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Abstract

Neural Architecture Search (NAS) can automatically de-
sign model architecture with better performance. Current
researchers have searched for local architecture similar to
block, then stacked to construct entire models, or searched
the entire model based on a manually designed benchmark
module. There is no method to directly search the architec-
ture of the global(entire) model at the operation level. The
purpose of this article is to search the entire model directly
in the operation level search space. We analyzed the search
space of past methods which searching for local architec-
tures, then a working mode for global model architecture
search named CAM is proposed. Proposed CAM decou-
ples the architectural parameters of the entire model which
can complete the entire model architecture search with few
architecture parameters. In the experiment, the test error
2.68 % in CIFAR-10 is obtained by the proposed method at
the global architecture level, which can compare with the
stage-of-art local architecture search methods.

1. Introduction

In recent years, deep neural network technology has
achieved great success in the tasks of structured data rep-
resentation such as vision and language. However, there
are still many difficulties that prevent the application of this
technology, like that require huge amounts of computing
cost and expert costs for manually designing models. Neu-
ral architecture search is an efficient method to solve these
problems.

The purpose of the NAS(neural architecture search) is to
search high efficient model architectures through optimiza-
tion algorithms in a given search space. Early NAS meth-
ods [19] used intelligent heuristic algorithm and reinforce-
ment learning to complete the search for the optimal archi-
tecture unit. Recently, a large number of gradient-based
one-shot methods [5,6, 15,16] have appeared, which greatly
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Figure 1. DARTS search the architecture of single cell and finally
stack many cells to form the final model. The figure is the ar-
chitecture of a cell. Each cell takes the output of the previous two
cells(O(x — 1), O(z)) as input, there are four nodes(NV (0, 1, 2, 3))
in the Cell, each node is connected to the previous node, there are
14 connections, each connection has 7 candidate operations, so the
search space size is 14 X 7.

reduce the search time and the cost of computing, making
the technology has a certain application value. Current NAS
methods search local architecture (blocks) and then continu-
ously stack the searched blocks to construct the entire model
architecture or using the artificially designed module as the
basic search unit to search the global neural network model.
The above method without searching the entire model ar-
chitecture directly on the basis of operations, so have some
obvious limitations:

e Block search methods [6] are a trade-off made by re-
ducing the size of the search space to reduce the difficulty
of the search this mode greatly reduces the architectural di-
versity of the model.

e In the one-shot methods like DARTS [6] search pro-
cess, construct a proxy model that use a small number of
layers (such as 8) to find the optimal block and then stack
block 20 times construct the final model. So there has a
performance gap between proxy model and the final model.

Current local block search methods and the methods
based on manual design module can get outstanding perfor-
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Figure 2. In figure, part 1 and 2 are the parameter matrices of
two different types of Block (Normal and Reduce) defined in
the DARTS, and part 3 represents the global model architecture
searched with the DARTS series methods. The architecture repre-
sentation parameters required to search the model architecture in
the full space will increase significantly.

mance, but the potential performance of global search meth-
ods which based operation can not be ignored. In this pa-
per, our core purpose is to directly search the entire model
architecture. A method that searching the entire model ar-
chitecture from the global search space is proposed. NAS
methods can be divided into three categories according to
search algorithms, based on RL,based on evolutionary al-
gorithm, and based on gradient. The proposed method uses
gradient to search, which can greatly reduce the search time.

Gradient-based methods relax the discrete combinatorial
optimization problem as a differentiable weight optimiza-
tion problem. As can be seen in Fig .1, the first gradient-
based method DARTS [6], the entire model is composed of
two types blocks (normal and reduced),block is defined as
a DAG(directed acyclic graph). The search space size of
each block is C' x Op, C refers to the number of connec-
tions in each block, and Op refers to the size of the can-
didate operation set in each connection. In the DARTS [6]
series methods, C' = 14 and Op = 7. As mentioned in
above 1, the existing method simply stacks block to con-
struct the model, which makes the structure of each layer of
the model the same, in fact the function of each layer of the
neural network is not same, so the architecture obtained in
this method not optimal.

The method [3] directly searching the entire neural net-
work architecture generally uses artificial design modules
such as MobileNetV2 [11] as the basic constituent unit.
With the artificially designed block structure as the basic
unit, this method performs very well. The search prob-
lem of NAS method can be regarded as a multi-dimensional
function optimization problem. Compared with directly
searching the entire neural network architecture, the search
method with the block structure as the target is simpler, but
the search space is greatly limited (a trade off between com-
plexity and speed).

We call the above method of searching for the Block ar-
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Figure 3. The classic operation-based method simplifies the model
search into two types of block structure search and then stacks
these two blocks to form the final model, which is called IAM
here, as shown in part A. Proposed CAM mode allows the exten-
sion to generate a more complex model architecture, as shown in
colored lines of part B.

chitecture and stack to the entire model as IAM(Identity
Architecture Mapping) here(as the Fig.3 shows). Re-
duces the complexity of the final model structure and
uses proxy-model, in exchange for rapid convergence of
the search process. The goal of this paper is to search
for the global neural network model more efficiently. A
method called CAM(Complex Architecture Mapping) is
proposed. Such a method can obtain a diversified neural
network model architecture of inter-layer Block without a
significant increase in architectural parameters, So as to
quickly and effectively search the entire model architecture.

Here, we propose a parameter decoupling search method
to specifically describe the CAM process and optimize
the architecture search in the global architecture parameter
space, so as to obtain the hierarchical differentiated neu-
ral network model architecture. Through the method of pa-
rameter decoupling, the number of architecture parameters
is greatly reduced, thus reducing the difficulty of optimiza-
tion. The experimental results show that in the global search
state, the proposed method has a significant improvement in
accuracy compared with the benchmark method. The per-
formance of the fine-grained model architecture obtained by
the proposed global search method can even compete with
the state-of-art block search method.Our contribution is di-
vided into the following two points.

e Analyzing the related methods of searching the block
structure based on the proxy-model in the past and propose
a mode named CAM, which can extend the past methods to
the global neural architecture search task.

e The parameter decoupling method is proposed to
specifically implement the CAM mode, which reduces the
number of architecture parameters required for global ar-
chitecture search, thereby reducing the difficulty of global
architecture optimization.
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Figure 4. The right side of the diagram is the parameter structure of
the global model architecture search under the regular setting, and
the left side is visualization of decoupled method.The proposed
method decomposes the architecture parameters into three parts
«a, B, and ~y. The black square in figure refers to W[k, ¢, j]. In this
way, the number of parameters that was originally (L x C' x Op)
was reduced to (L x C'+ L x Op + C x Op), thereby reducing
the difficulty of search optimization.

2. Related work

NAS has attracted many researcher’s attention recently.
The NAS methods can be divided into two parts according
to the optimized method: 1. Define NAS’s operation selec-
tion problem as a combinatorial optimization problem, and
use the RL(reinforcement learning) and EA(evolutionary al-
gorithms) to search for the optimal model. 2. Relaxing
the NAS’s operation selection problem as the optimization
problem of the corresponding weight value of different op-
erations, which can be directly optimized by gradient de-
scent.

NAS-Net [19] is the method based on RL neural archi-
tecture search. On Cifarl0 and Imagenet, better perfor-
mance is achieved in terms of parameters and accuracy than
manual design models. After that, methods such as [10]
using EA to solve search problems. [6] uses gradient op-
timization to complete the block search of the neural net-
work, reducing the computing cost of the NAS by three
orders of magnitude. Later, it appeared that [16] reduced
the memory consumption during the search process through
’partial channel connection’, [2] reduced the memory by se-
lecting active edge optimization, and [1] used Sigmoid in-
stead of Softmax to enhance the search stability. [4] pro-
poses an early stopping mechanism get stable convergence
result. Ensemble Gumbel-Softmax improves the optimiza-
tion quality of the parameter matrix from the perspective
of gradient estimation. NASIB [13] proposed a method
that can complete the search under more candidate opera-
tions. BANANAS [14] proposed a Bayesian neural struc-
ture search method, which predicts the final performance of
the selected architecture early. The above methods accel-
erates the convergence process of the stable search method
from the perspectives of memory and calculation to obtain a
better result. Other methods such as [3], using [12] or [8] as

the basic block to search the entire neural network model.
The proposed method search the entire neural network ar-
chitecture at the operational level.

3. Proposed method
3.1. Definition of search space

The proposed method aims to search for model architec-
ture in the global search space base on the operations set
level. So as to compare with methods such as DARTS [6],
the proposed method has the same search space at the block
level, the set of candidate operations for each connection is
the same, and the number of nodes in the different block is
the same.

At first, we explain DARTS‘s [6] method. In the
DARTS, the NAS problem is simplified to search two types
of blocks (normal and reduce, in Fig .2). In order to reduce
the computation and memory requirements, this method
stack two simple block structures L, times to construct a
proxy-model in the search phase (the number of blocks in
the search proxy-model is defined as L,). The NAS prob-
lem can be defined as a bi-level optimization problem, and
then the entire optimization task is completed by alternately
optimizing architecture parameters and model parameters.
After searching finished, two blocks obtained are stacked L
times to become the final model. The architecture of the
block has been illustrated in Fig .1. If searching the entire
model architecture directly in DARTS, then the entire ar-
chitectural parameter number will become (L x C' x Op)
as shown in Fig .2. the number of layers, connections in a
single block, candidate operations in each connection are
defined as L,C,Op. As can be seen from Fig .2, when
searching the entire neural network model from the oper-
ation level, the DARTS series methods require a large num-
ber of architectural parameters, which leads to an increase
in the dimension of the independent variable and make the
optimization process of multi-dimensional functions very
difficult. This is one of the main difficulties of search-
ing neural network model architectures in the global search
space.

The method proposed decomposes the model into a stack
of L blocks. Unlike the previous method, the proposed
method allows each block architecture to be different. Each
block can be regarded as a DAG(Directed Acyclic Graph)
which have four intermediate nodes N;,7 € [1---4], It re-
ceives the output of the previous two blocks’ output(O(x)
and O(z — 1)) as input. Each node N; uses the previ-
ous node N; (j < i) as an input then constitutes a con-
nection.Each node N; in the block uses the previous node
N; (j < 1) as a precursor node to build a connection.

Next, the mathematical definition of the connection be-
tween any two nodes in the block is given in Formula (1).
The set of operations,the architecture weight of the jth op-

1981



eration in the 7th connection in the kth block,the activation
function are defined as O,i(k, i, 7) and o.

o (ksing)

Op
- -
e az:;) (ijo ¥ (ki.5) 0 m) (1)

3.2. CAM Mode

In this section, we will introduce the relationship be-
tween global neural structure search and block search.
At present, the widely used proxy-model and simplify
the architectural diversity of the final model through
IAM(Identity Architecture Mapping). The model obtained
by these methods has a small parameter space and low op-
timization difficulty so that the model with higher perfor-
mance and lower complexity can be obtained in a limited
time.

For the global neural architecture, the required architec-
tural parameter expression form is shown on the right side
of the Fig.2. The determination of the entire neural network
requires a large number of architecture parameters. Meth-
ods such as DARTS use Block as the search target and stack
the same Block construct model. Actually, it uses fewer
Block structure parameters to represent the global neural
architecture with the help of IAM. The IAM is shown in
part A in Fig.3.

Numerous methods have proved that feasible solutions
in a broad sense can be obtained in such a simplified search
space, which proves that the past methods are very effective.
The motivation of this paper is to directly search the entire
model architecture base on the operation level. In order to
effectively search for the global architecture, this paper de-
signs a CAM(Complex Architecture Mapping)(as shown
as in part B of Fig.3) instead of the IAM(DARTS, etc..).
CAM allows us to use a small number of architecture pa-
rameters to represent the entire model architecture, thereby
reducing the complexity of the search process. In Fig.3 that
in the DARTS block blue and black line represents the iden-
tity mapping, and the colored lines on the right part repre-
sent the proposed CAM mode.

We analyze how to expand the architecture parameter
space from a single block to entire neural network archi-
tecture. Thinking from another perspective, the architecture
parameters of a single block essentially refer to the weight
of each candidate operation on each connection. The IAM
mode simply stacks blocks, which can be understood as
copying the architectural parameters of a single block many
times. In the global neural architecture parameter repre-
sentation, we can model the mapping from block architec-
ture parameters to the global architecture with the partici-
pation of the ‘layer-connection’ parameter 3 and the ‘layer-
operation’ parameter . (Using CAM, allowing each layer
to be different)

Then, we propose the Formula 2, which define the
general form of Block expansion to the global architec-
ture.(This is a formal definition, the specific method used
in this article will be introduced in the next section.)

Y=F0OoFRoxa (@)

Here, the mapping function of 3 parameter is defined as
F, the mapping process of v parameter is defined as F,
the architecture parameter of a single Block is defined as «,
and © refers to the mapping operation.

In the process of mapping from a single Block architec-
ture to the global neural network architecture, the o parame-
ters are mapped under the joint action of 5 and ~y to produce
the entire neural network model architecture parameters. In
the next subsection, the specific implementation process of
parameter mapping will be introduced in detail.

3.3. Decoupling of architectural weight parameters

As we indicated in Fig.2, using the gradient-based
method directly search in the full space. The numerous ar-
chitecture parameters and high memory consumption will
increase the difficulty of optimization.

In order to achieve CAM and reduce the size of pa-
rameter space, this paper considers the correlation between
global architecture parameters in different dimensions, and
finally decomposes the architecture parameters into three
components,in Fig.4. namely:

e Connection-Operation weight a:: weight distribution of
different operations corresponding to each connection.

e Layer-Connection weight 8: the weight distribution of
different connections corresponding to each layer block.

e Layer-Operation weight «y: the weight distribution of
different operations corresponding to each layer block.

The decomposition of the parameter space will be in-
troduced in here. The three dimensions of the parameter
space have been defined earlier: L, C, Op refer to the num-
ber of layers, the number of candidate connections for a
single block, and the number of candidate operations for a
single connection. This paper decomposes the huge param-
eter space into three parameter matrices.

In the global architecture search process, every element
of ¥ needs to be optimized. We consider the composition of
[k, 1, j] from the perspective of decoupling, which can be
understood as «[i, j] at the kth layer on the map, 5[k, ¢] on
the jth operation, and [k, j] on the ith connection, as shown
in Fig.4. From this we can see that in the past, the local
search method based on the cell is a simplified version of
this method, that is, the mapping of a[i, j] on the kth layer
is an identity mapping.A formal definition of 1 decoupling
is given in Formula (3),the combination operation method
of o, B, and +y is defined as ®.

Y=a® By 3)
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Next, define the combination of «, /3, and +y is further
defined in Formula(4)

Ulk, i, j] = oalali, j]) - o (Blk, 1)) - oy (v[K, J])  (4)

In Formula4), k € [0,L),:i € 1[0,C),j €
[0, Op).1)li, 4, k] refers to the weights of kth layer, the ith
connection, and the jth candidate operation, o are activation
function. In the search phase, o, 0, and o, are sigmoid,
softmax, and sigmoid, respectively. Under this definition,
the final form of the proposed method is defined as Formula

(5).

Op
X = Z (0alali,f]) - o5 (Blk,]) - 0 (v[k, j]) - O (x))

(&)

Formula(5) show the calculation of different operation
weights in each connection, so that the weight values can
be updated by gradient optimization, and the architecture of
the neural network model can be optimized.

3.4. Relationship to Prior Work

Previous researchers have focused on how to more effi-
ciently search for block-level model structures. For exam-
ple, PC-DARTS speeds up the stable search process through
partial channel connections and Edge Normalization. Fair-
DARTS uses Sigmoid instead of Softmax and adds a zero-
one loss function To increase the competitive advantage of
reducing search-training gaps and skips, the method pro-
posed in this paper follow part connections and zero-one
loss in order to accelerate the global search speed.

4. Experiment and Results
4.1. Dataset detail

The number of categories of CIFAR10, CIFAR100,
TinyImagenet are 10,100,200. The dataset setting and
search space setting follow DARTS.

4.2. Results on CIFAR-10

In the search phase, we set the number of channel equal
to 16, use the same data augmentation strategy and hyper-
parameter setting as the DARTS method(Set skip connec-
tion drop rate to 0.2), the search time on single RTX2080Ti
is 0.4 day, and then train the obtained model architecture.
After comprehensive experiments, the final average error is
2.68%(Detailed results are shown in Table.1). The visual
diagram of the model architecture obtained by the search is
shown in Fig.5 .

The Fig.5 shows the architecture visualization results
in detail. It can be seen that Separable convolutions, Di-
lated convolutions, and other operations with feature en-
coding capabilities appear more frequently in the shallow

Table 1. Comparison with state-of-the-art network architectures
on CIFAR-10. T represent model architecture searched from global
search space

Test Err. Params Search Cost

Architecture Search Level

(%) M) (GPU-days)
NASNet-A + cutout [19] 2.65 33 1800 Block
PNAS [5] 341 32 225 Block
ENAS + cutout [9] 2.89 4.6 0.5 Block
DARTS (1st order) + cutout [7] 3.00 33 0.4 Block
DARTS (2nd order) + cutout [7] 2.76 33 1 Block
SNAS (moderate) + cutout [15] 2.85 2.8 1.5 Block
BayesNAS + cutout [ 18] 2.81 34 0.2 Block
PC-DARTS + cutout [16] 2.57 3.6 0.1 Block
FairDARTS + cutout [ 1] 2.59 3.27 - Block
BANANAS + cutout [14] 2.64 - 11.8 Block
NASIB + cutout [13] 3.57 6.71 1.5 Block
NASP + cutout [17] 2.83 33 0.1 Block
PC-DARTS + cutout [16] 3.69 3.44 0.4 Global'
DNAS + cutout 2.68 3.35 0.4 Global®

layer of the model. None-Weights operations such as skip-
connection occur more frequently at deeper levels of the
model. This is consistent with the researchers’ past cogni-
tion that the lower-level operations of the neural network
model are responsible for feature extraction. The skip-
connection operation can destroy the singularity of the fea-
ture layer of the model so that the gradient backpropagation
can effectively update the model parameters in the lower
layer.

4.3. Results on CIFAR-100

During the CIFAR-100 model search process, we set the
number of blocks, channels, and batch size equal to 14, 16,
96. As can be seen from Table 2, the proposed method has
achieved a competitive performance in global architecture
search.

Table 2. Comparison with state-of-the-art network architectures
on CIFAR-100.

Test Err. Params Search Cost

Architecture Search Level

(%) ™M) (GPU-days)
DenseNet-BC 19.64 15.3 -
VGG-16 27.07 34.0 - -
NASNet [19] 22.71 5.7 1800 Block
PC-DARTS + cutout [16] 17.64 4.36 0.1 Block
PC-DARTS + cutout 19.8 4.27 - Globalt
DNAS 17.47 4.60 0.6 Global®

4.4. Transferring to Tiny-Imagenet

In order to prove the effectiveness of the obtained archi-
tecture, we transfer the obtained model to Tiny-Imagenet.
In the training process, we adopted random rotation and
flipping augmentation strategies. The detailed experimen-
tal settings follow the DARTS. From Table 3, the model
searched on CIFAR-10 performs well on the TinyImagenet
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Figure 5. The model architecture diagram searched on CIFAR-10/CIFAR-100. The lines in different colors represent different types of
operation connections in this diagram, the upper part is the model architecture searched on CIFAR-10, and the lower part is the model
architecture searched on CIFAR-100.

Table 3. Comparison with state-of-the-art network architectures
on TinyImagenet.

Test Err. Params Search Cost

Architecture (%) o) (GPU-days) Search Level
NASNet-A [19] 58.99 4.8 1800 Block
ENAS [9] 57.81 4.6 0.5 Block
DARTS [6] 57.42 3.9 4 Block
SNAS [15] 57.81 33 1.5 Block
NASP [17] 58.32 8.9 0.2 Block
DNAS(CIFAR-10)  65.30 5.9 0.4 Global®

dataset, which proves that the architecture obtained by the
proposed method has strong transformation ability.

5. Conclusions

In the past, architecture search methods searched the lo-
cal architecture, and then stacked the local architecture to
form the entire model. Unlike these methods, the core goal
of this paper is to search for model architectures at the op-
eration level in the global space. The working mode of lo-
cal architecture search is analyzed and a model construction
mode of CAM is proposed, then a method of decoupling
architecture parameters to reduce redundant architecture
parameters is proposed, thereby improving the efficiency
of the global architecture search. From the experimental
results in CIFAR-10, CIFAR-100 and Tinylmagenet, the
method proposed in this paper has achieved performance
comparable to the most advanced local architecture search
methods on the basis of global architecture search. In a
word, the competitiveness of the global neural architec-
ture search method is improved.
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