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Abstract

With the help of continuous optimizations in hardware
and software, smartphones can now capture vivid, detailed
macro pictures as well as high-resolution videos. How-
ever, taking photos/videos in a low-light environment with
smartphones would still result in underexposed and bad-
quality photos/videos due to their physical limitations —
small sensor size, compact lenses, and the lack of specific
hardware and software. A variety of low-light enhance-
ment techniques have been proposed, but their effective-
ness is limited by their high complexity and the limited
computational resources of smartphones. In this paper, we
present an efficient hybrid solution, named as LLNet, to
generate a high-resolution enhanced image given the cor-
responding high-resolution low-light image on mobile de-
vices. LLNet consists of two main parts: 1) a lightweight
convolutional neural network for features restoration that
takes a low-resolution low-light image scaled down from
the high-resolution input and predicts an enhanced low-
resolution output; 2) a non-trainable transformation es-
timation model that approximates a linear transforma-
tion between the low-resolution input and predicted low-
resolution output. By applying the estimated transforma-
tion on a high-resolution low-light image, the correspond-
ing enhanced image can be predicted efficiently. To sup-
port the development of this learning-based solution, we
introduce a dataset of normal-exposure low-light images,
with corresponding long-exposure reference images, and
all the images were captured by smartphones under real-
world low-light scenes. Experiments demonstrate that LL-
Net can provide a real-time (around 32ms) smartphone pre-
view (1440*1080 resolution) with outstanding image en-
hancement under low-light environments with affordable re-
sources consumption. One real viewfinder video demo is
attached as supplementary material to indicate the practi-
cality of LLNet on real smartphones.

(a) The selfie were captured around 0.7 lux.

Figure 1. A 1440*1080 selfie captured under low-light by smart-
phones is significantly enhanced in real-time (around 32ms) by
our proposed method-LLNet. The left image is the low-light im-
age while right one is processed by LLNet

1. Introduction

With the rapid improvements in camera sensors qual-
ity, smartphones have given point-and-shoot cameras and
digital single-lens reflex cameras (DSLRs) a run for their
money. Although smartphones do hold their own against
DSLRs in most aspects, the one area where they fared badly
is low-light photography. Due to limited computational re-
sources and the requirement of the fastest possible process-
ing time, image processing algorithms are under significant
performance pressure to produce high-quality media in low-
light environments. This challenge in low light for mobile
devices is well known in the computational photography
community but remains open. By now, one of the most ma-
ture solutions in the industry is based on multiple-exposure
frames fusion, which requires end-users to hold 2s-4s to
capture multiple exposure frames with the same contents
later to be blended. But it is hard to hold still long enough to
take a good picture in dim light, and such multiple-exposure
frames fusion solutions cannot be applied to real-time tasks,
such as preview and video in smartphones.

Although low-light image enhancement algorithms have
been the focus of a great deal of research, most sophisti-
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cated algorithms are too computationally expensive to be
integrated into mobile devices. To make the “expensive”
quantitative, we take an Android phone with specific hard-
ware to evaluate the computational costs of low-light en-
hancement algorithms on smartphones. The specifications
of the Android phone are described in Section 2. Accord-
ing to the evaluation for low-light images with the Android
phone, conventional algorithms [13, 26, 28] hold fast run-
ning time, but are limited by conditions of usage and not
achieving commercial-level image quality. From the per-
spective of image quality, many deep learning-based archi-
tectures [3,4,9,19,38] have proved their outstanding capac-
ity of enhancing low-light images. However, such work in-
curs a heavy computational cost that scales linearly with the
size of the input image, usually because of the large num-
ber of stacked convolutions and non-linearities that must be
evaluated at full resolution. The problem will limit their
practicability in smartphones. Therefore, developing an
approach to utilize the outstanding performance of CNN-
based architectures while minimizing the cost of computa-
tional resources, has been highly demanded in the smart-
phone industry.

In this paper, we present a hybrid model, named as LL-
Net, which is capable of learning a rich variety of low-light
image enhancements and can be applied on high-resolution
(1440*1080) inputs in real-time. Figure 1 presents the
promising outputs by LLNet. In particular, we achieve this
through three main steps: 1) after scaling high-resolution
low-light images down to low-resolution images, we train
a lightweight convolutional neural network to perform en-
hancement on the low-resolution low-light images for bet-
ter image quality and fast running time; 2) with the low-
resolution input and low-resolution predicted output, we
design an approach to approximate the linear transforma-
tion between them; and 3) by applying a non-trainable es-
timated transformation model on high-resolution low-light
images, the desired high-resolution enhanced image can be
predicted in real-time. Taken together, these three steps al-
low us to perform the bulk of our processing at a low resolu-
tion with a CNN-based architecture for better image quality
while saving substantial compute cost, yet using the low-
resolution output to approximate a high-resolution equiva-
lent in real-time.

In addition, to support the development of our learning-
based LLNet, we have collected a new dataset of low-
light images captured by smartphones with various ambient
scenes. Each low-light image pair has the normal exposure
image as the input and the corresponding long-exposure im-
age as the ground truth. LLNet delivers promising results on
the new dataset: low-light images are improved with better
noise reduction and correct color transformation.

According to the experiments, the hybrid architecture-
LLNet demonstrates its capability of delivering good qual-

(a) Input-0.8 lux (b) CLAHE [28] (c) Retinex [26] (d) LIME [13]

(e) SID [3] (f) ZeroDCE [12] (g) HDRNet [9] (h) Our LLNet

Figure 2. A visual comparison between state-of-the-art algorithms
and LLNet on a single low-light image captured with smartphones
for ablation study.

ity results that are comparable to/or better than previous
work, and the outstanding performance of real-time pro-
cessing on mobile devices. In particular, video demos in
the supplementary material indicate that LLnet can provide
real-time preview enhancement around 30 Hz under low-
light environments on the Android phone with specific con-
figurations described in Section 2. The main contribution of
our work can be summarized in the following perspectives:

• We propose an efficient hybrid model (LLNet) with
the combination of a lite convolutional neural network
and a non-trainable linear transformation estimation
model, to enhance low-light images in mobile devices.

• A new dataset of 3,000 low-light images and the corre-
sponding ground truths is presented. All the images are
captured by smartphones under real-world low-light
scenes.

• We perform evaluations on LLNet using the new
dataset as well as ablation study by end-users dogfood-
ing and demonstrate the superiority of our model qual-
itatively and quantitatively.

2. Related Work
A variety of sophisticated algorithms have been pro-

posed to enhance the overall quality of low-light images.
The most intuitive and simplest way to restore the visibility
of dark regions is by directly amplifying the low-light im-
age, such as gamma correction [11, 29] which increases the
brightness of dark regions while compressing bright pix-
els. However, this type of operation could distort satura-
tion and contrast reduction. Histogram equalization strate-
gies [6, 17, 22, 28] can avoid the above problem by forcing
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the output image to fall in some specific range. However, in
nature, they focus on contrast enhancement instead of ex-
ploiting real illumination causes, having the risk of over-
and under-enhancement. To have better improvement of
overall image quality, more advanced methods have been
developed with more complex analysis and processing op-
erations, such as the inverse dark channel prior [7, 24], the
wavelet transform [39], the Retinex model [26], and illumi-
nation map estimation [13]. Although these methods have
indicated their promising results in some specific cases, the
low-light images suffering from severe noise and color dis-
tortion are still beyond the operating conditions of such
methods. Figure 2 demonstrates the comparison among
these algorithms.

Different from traditional image processing methods
with a specific focus with a constrained input scope, Convo-
lutional Neural Networks (CNN) based methods started to
demonstrate their superiority in image enhancement tasks
with the concept of end-to-end learning. Such methods
mostly benefit from using a large volume of images in the
training process, to learn the corresponding high-quality
features, and there is no longer a need of defining the
features and do feature engineering as traditional image
processing methods do. For general image enhancement,
Yan et al. [35] proposed the innovative deep-learning-based
method for photo adjustment. Chen et al. [4] developed
a fully convolutional network to approximate existing fil-
ters for image enhancement. More recently, a lot of deep
convolutional networks have achieved significant progress
on low-light image processing such as GLADNet [31],
RetinexNet [33], KinD [36], UPED [30], pixel2pixel [19],
CycleGAN [38], DPE [5], DPED [18], SID [3], Enlight-
nGAN [20], Zero-DCE [12], and HDRNet [9]. Among
these CNN-based solutions, the most related one is HDR-
Net [9] which also leverages the hybrid methodology with
a small CNN network and a c++ based bilateral grid model
for achieving the real-time processing enhancement. How-
ever, LLNet and HDRNet differ in two aspects:: (1) dif-
ferent domain areas: HDRNet mainly focuses on high dy-
namic range (HDR) imaging while LLnet is designed to
improve low-light images. Figure 2g indicates that HDR-
Net could produce washout effects, lower contrast, and less
color restoration than LLNet. (2) different processing pro-
cedures: HDRNet uses CNN-based networks to learn the
transformation mapping between inputs and ground truth,
and LLNet takes a CNN-based network to generate pre-
dicted images and estimate the transformation model be-
tween inputs and predicted images.

All these sophisticated algorithms have proved their out-
standing performance on image enhancement under re-
quired conditions. However, due to the demands of large
computational costs, methods are often too expensive to
be integrated into mobile devices. To quantify computa-

tional costs in mobile devices, we take an Android phone
with specific hardware to evaluate the performance of al-
gorithms against 1440*1080 low-light images. The speci-
fications of the Android phone are described as Qualcomm
SM8450 chipset with Adreno 660 GPU. 8G memory, Cam-
era Sensor: OV32B40, Resolution: 32MP, Aperture: f/2.25,
Pixel Size: 0.7um, Sensor size: 1/3.15”, Focus: Fixed, FOV
(diag): 73.24°.

With the Android phone, we have evaluated specific
CNN-based algorithms mentioned above. From the per-
spective of image quality, compared with traditional algo-
rithms, CNN-based solutions indicate their better perfor-
mance on low-light image improvement, Figure 2 shows
the evaluation example between CNN-based algorithms and
conventional solutions. However, such end-to-end learning-
based algorithms are too expensive to be integrated into
mobile devices with limited computational resources. For
example, SID [3] would cost about 2.4 seconds and con-
sume 1.8G memory to finish the inference on a 1440×1080
image. Inspired by the existing low-light image enhance-
ment research, LLNet strikes an appropriate balance be-
tween image quality and computational costs by the hybrid
combination of a lightweight convolutional neural network
and a transformation estimation model for processing high-
resolution low-light images.

3. LLNet Dataset
Although there are many existing datasets [3, 14, 18, 33]

for evaluating the performance of methods targeting low-
light images, these images cannot accurately reflect the real
semantic information captured by smartphone cameras un-
der real low-light environments. For the Google HDR+
dataset [14], most images were captured during the day.
The images of LOL [33] were taken with multiple-exposure
levels during the day to simulate low/normal light images.
But these images cannot represent accurate light distribu-
tion, noise distribution, and color distortion of real low-light
images captured by smartphone cameras.

In this session, we present a new dataset for training
and bench-marking single-image processing of low-light
images in JPEG formats with 1440*1080 resolution. The
dataset of LLNet contains 3000 default exposure images
captured by smartphone with default camera sensor setting,
each with a corresponding long-exposure reference image
as the ground truth. Note that the exposure for the low-light
images was set as 1/10 seconds, and the corresponding ref-
erence (ground truth) images were captured with 300 times
longer exposure as 30 seconds. Since exposure times for
the reference images are necessarily long, all the scenes in
the dataset are static. The blurred images caused by shaking
have been deleted by manual filtering. Since we focus on re-
searching single low-light image enhancement, the required
images should be captured by a single camera shot without
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the fusion of multiple images captured by multiple cameras.
Hence, all images were captured with the front-facing cam-
era of smartphones and were scaled to be 1440*1080 for
training and testing.

Figure 3. Example images in the LLNet dataset. The left one is the
default-exposure low-light image, and its corresponding reference
(ground truth) image is shown in right. The illuminance at the
camera is generally between 0.5 and 5 lux for both indoor and
outdoor.

The dataset covers both indoor and outdoor scenes. The
outdoor images were generally captured at night, early
morning, under moonlight or street lighting. For the indoor
images, they were captured in closed rooms with regular
lights turned off and with faint indirect illumination set up
for this purpose. The illuminance at the camera in both out-
door and indoor scenes is generally between 0.5 lux and 10
lux. In addition, each captured image should generally be
shot at 20 – 60 cm in front of the facing camera, and the
foreground object(s) should occupy the large majority of
the frame as much as possible. We also ensure the captured
images should be rich in color and have sharp edges and
textures. In addition, we ensure each scene should be also
unique, which a single scene should not be shot in multiple
lighting conditions or light levels. But rather, the scene con-
tent should be varied with lighting conditions, light level,
etc. A few pairs of sample images are shown in Figure 3.
For the whole dataset, 80% of images were captured under
0.5 - 5 lux, and the rest of them were taken under 5-10 lux.

To minimize the misalignment issues, the smartphone
was mounted on a tripod and activated remotely by a wire-
less control system as shown in Figure 4. We also devel-
oped an internal camera capture application to facilitate us
to capture aligned images as much as possible. By us-
ing the application, a low-light image and its correspond-
ing ground truth can be taken by pressing the wireless con-
troller, and when the capture is complete, there will be an
audible “beep” tone. Within this non-interrupted procedure,
the smartphone was not touched between the default expo-
sure and the long-exposure images, and the default exposure

Figure 4. This illustrate what the fixture is and how we used this
fixture to collect images with different lux levels. The right image
indicates how to calibrate and record lux value when objects being
photographed.

low-light image and its corresponding long-exposure refer-
ence image can be captured in sequence steadily for avoid-
ing the misalignment issues as much as possible. Note that
the captured images are saved as JPEG data after the mature
ISP pipeline processing, by which we can benefit from per-
fect alignment with the help of optical image stabilization.

4. LLNet
For low-light images, the current ISP pipeline can’t de-

liver a good enough result to satisfy customers’ expectations
for both snapshot and preview. Although some promising
methods [2, 10, 25] based on multiple-frames fusion have
proved their promising results for snapshot, they can not be
applied on viewfinder cases in real-time. To ensure both
snapshot and preview can benefit from low-light improve-
ment algorithms, we have to accelerate the operations of
processing low-light images. Inspired by the methodol-
ogy of processing a low-resolution image and then using
the low-resolution output to approximate a high-resolution
equivalent [9, 15], we propose a hybrid solution, named as
LLNet, to perform fast single image processing of low-light
images for preview and snapshot. The high-level architec-
ture of LLNet is illustrated in Figure 5. There are two main
modules in LLNet: (1) the CNN-based features restoration
module is designed to predict a low-resolution image with
the excellent image quality from a low-resolution low-light
image; (2) the transformation model estimation module is
to approximate the transformation relationship between the
low-resolution low-light input and low-resolution predicted
output. Together with both modules, the estimated transfor-
mation model can be applied to a high-resolution low-light
image to generate the enhanced high-resolution image effi-
ciently.

4.1. CNN-Based Features Restoration Module

Specifically, this module is a fully convolutional network
(FCN) [23] for performing the low-light image improve-
ment with low-resolution input. Recent work has shown
that pure FCNs can effectively represent many image pro-
cessing algorithms [19, 34, 38]. To leverage the success-
ful experience of previous work, we also take the fully-
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Figure 5. The high-level architecture of LLNet. Please note that we implemented this whole architecture with tensorflow to ensure the
model can be fully delegated with GPU for efficient performance.

convolutional network as the foundation of this module.
For the specific structure of this module, we have inves-
tigated some well-known convolutional architectures, such
as U-Net [27], Convolution Pyramids [8] and ResNet [16].
Based on evaluation for computational resources cost, run-
ning time, and image quality, U-Net [27] emerged victori-
ously. As shown in Figure 5, the feature restoration network
takes a low-resolution low-light image as the input, which
is scaled from the high-resolution low-light image and pre-
dicts a low-resolution output with better semantic details,
such as better brightness, better contrast, and better color
saturation. To strike the optimal balance between image
quality and computational costs, our network is designed to
predict low-resolution images. However, the optimal low-
resolution for achieving the optimal speed/quality trade-offs
is different with various requirements and resources. In
this paper, the depth of our U-Net [27] based network is 5,
which indicates the height and width of the low-resolution
must be both multiples of 32. Also, we take 1440*1080
low-light images as our target inputs, the aspect ratio of the
low-resolution should be close to the aspect ratio of target
inputs. Based on the constraints and our evaluations, the
low-resolution 288*244 is the best practice for balancing
computational costs and image quality.

4.2. Non-Trainable Transformation Estimation
Module

Given a high-resolution low-light image Ihigh with 1440
by 1080, firstly we take the bi-linear interpolation to scale
Ihigh down to be Ilow with 288 by 224. The enhanced
image Iolow can be predicted by the CNN-based features
restoration module. The challenge here is how to get the en-
hanced high-resolution output Iohigh based on the three im-
ages: Ihigh, Ilow, and Iolow. Noting that Ilow, Iolow and Iohigh
can be treated as variants of Ihigh, we can infer that the de-
manded Iohigh is visually similar to Iolow and preserves the
edges and other semantic information from Ihigh. There-

fore, we infer that an appropriate transformation model be-
tween Ilow and Iolow can be applied on Ihigh to estimate the
demanded high-resolution output Iohigh. Alternatively, we
can formulate this challenge as a specific joint upsampling
problem.

In the literature of joint upsampling, guided filter [15]
is one of the most widely used algorithms that has shown
better performance regarding the trade-off between speed
and accuracy of image quality. Most excellent works based
on the guided filter have indicated their outstanding ef-
ficiency in estimating the transformation model between
low-resolution images and delivering high-resolution im-
ages by applying the transformation model in various do-
mains. Typically, an intuitive linear transformation model
between input image Iinput and output image Iout can be
identified as Equation 1, where α is a real-valued scaling
factor known as gain, and β is a real-valued offset known as
the bias.

Iout = α ∗ Iinput + β (1)

In particular, guided filter expands the Equation 1 to a pixel-
wised linear transformation model as Equation 2:

Iiout = Ak ∗ Iiinput +Bk,∀i ∈ ωk (2)

ωk is the k-th local square window on Iinput, and Iiinput
is the i-th pixel inside ωk. By applying this Equation 2 on
Ilow and Iolow, the corresponding Alow and Blow can be es-
timated by minimizing a reconstruction error between Ilow
and Iolow. And based on the observation that Iohigh is visu-
ally similar to Iolow and preserves the edges and other se-
mantic information from Ih, we can easily to scale Alow

and Blow up to be Ahigh and Bhigh with bilinear interpo-
lation. Then the high-resolution output Iohigh can be ap-
proximately generated by the linear transformation model:
Iohigh = Ahigh ∗ Ihigh + Bhigh. Based on procedures of
estimating transformation model, we present the module for
generating generating high-resolution, edge-preserving out-
puts with much lower computational costs.
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4.3. Model Training

Note that LLNet is a hybrid model, which means that
we treat the CNN-based features restoration module as
a lightweight trainable network while the transformation
model estimation module is a non-trainable network. Then
we train the CNN-based network with 2700 low-resolution
default-exposed images as inputs while the correspond-
ing low-resolution long-exposure images as ground truths.
Once the training is done, we would merge the trainable
network and the non-trainable network to be the final LL-
Net. Based on this training strategy, we can achieve the
final model with a fast training time while also keeping the
promising predicted results. For 2700 training pairs, each
epoch only costs around 40 seconds with batch size 8 on
using NVIDIA Tesla GPUs.

We train the networks from scratch using the L2 loss and
the Adam optimizer [21]. In each iteration, we scale down
a 288×224 patch for training. The learning rate is initially
set to 10−4 and Training proceeds for 500 epochs.

4.4. Model Optimization

Since smartphones often have limited memory or com-
putational power, to ensure LLNet can be run within these
constraints, various optimizations are applied to LLNet.
Noting that LLNet is implemented based on Tensorflow [1],
the optimizations are proposed based on the compatibility
among Tensorflow, GPU, and the implementation of LLNet.
The main optimizations are described as follows:

• For implementation, instead of using Conv2D, we take
SeparableConv2D as the default convolutional opera-
tion for decreasing the running time and trainable pa-
rameters of LLNet.

• Ensure all the operations in the model can be delegated
by the GPU. A GPU carries out computations in a very
efficient and optimized way, consuming less power and
generating less heat than the same task run on a CPU.
To leverage the GPU inference, the LLNet should be
implemented with only GPU-supported operations.

• Quantizing 32-bit floating-point model to be 16-bit
floating-point model resulting in a 2x reduction in
model size.

• Ensure the number of channels for each layer to be
a multiple of 4. On GPU, tensor data is sliced into
4-channels. Thus, computation on a tensor of shape
[B,H,W,5] will perform about the same on a ten-
sor of shape [B,H,W,8] but significantly worse than
[B,H,W,4] [1].

5. Experiments
We evaluate the performance of LLNet from the perspec-

tives of image quality and computational costs. LLNet is
faster than standard neural network-based solutions and pre-
dicts much better-qualified images than conventional tech-
niques on mobile devices.

5.1. Qualitative Results on Smartphones

To indicate the real-time processing ability of LLNet on
smartphones, we have delivered our LLNet to commercial-
ready smartphones. These smartphones have exact configu-
rations as the Android phone described in Section 2. Video
demos have been captured to illustrate the performance of
LLNet on the camera preview. The demo videos can be
found in supplementary materials. Figure 6 presents the
screenshots of such video demos. The low-light data pro-
cessed by the traditional ISP suffers from low visibility, se-
vere noise, and color shift, but the result of applying LL-
Net, has much better visibility, good contrast, low noise,
and well-adjusted color. And the average running time of
preview with our LLNet is about 32ms, and peak memory
is around 182MB.

(a) Lux is around 0.7. (b) Lux is around 1.0.

Figure 6. (a) and (b) are the screenshots taken from video de-
mos for evaluating the performance of LLNet on preview of smart-
phones, compared with the original ISP.

In addition, a comprehensive evaluation of computa-
tional costs has been conducted on different Qualcomm
Snapdragon Platforms, as shown in Table 1.

5.2. Qualitative and Quantitative Results in Dataset

For the LLNet dataset, we reserve 300 images
(1440*1080 resolution) for validation and testing, and train
on the remaining 2700. As the evaluation metrics, we em-
ployed Peak Signal-to-Noise Ratio (PSNR) and Structural
SIMilarity (SSIM) [32] to quantitatively evaluate the per-
formance of our solution in terms of the color and structure
similarity between the predicted results and the correspond-
ing long-exposure images. As we know they are not abso-
lutely indicative, but we can still use PSNR and SSIM val-
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Qualcomm Platform Time Memory
SM8450 + Adreno660 32ms 182MB
SM8250 + Adreno650 40ms 186MB
SM7325 + Adreno642 48ms 230MB
SM7250 + Adreno620 60ms 228MB
SM6375 + Adreno619 70ms 180MB
SM6115 + Adreno610 105ms 141MB

Table 1. For 1440*1080 images, the computational costs on dif-
ferent Qualcomm Snapdragon Platforms. The results are achieved
by averaging 150 iterations of executions with LLNet.

Method PSNR SSIM Time Memory
Input vs GT 15.02 0.50
LIME [13] 16.77 0.26 480ms 140MB

SID [3] 24.34 0.67 2.4s 1.8GB
Zero-DCE [12] 19.35 0.63 690ms 1.6GB

HDRNet [9] 20.52 0.60 230ms 788MB
LLNet 24.32 0.67 32ms 182MB

Table 2. Quantitative comparison between LLNet and selected
well-known algorithms against 300 testing images (1440*1080
resolution) of LLNet Dataset. For HDRNet, it has a dependent c++
based bilateral slice module for operations acceleration. Since
there is no publicly-available document for integrating this mod-
ule into smartphones, the way we did integration can cause much
more slower running time than claimed in the original paper.

ues to conclude whether proposed solutions could generate
reasonably promising results. We evaluate the performance
of LLNet with the following four state-of-the-art image en-
hancement methods: LIME [13], SID [3], Zero-DCE [12]
and HDRNet [9]. Table 2 reports the results, where for each
case, we re-trained the networks with LLNet dataset, and
we produced their results using publicly-available imple-
mentation provided by the authors with recommended pa-
rameter setting. The computational costs for each method
are evaluated on smartphones with the configurations de-
scribed in Section 2. Figure 7 presents a visual comparison
among these algorithms against the testing images. One
visual comparison of end-users evaluation is illustrated in
Figure 2. As the comparison in smartphones, LLNnet per-
forms better from the perspective of achieving the optimal
speed/quality trade-offs.

5.3. LLNet-Evaluation with Different Configura-
tions

Most Appropriate Downsampling: as discussed in
Section 4, the light-weight convolutional neural network of
LLNet will predict a low-resolution enhanced image from
a low-resolution low-light image. Alternatively, we need
to scale a high-resolution low-light image down to be an
appropriate low-resolution image for achieving the optimal

Resolution After
Downsampling

PSNR SSIM Time Memory

1440*1080 (No
Downsampling)

24.67 0.68 260ms 900MB

612*576 24.54 0.67 110ms 420MB
576*448 24.34 0.67 94ms 300MB
288*224 24.32 0.67 32ms 182MB

Table 3. Quantitative comparison among different downsampling
leves for LLNet. The 1440*1080 resolution indicates that we only
use the convolutional neural network to predict high-resolution im-
ages without the Transformation Estimation Module. From this
table and manually evaluating image quality, we can conclude that
larger resolution will result in better image quality as well as in-
creasing the computational costs.

speed/quality trade-offs that are different with various re-
quirements and resources. To explore the most appropriate
downsampling levels of input images for LLNet, we have
evaluated the performance of LLNet with different down-
sampling levels, as shown in Table 3. And a visual compar-
ison is also provided in Figure 8.

Loss Functions: different from most recent image
restoration efforts [37] using L1 as the optimal loss func-
tion, in this paper, we take the L2 loss by as our default
based on our evaluation which indicate L2 can provide bet-
ter image quality than L2 , especially in sharpness and color.
In addition, we also evaluate many alternative loss func-
tions, such as SSIM, and the combination of L1 and MS-
SSIM [37]. However, we have not observed systematic per-
ceptual benefits for these loss functions. Figure 9 presents
the visual comparison between L1 and L2 .

6. Discussion and Limitation

To balance the image quality and computation costs, we
need to scale the images down to be low-resolution images
and feed them to the convolutional neural network for pre-
dicting. In this paper, we take 288*224 as the target input
resolution of the network for achieving the most appropri-
ate speed/quality trade-offs. However, for some extreme
low-light images, noise becomes a dominant issue for the
predicted images by our LLNet shown in Figure 8. Thus,
striking the optimal balance between image quality and ef-
ficiency with better denoising is another challenge.

In addition, we expect future work to yield further im-
provements in image quality by systematically optimizing
the network architecture and training procedure. For in-
stance, in our current implementation of LLNet, we take
SeparableConv2D to perform convolution in all layers. But
how to mix Conv2D and SeparableConv2D for different
layers to achieve a better image quality is still ongoing
work.
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(a) Input (b) LIME [13] (c) Retinex [26] (d) SID [3]

(e) Zero-DCE [12] (f) HDRNet [9] (g) LLNet (h) GT

Figure 7. Visual comparison with state-of-the-art methods on a test image (a) from our dataset. The test image were captured around 0.8
lux.

(a) Input (b) 288*224-(Default) (c) 576*448 (d) 672*576 (e) 1440*1080

Figure 8. A visual comparison among different downsampling levels of LLNet. Based on our evaluation, a larger resolution will result in
better image quality.

(a) Input (b) LLNet+L1 (c) LLNet+L2

Figure 9. A visual comparison of LLNet with two different loss
functions: L1 and the default L2 . From the example, L2 provides
much better color saturation and sharpness.

7. Conclusion

We present an efficient hybrid architecture (LLNet) with
the combination of a lite CNN and a non-trainable transfor-

mation estimation model that can perform low-light images
(1440*1080) enhancement on smartphones in real-time. We
also present the LLNet dataset to support the development
of learning-based architecture. Benefiting from this hybrid
architecture, LLNet can strike an appropriate balance be-
tween image quality and computational costs. Experiments
demonstrate that LLNet is capable of delivering enhanced
high-resolution outputs with good quality and affordable re-
sources consumption on mobile devices.
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[9] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
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