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Abstract

Neural architecture search (NAS) has proven its worth
in discovering new neural networks. Combining the possi-
bility to satisfy multiple objectives in one search, it is es-
pecially useful for getting the most out of embedded de-
vices with limited resources. However, research into small
and efficient neural networks precedes NAS. We investigate
the influence of combining this pre-existing knowledge with
NAS techniques, for which we propose to hot-start the NAS
search with a human-designed optimal network. Our ex-
periments show that doing so speeds up the NAS process
significantly, but the resulting optimal model at the end is
only marginally better. Since embedded devices are often
used for a specific task, we also explore the impact of using
a task-specific dataset in the NAS process. Our experiments
demonstrate that for a constrained problem, a smaller net-
work can be found as compared to a general problem.

1. Introduction
The past few years, Neural Architecture Search (NAS)

has created new opportunities in deep learning. NAS pro-
vides the possibility to discover the best neural network
for various objectives automatically. In the past, experts
handcrafted neural networks to perform well under vari-
ous conditions, making them more general purpose. This
idea of designing more general purpose networks greatly
shows off their potential and in turn many are interested in
using them for their specific use case. However, these ex-
isting neural networks may not be the best fit for the very
specific demands of a real-life, industrial application. In-
deed, many AI-powered consumer devices have a fixed task,
which never changes. An example is a surveillance camera
with built-in person detector, or a LiDAR-navigating vac-
uum cleaning robot. For these kind of applications, a gen-
eral purpose neural network architecture is a non-optimal
choice in terms of compute vs accuracy trade-off. We be-
lieve that for a fixed, predefined task, both the neural net-
work architecture as well as the model parameters can both

be optimised. With the help of NAS, we can search for a
bespoke solution to tackle these application-specific chal-
lenges.

The previously mentioned examples are all cases of em-
bedded applications. The resources on embedded devices
are scarce, and memory often is one of the biggest bottle-
necks. We are using NAS to find lightweight models to suit
these limited conditions.

Many strategies have already been proposed and imple-
mented to perform the task of neural architecture search,
delivering satisfying results in a great deal of cases. In this
work, we do not focus on creating a completely new al-
gorithm from scratch, but rather we are more interested in
discovering how useful NAS can really be for real world ap-
plications. Following this reasoning, we propose to use an
existing NAS method, extend it and investigate its potential
in our experiments.

Most of these search strategies, much like neural net-
works, have been developed using academic datasets such
as CIFAR10. These academic datasets contain a multitude
of different categories that are often not related at all. While
this offers a good baseline when comparing the performance
of different strategies, they don’t reveal much when talking
about a more application specific use case. In many real
life, task-specific, scenarios this variation in data may sim-
ply not be present (and therefore needed) in the final appli-
cation. For instance, a traffic monitoring camera is always
mounted with a similar point-of-view on the road, render-
ing the amount of viewpoint variance much lower compared
to the academic datasets. In this paper, we examine how
this shift towards such a constrained target dataset influ-
ences the final outcome of a NAS search. Previous work has
proven that constrained datasets can lead to smaller neural
networks [24].

Moreover, human experts have spent tremendous efforts
on designing well performing and at the same time efficient
neural networks and gained insights about this along the
way. In contrast, NAS often starts blind, without this ex-
pert knowledge. It is true that this enables the search strat-
egy to explore all possibilities, but on the other hand, the
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architectures and building blocks designed by experts have
proven their performance in the past. Given that NAS can
be very time consuming due to this intensive exploration of
the search space, we question if it would be useful to rely
on this expert knowledge to get to a solution faster, by hot-
starting a NAS with human designed architectures.

2. Related Work
The field of NAS has been studied extensively for years.

In this chapter, we give a brief summary of relevant and
related work.

Many algorithms have been implemented over the years
to serve the purpose of NAS. Some of the biggest categories
include reinforcement learning (RL) [1, 30, 37], genetic al-
gorithms (GA) [21,26,35] and other techniques such as one-
shot learning [20, 25, 34]. In recent years much effort has
gone into making all of these algorithms faster, leading to
results in just a few hours to days. Papers presenting an in-
troduction and comprehensive comparison are available to
provide a more in depth overview of the current state-of-
the-art [2, 10, 12].

NSGA-Net [22] is such a NAS strategy using a ge-
netic algorithm. This search strategy is based on NSGA-
II, a multi-objective genetic algorithm. A genetic algorithm
[21], a subclass of evolutionary algorithms, is a heuristic for
optimisation inspired by nature. The algorithm uses nature-
inspired operators such as mutation and crossover to reach
an optimal solution based on natural selection.

NSGA-Net [22] is one of the NAS algorithms that uses a
genetic algorithm. This search strategy is based on NSGA-
II, a multi-objective genetic algorithm. A genetic algorithm,
a subclass of evolutionary algorithms, is a heuristic for op-
timisation inspired by nature. The algorithm uses nature-
inspired operators such as mutation and crossover to reach
an optimal solution based on natural selection. We will
use this technique as the starting point for our NAS experi-
ments.

In section 1 we have referred to finding the ’best’ neural
network possible. Originally, this meant achieving the low-
est error possible. In many cases we can broaden this scope
to fulfill multiple requirements, leading to multi-objective
NAS . Typically this means focusing on other aspects of
the performance as well, such as the amount of operations
needed (FLOPs or MACs [6, 19, 23, 31], model size [5] or
latency [30, 33]. This way we can utilise NAS to optimally
use the resources of devices that only have a limited amount
of them available.

Much research has been done in the field of deep learn-
ing in general the last few years. NAS often discards this, in
order not to bias the algorithm used in the search. The idea
has risen that it might not always be necessary to completely
discard this information but instead we might leverage it to
our advantage. This can be used in the form of hot-starting

the algorithm instead of random initialisation. Among the
existing networks, some have novel ideas that make them
perform better on limited hardware. One of the most used
examples in this case is the MobileNet-family [13, 14, 27].
MobileNetV2 introduces the efficient depth-wise separable
convultions, which we will add to our NAS approach. It is
used so often that it can be found in popular deep learning
frameworks like TensorFlow [32]. Hot-starting the NAS al-
gorithm isn’t common, but one such approach is [16]. They
use pre-trained PyTorch models for their RL approach.

As previously mentioned, multi-objective search has
mainly become the norm in NAS. This has more recently
led to an interest in NAS for smaller, embedded devices that
can for example be found in IoT and TinyML applications.
MCUNet [19] is a search strategy for off-the-shelf small
devices. It has two components: a one-shot based NAS
strategy on a pre-optimised search space and an inference
optimisation engine instead of relying on out of the box
deep learning libraries. Whilst yielding satisfying results,
the search strategy is rather complex and involves numer-
ous optimisation steps outside of the actual search strategy.
MCUNet for computer vision focuses on large-scale image
recognition in the form of the ImageNet dataset. Other ap-
proach such as MnasNet [30] and [4] employ a more vanilla
search strategy and optimise for latency on the target device
on the classic academic datasets.

Another solution involves the co-design of both hard-
ware and software [3, 11, 17, 18] to reach an optimal so-
lution.

To reduce the search time, some NAS strategies rely on
accuracy estimation. When using academic datasets such
as CIFAR10, benchmarks can be used for his purpose [9,
28,36]. For our application-specific case, we need to obtain
real-time accuracy on our specific dataset.

Most of the previously mentioned work has been per-
formed in academic settings using academic computer vi-
sion datasets. Apart from that, medical images and appli-
cations seem to be the most popular subject for NAS. Re-
search on task-specific datasets, especially on embedded de-
vices, is limited. One such recent example involves forest
animals [15].

In this paper we leverage an existing GA NAS strategy
(NSGA-Net) to search for a task-specific and lightweight
embedded neural network.

The contributions of this paper are the following:

• We adapt NSGA-Net for hot-starting from a known ar-
chitecture and investigate its impact on the final result.

• We add depth-wise separable convolutions to NSGA-
Net.

• We investigate the influence of using NAS for a con-
strained problem.
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Figure 1. Hot-started NAS approach for task-specific applications

• We propose to optimise the neural network for accu-
racy and size, as memory is often the bottleneck in
embedded applications.

• We investigate the sense and nonsense of hot-starting
NAS with a human-designed architecture.

In section 3 we will explain our own search strategy and
in section 4 the dataset and its use case is explained. Our
implementation is described in section 5 and the results are
discusses in section 6. Lastly we will look at further chal-
lenges in section 7.

3. Strategy
In this chapter we will lay out our approach for our NAS

experiments. Figure 1 shows a schematic summary.

3.1. NAS Approach

We have already mentioned our interest in using existing
NAS approaches in section 1. This immediately introduces
a few challenges. As mentioned in section 2, NAS can be
performed using various search strategies. Furthermore, to
ensure a correct implementation, we are only interested in
search strategies with code available online. Other require-
ments we have are multi-objective search and a relatively
fast search time.

NSGA-Net satisfies all our demands and uses a relatively
straightforward approach. We will expand on the original
code provided by [22].

NSGA-Net uses the NSGA-II algorithm. This stands for
Non-Dominated Sorting Genetic Algorithm II [8], an algo-
rithm that has been widely used in all sorts of optimisation
problems. Non-dominated sorting sorts the population into
Pareto-fronts for the objectives. In a second step, crowd
distance sorting is used to select individuals with respect to
fitness and diversity. We choose the NSGA-Net approach

because it uses a genetic algorithm that has proven its worth
in various domains before, as well as delivering good re-
sults for the task of NAS. We are interested in genetic al-
gorithms because of their nature-inspired ability to inherit
traits and evolve from there. This is in line with our idea of
hot-starting to benefit from prior knowledge.

The original implementation of NSGA-Net randomly
initialises the algorithm. For our experiments, we adapted
this algorithm such that it can be hot-started from an ar-
chitecture similar to MobileNetV2. This choice is moti-
vated by the fact that MobileNetV2 is an an architecture
that has been targeted for implementation on edge devices,
such as the Kendryte K210, before as well as its widespread
use in lightweight frameworks like TensorFlow Lite. Mo-
bileNetV2 introduced the idea of the depth-wise separable
convolution, which led to a reduction in parameters in the
network. This idea of the depth-wise separable convolution
is useful for devices that have limited compute resources
available compared to the GPUs that are used when train-
ing a neural network. We added these depth-wise sepa-
rable convolutions to the original NSGA-Net implementa-
tion. Because of the limitations imposed by the structure
of NSGA-Net, explained in subsection 5.2, we can’t imple-
ment all details without changing major parts of NSGA-Net.
For this reason, we can’t implement the skip connections
when these are present.

3.2. Multi-objective Search

NSGA-Net is a multi-objective search strategy. This
means that we can satisfy more than one objective using
this search strategy. The first objective we want to satisfy
is a neural network that can correctly classify the images it
processes. To do this, we will try to minimise the classifi-
cation error on the test dataset.

The second one relates to the application of our neural
networks, on which we will elaborate in section 4. Em-
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Figure 2. DJI Tello drone used in [7] for flower pollination

bedded devices generally have a rather limited amount of
resources available. These resources include compute re-
sources such as the CPU, but also the amount of onboard
memory can be a limiting factor. To make the most of
these, FLOPs and MACs or size are obvious choices like
explained in section 2. For our implementation described
in section 4 the bottleneck was the available onboard mem-
ory. So, we adapted our NAS approach to measure the size
of the neural network as the second objective in our search.
Both need to be minimised in our experiments to obtain the
best architecture for the application.

4. Dataset
Our application is a nanodrone (see Figure 2) that can

automatically navigate to flowers and pollinate them [7].
During the second phase of the navigation procedure, a di-
rect visual servoing approach is used to exactly positioned
the drone w.r.t. the flower. We do this positioning using a
neural network classifier that directly predicts control com-
mands for the drone with the objective of keeping the flower
centered, while slowly approaching the flower.

We conduct our experiments using a dataset created
by [7]. This dataset only contains images of sunflowers and
is therefore very limited in its diversity. The differences
between the images are the position of the flower and the
background of the image. Using this dataset, we want to
enable drones to automatically detect sunflowers and navi-
gate to the optimal position to pollinate them.

The classes of the dataset represent the moves the drone
should make in order to reach this optimal position. These
classes are: Top, Bottom, Left, Right, X-Center and Y-
Center. The original image size is 416 by 416 pixels and
the images are provided in RGB format.

The dataset consists of 4800 labeled images, partitioned
using a 10-90 divide for test and training data. Figure 3
shows a few examples of images present in this dataset.

A common approach to pre-training is using a general
purpose dataset like ImageNet when little data or only a
dataset with limited variation is available. This a step that
we will ignore on purpose. We employ this technique be-
cause we don’t need the features learned by the pre-training
for our limited task, and the pre-training is a very time con-

(a) Class Top (b) Class Y-Center

(c) Class Bottom (d) Class Right

Figure 3. Examples of images present in the sunflower dataset.

suming step because of the size of these general purpose
datasets. Other than that we want to rely purely on the
performance of the architecture found and not introduce a
bias that could be related to using pre-trained weights or
pre-training with a dataset that is different from our target
dataset.

5. Set-up and Implementation
In this chapter we will discuss how we implemented and

conducted our experiments.

5.1. Training Parameters and Set-Up

Our experiments are conducted using a NVIDIA Tesla
V100 GPU with 32 GB VRAM. We use the dataset de-
scribed in section 4 and resize the images to 32 by 32 in
order to have the same size images as the CIFAR10 dataset.
We don’t follow CIFAR10 in its black and white input im-
ages. Our dataset is in RGB format and we want to keep the
three input channels.

We use parameters of NSGA-Net that the original au-
thors found to yield the best results. We do change the
amount of epochs to 20 and batch size to 250 to fit our own
training set-up.

The parameters for the genetic algorithm are as follows:
we let the algorithm run for 40 generations with a popula-
tion size of 30 and produce an offspring of 40 candidates
each generation.

5.2. Hot-Start

An approach in NAS is only looking for an optimal block
and repeating that same block multiple times to make up
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a neural network. The other approach is to search for a
whole neural network at once. NSGA-Net combines both
approaches. NSGA-Net searches for the whole architecture,
but the architecture is made up of blocks, called phases.
MobileNetV2, apart from the depth-wise separable convo-
lutions, also features repeats that are characterised by the
channels of the convolutions. We can leverage this feature
to define our blocks and emulate a MobileNetV2-like archi-
tecture in the NSGA-Net imposed structures. Each repeat
sequence forms its own block, that in turn is made up of
nodes. The amount of nodes in each block is determined
by the amount of repeats in MobileNetV2. In the nodes we
introduce the depth-wise separable convolutions instead of
the regular convolutions used by NSGA-Net.

The actual hot-start of the algorithm happens by ini-
tialising the first generation of the algorithm with the
MobileNetV2-like structure. This has to be done by provid-
ing the correct genome representation of our hot-start archi-
tecture. We derive this representation ourselves, based on
the seven blocks defined by the repeats and the correspond-
ing channels of MobileNetV2. Figure 1 shows a visual rep-
resentation of this hot-start implementation.

In order to execute the multi-objective search we have
described in section 3, we need the size of the neural net-
work. We use a Python package called torchsummary [29]
to provide this information, as it is not included with Py-
Torch.

6. Results

To study the impact of all our proposed changes, we have
conducted a few different experiments. In this chapter we
will analyse and compare these results.

6.1. Vanilla NSGA-Net

In order to investigate the full impact of the hot-start
only, we run both a hot-started (Figure 4) and randomly
initialised (Figure 5) version of our NAS search. We ob-
serve that the hot-started version starts with a smaller model
as well as a higher test accuracy and reaches better results
more quickly. However, as time continues, the gap becomes
smaller. After 40 generations a similar optimal point is
reached. We see that hot-starting the NAS steers the search
quickly in a good direction: the spread is smaller for the
hot-started scenario.

6.2. Depth-Wise Separable

MobileNetV2 introduces the depth-wise separable con-
volutions. In the original implementation this comes with a
channel expansion between the input and output channels.
For a first comparison, we keep the expansion factor at 1.
Again, we perform the experiments hot-started (Figure 6)
and randomly initialised (Figure 7).

Figure 4. Results of hot-started vanilla NSGA-Net on flower
dataset.

Figure 5. Results of randomly initialised vanilla NSGA-Net on
flower dataset.

The original starting size of the neural network is smaller
at the start for the hot-start than with random initialisation.
Initially these hot-started models have a higher test accu-
racy. But after 40 generations both approaches move again
to a similar optimal point. We observe that hot-starting this
search has a positive influence. Hot-starting causes a faster
convergence to the optimal, e.g. for generation 20 in the ex-
perimental results, we observe a accuracy spread between
25% and 50% accuracy when randomly initialized, while it
is between 37% and 50% in the hot-started scenario. In the
later generations the hot-started neural networks converge
more to the same point.
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Figure 6. Results of hot-started NSGA-Net with depth-wise sepa-
rable convolutions on flower dataset.

Figure 7. Results of randomly initialised NSGA-Net with depth-
wise separable convolutions on flower dataset.

6.3. Depth-Wise Separable Expanded

The next step we implemented is the addition of the ex-
pansion factor in MobileNetV2. Results for the hot-started
experiments are shown in Figure 8 and Figure 9 shows the
results for random initialisation. Again the starting size is
smaller for the hot-started neural networks, but bigger than
without the expansion factor added. The hot-started mod-
els move faster to the optimum, though they both reach the
optimum after 40 generations.

6.4. Comparison

Table 1 presents a comparison of the results of all the pre-
viously mentioned experiments. The comparison shows the

Figure 8. Results of hot-started NSGA-Net with expanded depth-
wise separable convolutions on flower dataset.

Figure 9. Results of randomly initialised NSGA-Net with ex-
panded depth-wise separable convolutions on flower dataset.

optima when focusing on a accuracy vs size trade-off. We
observe that, especially when reaching the optimal point,
the model size boils down to discontinuous values, showing
as vertical clusters in the plots. These models are different
optimized models, but contain exactly the same number of
parameters. For each of these vertical clusters, the optimal
point is easily to be found as the one with the top accuracy.

For comparison, we also counted the FLOPs of each
model, as computed in [22].

We indeed see that hot-starting or not yields a compara-
ble optimal model, but with hot-starting it is slightly better.
Previous experiments showed that in the latter case, this op-
timum is more quickly reached.
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Size (MB) Accuracy (%) FLOPs (M)

Vanilla
Initialisation 11.3 39.2 43.8
Random initialisation optimum 2.2 47.2 10.3
Hot-started optimum 2.2 47.2 10.3

Depth-wise separable
Initialisation 10.5 36.4 15.6
Random initialisation optimum 3.4 46.4 7.1
Hot-started optimum 3.4 47.2 7.1

Depth-wise separable expanded
Initialisation 37.5 27.6 64.3
Random initialisation optimum 10.9 50.4 14.8
Hot-started optimum 10.9 50.8 14.8

Table 1. Comparison of all highest results, focusing on size vs accuracy trade-off.

6.5. Limited dataset vs CIFAR10

We want to see what the impact of a limited dataset is
on the final outcome of a NAS search. The original authors
of NSGA-Net [22] present their findings on the CIFAR10
dataset, which we will use as a comparison for a more gen-
eral purpose dataset. Their results show that they start with
three phases and also have three phases in their final results.
We start with seven, but end up with one in our later gener-
ations.

We conclude that for our limited dataset, the reductions
are much bigger than for a general purpose dataset. For our
task-specific dataset the final neural networks are between
3 to 5 times smaller when compared to the starting point.

This conclusion is in line with the findings of Ophoff et
al. [24], who demonstrated similarly a higher optimisation
factor achieved for constrained problems by pruning.

7. Conclusion
In this paper we have presented the results of a hot-

started NAS approach for a task-specific embedded appli-
cation. To do this we have adapted an existing NAS ap-
proach called NSGA-Net. We have examined the impact
of hot-starting the algorithm compared to random initialisa-
tion. Next, we have looked at the results of adding depth-
wise separable convolutions, a technique targeting devices
that are limited in resources. Lastly we explore the effect of
using NAS on a constrained dataset.

The benefit of hot-starting the NAS algorithm lies in its
ability to reach better results more quickly as well as start-
ing from a better starting point. But, we observe that in the
end, both approaches reach a similar optimum.

Adding depth-wise separable convolutions leads to a
slightly larger final result, but with similar accuracy. The
depth-wise separable convolutions do indeed lead to a lower
amount of FLOPs compared to regular convolutions. When
the expansion factor is added, size increases but accuracy
goes up.

Finally we conclude that using a task-specific dataset
leads to significantly smaller neural networks.

Future research opportunities include using metrics mea-
sured on an embedded target device.
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