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Abstract

We present a novel approach for accelerating convolu-
tions during inference for CPU-based architectures. The
most common method of computation involves packing the
image into the columns of a matrix (im2col) and perform-
ing general matrix multiplication (GEMM) with a matrix of
weights. This results in two main drawbacks: (a) im2col re-
quires a large memory buffer and can experience inefficient
memory access, and (b) while GEMM is highly optimized
for scientific matrices multiplications, it is not well suited
for convolutions. We propose an approach that takes advan-
tage of scalar-matrix multiplication and reduces memory
overhead. Our experiments with commonly used network
architectures demonstrate a significant speedup compared
to existing indirect methods.

1. Introduction

A major limitation of Convolutional Neural Networks
(CNN) on mobile and low-power devices is the high com-
putational cost associated with chains of convolutional lay-
ers [10, 20]. As a result, their availability can not be ex-
tended to many common consumer devices since they are
not equipped with high-end GPUs.

Convolutional layers can be computed [9,14] using gen-
eral matrix multiplication (GEMM), a matrix multiplica-
tion procedure found in the majority of computational li-
braries [4]. Matrix multiplication based convolutions are
popular as the GEMM is heavily optimized by CPU ven-
dors. It exploits CPU caching and register manipulation
for continuous computation and fused multiplication accu-
mulation (FMA) for conducting multiple computations in a
single CPU cycle [23].

Convolution using GEMM has two major disadvantages:
(a) it requires packing overlapping image blocks whose
sizes correspond to that of the kernel into the columns of
a large temporary matrix. The temporary matrix grows as

the number of overlapping image blocks increases. When
the kernel and stride are smaller, as is typically the case in
Deep Neural Networks (DNNs), there is an increase in the
number of image blocks. It results in memory overhead
and inefficient memory access, and (b) due to their irregular
dimensions, GEMM does not perform as well on convolu-
tional matrices as on matrices derived from classical high-
performance computing applications.

When considering the implementation of convolutions,
there are two possible memory layouts - channels last and
channels first [2]. In channels first, the tensor is arranged as
NCHW (N batch size, C number of channels, h is height and
w is width) in memory while preserving their dimensions.
In channels last, the tensor is arranged as NHWC. Chan-
nels first is used as the default configuration in various deep
learning frameworks [1, 15] and many existing pre-trained
models are already available in channels first format.

We investigate an alternative to the matrix multiplication
based convolution, and demonstrate that it can be highly ef-
ficient for CPU-based architecture for channels first mem-
ory layout. We propose a scalar-matrix multiplication and
zero packing approach that reduces the memory overhead
while allowing CPU optimizations for continuous memory
layouts.

Memory-efficient Convolution (MEC) have been pro-
posed to reduce the memory overhead while still using
matrix-matrix multiplication [5]. The memory overhead in
our approach is comparable to that in [5]. By using scalar
matrix multiplication without packing, we show that our
method can significantly accelerate the computation.

This paper makes the following contributions:

• We propose scalar-matrix multiplication with zero
packing for convolution, rather than the widely-
used approach of matrix-matrix multiplication with
column-based packing.

• We show that our approach can accelerate con-
volution for CPU-based architecture, outperforming
im2col+GEMM and state-of-the-art memory efficient
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Figure 1. Im2col operation (the arrow on the right) with a 3× 3 kernel on a single input channel image. The product is a matrix of 9 rows
and 4 columns. The highlighted slice in the image correspond to the highlighted column. There is a significant overlap between each pair
of consecutive columns.

convolution (MEC) [5]. This demonstrates that exist-
ing models can be executed more efficiently on mobile
and low-power devices.

2. Background
There are two ways to perform convolutions: (a) by

transforming the weights and data into a different space, ap-
plying simple operations (such as multiplication), and then
transforming back; or (b) by performing direct convolution
on the input weights and activation tensors. The FFT and
Winograd transforms are examples of the first type. The last
type is associated with GEMM-based or high-performance
direct convolution implementations.

2.1. Notations

Notations used in this paper are listed in table 1. Con-
sider a convolutional layer which accepts a tensor of ci
channels × h height × w width. The layer performs con-
volution with co kernels, each is of ci × kh height × kw
width. The output is a tensor of co channels × h′ height
× w′ width. Each output pixel is a linear combination of
ci ∗ kh ∗ kw input pixels.

2.2. GEMM-based implementation

The primary method to compute convolutions without
transforms in channels first layout is based on GEMM.
GEMMs are a fundamental building block for many oper-
ations in neural networks, mainly due to its efficiency. For
convolutions, using GEMM performs the same number of
math operations as a direct convolution and hence is com-
putationally equivalent.

In order to use GEMM, the tensor is needed to be packed
into a matrix. For that, im2col operation [22] packs image
blocks into columns of a matrix, and the kernel weights are
formed into rows of a matrix. Figure 1 shows an exam-

ci # Input Channels
co # Output Channels

h Input Tensor Height
w Input Tensor Width

h′ Output Tensor Height
w′ Output Tensor Width

kh Kernel Tensor Height
kw Kernel Tensor Width

I Input Tensor
K Kernel Tensor
O Output Tensor

T c
j Sub-matrix of I, I[c, 1 : h, j : j + w′ − 1]

Table 1. Notations

ple. Specifically, each image block (green background) is
packed by im2col into a single column. Each kernel (blue
background) is a single row. This results in (co)× (ci ∗kh ∗
kw) and (ci ∗ kh ∗ kw)× (h′ ∗ w′) matrices multiplication.

The size of the packed image matrix, (ci∗kh∗kw)×(h′∗
w′), can be considerably larger than the original image ma-
trix. This is due to the fact that the packed image blocks are
overlapping in the original image, resulting in duplication,
which incurs a significant memory overhead.

Memory-efficient Convolution (MEC) have been pro-
posed to reduce the memory overhead by packing multi-
ple columns at once rather than each single individual sub-
matrix [5]. We compare our approach with both the afore-
mentioned methods.

2.3. Transform-based implementation

The most common transformed used are FFT [12] and
Winograd [21].
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• FFT-based convolution is based on the fact that the
Fourier transform of the convolution of two signals
is the point-wise multiplication of their Fourier trans-
forms. However, the two signals must be of the same
size and therefore the kernels must be padded to the
same size as the input tensor. This incurs memory
penalty which becomes quite large when kernels are
small (e.g., 3× 3), as commonly is the case.

• The Winograd convolution has been shown to be effi-
cient for small kernels [11] due to the fact that on mod-
ern processors, addition is more efficient than multipli-
cation. The method uses less memory than FFT-based
convolution and greatly reduces the number of multi-
plication operations in convolutions, at the expense of
an increase in the number of addition operations.

2.4. Direct Convolution

A high performance implementation of direct convolu-
tion has been proposed [23]. They showed that it can out-
perform a GEMM based convolution in terms of amount of
actual performance, parallelism, and reduced memory over-
head. However, their method is only applicable for channels
last memory layout.

2.5. Approximated Convolution

Various approximation for full convolution have been
proposed, including low-rank for efficient computation [3,
8, 18] and binary neural networks [16]. In contrast to our
approach, the approximation based methods results in de-
graded accuracy.

3. SMM-Conv

3.1. Motivation

Conventional wisdom suggests that GEMM is well
suited for convolution due to the fact that the overhead in-
volved in the preparation phase is well compensated by
the highly efficient performance of the matrix multiplica-
tion. Existing methods focus on reducing the memory over-
head while still applying matrix matrix multiplication for
the computation of the convolution. SMM-Conv accelerates
the computation of the convolution by addressing both com-
ponents in the pipeline: it employs scalar matrix multipli-
cation rather than matrix matrix multiplication, and reduces
overhead to approximately one copy of the output tensor
while reusing the same memory buffer.

3.2. Our Approach

In the following, we describe our algorithm with respect
to column-major order. Details regarding row-major order
derived in a similar manner.

Given an input tensor I of size ci × h × w, and convo-
lutional layer with co kernels K each of size ci × kh × kw,
the output tensor O is of size co × h′ × w′.

3.2.1 One input one output channel

The 2D output of convolution of an input tensor I of size
h×w with a kernel K of size kh× kw can be considered as
summation of kh ∗ kw shifted versions of the input tensor I,
with corresponding sub-matrices of size h′ × w′ multiplied
by corresponding coefficient. Therefore, instead of packing
each image block of size kh × kw into a column of size
(kh ∗ kw) × 1, we consecutively extract the sub-matrices
T 1
j , j ∈ [kw] (superscript c is one channel) which consist of

all the rows of the I and w′ columns, I[1, 1 : h, j : j+w′−1]
and multiply each sub-matrix of size h′×w′ in T 1

j with the
corresponding kernel weight and sum.

Figure 2 present an example for a 3×3 kernel: the input
tensor (image) I is ”sliced” to T 1

1 , T 1
2 and T 1

3 . The h′ × w′

sub-matrices of T 1
j (highlighted) are multiplied with cor-

responding weights of the kernel. A key property of our
approach is that we reuse the same memory buffer of size
h×w′ to compute the result of the convolution. The consec-
utive multiplications with each window within T 1

j access a
contiguous region in the memory block of h′ × w′ of float-
ing points and not requiring further computation. We call
this phase ”shifting” as it only requires pointer-arithmetic
operations.

3.2.2 Multiple input and output channels

We extend the previous algorithm to the multiple channels’
case. For that, we loop on the input channels. We consec-
utively extract kw sub-matrices T c

j which consist of all the
rows and w′ columns of channel c, I[c, 1 : h, j : j+w′−1].
For each matrix we shift kh times, obtaining h′ × w′ ma-
trices for kh ∗ kw scalar-matrix multiplications. For each
output kernel co we accumulate the result into the corre-
sponding output channel. This is done repeatedly for all the
ci input channels.

For contiguous access, we use a kernel layout of ci ×
kw×kh× co multidimensional array. Notice that the order-
ing of dimensions adapted to match the order of the access
of the algorithm.

The algorithm is shown in Algorithm 1.

3.2.3 Single thread vs. Parallel.

Our convolution implementation is divided to two steps: ex-
tracting the input tensor into T c

j sub-matrices and scalar-
matrix multiplications.

For fast parallel algorithms, we adhere to the following
principles:
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Figure 2. Our approach. The result of convolutions of 9 consecutive positions with a 3 × 3 kernel can be viewed as a linear combination
of shifted sub-matrices. We extract a sub-matrix of the input tensor and use scalar matrix multiplication with shifted blocks to compute the
results.

• Memory invalidation. Writing and reading from
a memory block simultaneously is discouraged as it
could result in invalid readings and prevents CPU
caching.

• Parallel writing. All output elements should be com-
putable in parallel.

For d threads (1 <= d), d memory buffers are allocated.
Each memory buffer is a h×w′ matrix. Each thread is asso-
ciated with a single memory buffer and co/d output feature
maps.

We iterate for ci ∗ kw/d times and associate every mem-
ory buffer with an input channel c and horizontal offset
j (1 <= c <= ci, 1 <= j <= kw). Each thread
extract T c

j into its associated memory buffer. Then each
thread performs scalar-matrix multiplications with every
h′ × w′ shifted window of each T c

j computed before into
the thread’s associated co/d output feature maps. The algo-
rithm is shown in Algorithm 2.

3.3. Memory Requirements

In our implementation, T i
j are written into the same

memory buffer. After extraction, scalar matrix multiplica-
tions are executed on every h′ × w′ slice of the matrix and
accumulated into co output matrices.

Im2col routine, on the other hand, packs every h′ × w′

slice of I and requires a ci ∗ kh ∗ kw ×h′×w′ tensor for its
output.

Comparing the ratio between the memory required for
our implementation and for im2col:

ci ∗ kh ∗ kw ∗ h′ ∗ w′

h ∗ w′ = ci ∗ kh ∗ kw
h′

h
(1)

In many commonly used convolutional layers such as [6,
17], h′ ≈ h. In conclusion, im2col requires approximately
ci ∗ kh ∗ kw times the memory used by our algorithm.

3.4. Implementation advantages

SMM-Conv extract a sub-matrix, iteratively preforms
shifting operation, scalar matrix multiplication and summa-
tion. Usage of a contiguous memory buffer for short steps
rather than matrix multiplication subroutine is beneficial for
the following assumed reasons:

• FMA instructions. Performing h′ ∗w′ multiplications
and accumulations with a contiguous floating points
memory buffer benefits from the fused multiplication-
accumulation SIMD operation [23].

• Memory demand. Available memory resources for
low-power embedded devices are expensive. SMM-
Conv reduces the total temporary memory by ci ∗Kh ∗
kw.

• CPU caching During the entire execution span, we
store only a matrix of h ∗ w′ and use it exclusively
for reading, without loading and unloading. This type
of configuration is well suited for caching.

4. Experimental Results

In this section, we present performance results of our
SMM-conv convolution implementation against existing
convolution approaches.
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Algorithm 1: Single-threaded SMM convolution
Input: I - a ci × h× w input tensor

K - a ci × kw × kh × co kernel tensor
Result: O - a co × h′ × w′ output tensor

1 Set O values to zero
2 for c← 1 to ci do
3 for j ← 1 to kw do
4 Sliced Mat← T c

j

5

6 for k ← 1 to kh do
/* Shifting */

7 Shifted Mat← Sliced Mat[k :
h′ + k, :]

8

/* Scalar-Matrix
multiplication and
accumulation */

9 for m← 1 to co do
10 w ← K[c, j, k,m]
11 O[c, :, :]+ = w ∗ Shifted Mat

12 end
13 end
14 end
15 end

4.1. Experimental Setup

Baselines We compare SMM-Conv with
im2col+GEMM and MEC [5]. We implemented our
approach in C++ using OpenMP [13]. For CPU multi-
threaded application, we use im2col+GEMM implemented
by PyTorch [14] C++ API, which uses the Intel’s Math
Kernel Library (MKL) [7]. For embedded devices and sin-
gle thread application, we implemented direct convolution,
im2col and GEMM based on the PyTorch implementation.
For MEC [5], we used their available code. We ran our
experiments on Intel Core i7-1165G7 CPU with 4 cores
and 8 logical processors.

4.2. Performance

All implementations were ran against all convolutional
layers found in AlexNet [10], VGG [19] and YoloV3 [6].
The different convolutional layers in these three CNNs span
a wide range of sizes of input, output and kernel weights.
They are also commonly used as benchmarks for demon-
strating the performance of convolution implementations.
Overall, our convolution outperforms both im2col-based
convolution and MEC. See Table 2 for execution time of
ours against im2col convolution and MEC, on whole net-
work execution duration. Figure 3 presents the layer break-
down with respect to the baselines. The relative perfor-
mance of the different implementations is normalized to the

Algorithm 2: Parallel SMM convolution
Input: I - a ci × h× w input tensor

K - a ci × kw × kh × co kernel tensor
Result: O - a co × h′ × w′ output tensor

1 Thread Limit using d threads.
2 Thread numbering #n := current thread number
3 set O values to zero.
4 for ℓ← 1 to ci ∗ kw/d do

/* Associate input channel and
horizontal offset to buffer
#n */

5 Sliced mat channel#n ← input channel c
6 Sliced mat offset#n ← j

/* Parallel packing into a h× w′

matrix */
7 Sliced Mat#n ← T c

j

8

9 thread-sync
10

11 for µ← 0 to d− 1 do
12 for k ← 1 to kh do

/* Shifting */
13 Shifted Matµ ← Sliced Matµ[k :

h′ + k, :]
14

/* Scalar-Matrix
multiplication and
accumulation. Each
thread writes to co/d
output channels */

15 for λ← 1 to co/d do
16 w ← K[c, j, k, λ ∗#n]
17 O[λ ∗#n, :, :]+ =

w ∗ Shifted Matµ

18 end
19 end
20 end
21 end

im2col convolution (incl. GEMM routine). It can be seen
that SMM-Conv can gain a speedup of up to 200% with
respect to a specific layer. The different methods share a
similar amount of multiplications and accumulations. The
speedup of SMM-Conv is due to its efficient use of scalar
matrix multiplication (See Sec. 3.4).

4.3. Model Scalability

We compare SMM-Conv to im2col and MEC with dif-
ferent convolutional layer parameters. The relative perfor-
mance is normalized to the GEMM routine + im2col pack-
ing method.
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Figure 3. Acceleration of convolutional layers in various neural networks. The x-axis is the depth of the layer and the y-axis is the speedup,
normalized to im2col convolution.

Network Im2col MEC Ours Speedup

AlexNet 0.4608 0.2008 0.1348 3.4183
VGG 2.3670 2.8562 1.3535 2.1102
YoloV3 0.4478 0.5779 0.2889 2.0003

Table 2. Various convolution neural networks’ execution times and
speedups (in seconds).

4.3.1 Input channels count

In this experiment, we compared 1, 16, 32, 64, 128 and 256
input channels on 32 × 32 and 64 × 64 input dimensions,
3× 3 kernels, and 32 output channels. See Figure 4.

While SMM-Conv memory is indifferent to the amount
of input channels, im2col convolution and MEC require a
memory block that is affected by the amount of input chan-
nels.

4.3.2 Input spatial dimensions

In this experiment we compared 32 × 32, 64 × 64, 128 ×
128, 256× 256 and 512× 512 input dimensions. We com-
pared 1, 32 and 64 input channels, 32 output channels, 3×3
kernels. Figure 5 presents the speedups normalized by
im2col convolution duration.

The runtime of im2col packing is negligible as large
memory copying throughput is high (by using techniques
such as streaming) and the majority of the execution time

is spent on multiplication. SMM-Conv number of matrix
extractions, shiftings and scalar-matrix multiplications is
determined by the kernel size while MEC’s number of re-
quired packings in each steps is determined by H ′ and W ′.

4.3.3 Kernel sizes

In this experiment we compared 3 × 3, 5 × 5, 7 × 7, 9 ×
9, 11×11, 13×13 and 15×15 kernels on 64×64 and 256×
256 input sizes, 32 input channels and 32 output channels.
Results can be seen in Figure 6.

Im2col output matrix has ci ∗ kw ∗ kh rows and w′ ∗ h′

columns and therefore grows as the kernel size increased.
SMM-Conv memory block, of length h ∗ w′, get smaller as
the kernel expands in the horizontal direction and is indif-
ferent to kernel height changes. MEC memory block has
h′ rows and h ∗ kw columns, and therefore if h >> kh the
memory block grows as the kernel expands.

4.3.4 Output channels count

In this experiment we compared 1, 8, 16, 32, 64 and 128
output channels on 256×256 input dimension, 3×3 kernels
and 16 input channels. See Figure 7. The speedup of SMM-
Conv shown in Figure 7 for single output channel is due to
our zero packing, which is negligible for increased number
of output channels.
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Figure 4. Acceleration of input channels. The x-axis is the number of input channels and the y-axis is the speedup, normalized to im2col
convolution.

Figure 5. A comparison of the speedups of different squared input dimensions. The x-axis represents the first dimension of the input, and
the y-axis represents the speedup, normalized to im2col convolution.

5. Conclusion
We presented SMM-Conv for faster convolution for em-

bedded and low-powered devices. Our approach, unlike
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Figure 6. Speedups of various kernel sizes. The x-axis represents the size of the kernels, and the y-axis represents the speedup, normalized
to im2col convolution.

Figure 7. Speedups of various number of output channels. The x-axis represents the number of output channels, and the y-axis represents
the speedup, normalized to im2col convolution.

existing methods, is based on scalar matrix multiplication
and does not require packing at all. We showed that SMM-
Conv can accelerate convolution for commonly used archi-
tectures, including YOLO, AlexNet and VGG. SMM-Conv

can be easily implemented, allowing deployment for var-
ious existing deep learning frameworks and existing pre-
trained models.
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