boshen Xu, Shuhang Gu, Lixin Duan, Wen Li,
Wang Bofei, Zhang Diankai, Zheng Chengjian, Liu Shaoli,
Gao Si, Zhang Xiaofeng, Lu Kaidi, Xu Tianyu, Zheng Hui,
Xinbo Gao, Xiumei Wang, Jiaming Guo, Xueyi Zhou, Hao
Jia, and Youliang Yan. Real-time video super-resolution on
smartphones with deep learning, mobile ai 2021 challenge:
Report, 2021. 1

[21] Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel
Younes, Andrew Lek, Mustafa Ayazoglu, Jie Liu, Zongcai
Du, Jiaming Guo, Xueyi Zhou, Hao Jia, Youliang Yan, Zexin
Zhang, Yixin Chen, Yunbo Peng, Yue Lin, Xindong Zhang,
Hui Zeng, Kun Zeng, Peirong Li, Zhihuang Liu, Shiqi Xue,
and Shengpeng Wang. Real-time quantized image super-
resolution on mobile npus, mobile ai 2021 challenge: Report,
2021. 1

[22] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo
Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and
Luc Van Gool. Ai benchmark: All about deep learning
on smartphones in 2019. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pages
3617–3635, 2019. 6

[23] Tianxing Jin, Songtao He, and Yunxin Liu. Towards accurate
gpu power modeling for smartphones. page 7, 05 2015. 1

[24] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for
single image super-resolution. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 1132–1140. IEEE Computer Society, 2017. 1, 3

[25] Shaoli Liu, Chengjian Zheng, Kaidi Lu, Si Gao, Ning
Wang, Bofei Wang, Diankai Zhang, Xiaofeng Zhang, and
Tianyu Xu. Evsrnet: Efficient video super-resolution with
neural architecture search. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 2480–2485, 2021. 1

[26] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil
Ravi, and Cynthia Rudin. PULSE: self-supervised photo
upsampling via latent space exploration of generative
models. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 2434–2442. Computer Vision
Foundation / IEEE, 2020. 1

[27] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do
wide and deep networks learn the same things? uncovering
how neural network representations vary with width and
depth. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-
7, 2021. OpenReview.net, 2021. 1

[28] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network.
pages 1874–1883, 2016. 1

[29] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:
enhanced super-resolution generative adversarial networks.
In Laura Leal-Taixé and Stefan Roth, editors, Computer
Vision - ECCV 2018 Workshops - Munich, Germany,
September 8-14, 2018, Proceedings, Part V, volume 11133
of Lecture Notes in Computer Science, pages 63–79.
Springer, 2018. 1, 4

[30] Yifan Wang, Federico Perazzi, Brian McWilliams,
Alexander Sorkine-Hornung, Olga Sorkine-Hornung,
and Christopher Schroers. A fully progressive approach to
single-image super-resolution. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 864–873. Computer Vision Foundation /
IEEE Computer Society, 2018. 1

[31] Zhihao Wang, Jian Chen, and Steven C. H. Hoi. Deep
learning for image super-resolution: A survey. IEEE Trans.
Pattern Anal. Mach. Intell., 43(10):3365–3387, 2021. 1

[32] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang,
Jing-Hao Xue, and Qingmin Liao. Deep learning for
single image super-resolution: A brief review. IEEE Trans.
Multim., 21(12):3106–3121, 2019. 1

[33] Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus.
Adaptive deconvolutional networks for mid and high level
feature learning. In Dimitris N. Metaxas, Long Quan,
Alberto Sanfeliu, and Luc Van Gool, editors, IEEE
International Conference on Computer Vision, ICCV 2011,
Barcelona, Spain, November 6-13, 2011, pages 2018–2025.
IEEE Computer Society, 2011. 2

3095


