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Abstract

This paper presents the first challenge on demosaic-

ing of natural spectral images for snapshot hyperspec-

tral imaging systems (HIS) which utilize a multi-spectral

filer array (MSFA), i.e., the recovery of whole-scene hyper-

spectral information from spatially sub-sampled hyperspec-

tral information. This challenge expands the “ARAD 1K”

data set to a first-of-its-kind large-scale data set for multi-

spectral filter array demosaicing of natural scenes contain-

ing 1,000 images. Challenge participants were required to

recover hyperspectral information from synthetically gen-

erated MSFA images simulating capture by a known cali-

brated snapshot mosaic hyperspectral camera. The chal-

lenge was attended by 157 teams, with 29 teams competing

in the final testing phase, 7 of which provided detailed de-

scriptions of their methodology which are included in this

report. The performance of these submissions is reviewed

and provided here as a gauge for the current state-of-the-art

in multi-spectral filter array demosaicing of natural images.

1. Introduction

Hyperspectral imaging systems (HIS) are able to record

the distribution of light in a scene across a large number

of narrow spectral bands [7]. The additional information

which HISs can provide over conventional RGB cameras

could offset the disadvantages of their larger size, signif-

icantly higher cost, and limited resolution. However, a

strong gating factor for the use of traditional HISs in many

computer vision applications is their long acquisition times

due to the use of spatial or temporal scanning. Snapshot

HISs overcome this limitation by rapidly acquiring both

spectral and spatial information [17].

Among recent approaches to snapshot hyperspectral

Figure 1. Conventional “GRBG” Bayer pattern CFA (left) com-

pared to the 4 × 4 MSFA described in (right). Filter colors are

roughly correlated to the perceived “color” of each filter to a hu-

man observer. Filter configuration for the depicted MSFA is de-

scribed in Figure 2.

imaging, such as computed tomography [9,22] or light-field

imaging [5, 8], snapshot mosaic HISs or “multi-spectral fil-

ter array (MSFA) cameras” are emerging as a leading con-

tender. MSFA cameras are snapshot HISs which employ

a MSFA to rapidly acquire spectral information in a single

exposure of a 2D image sensor [25]. MSFAs cameras spa-

tially sub-sample the imaged scene in a similar manner to

Bayer-filter-based RGB cameras. While Bayer filter RGB

cameras employ a repeating 2 × 2 color filter array (CFA)

or “mosaic”, MSFA cameras will often utilize much larger

3 × 3, 4 × 4, or even 5 × 5 [18] CFAs. Figure 1 depicts a

conventional RGB CFA compared to a 4× 4 MSFA.

A growing variety of commercial MSFA cameras are be-

coming available to researchers and industry professionals

at increasingly lower costs. Such systems include the IMEC

SNAPSHOT spectral camera series [24, 46], the XIMEA

Snapshot USB3 camera series [26], the silios CMS camera

series [29] and others. A major advantage of MSFA cam-

eras is that they can be implemented in a similar form-factor

and operated in a similar manner to conventional RGB cam-
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eras. However, to fully utilize the spatial and spectral infor-

mation recorded by MSFA cameras, efficient and accurate

spectral demosaicing methods are required.

The challenge of such demosaicing large MSFAs is

twofold: a larger mosaic pattern provides a signifi-

cantly stronger sub-sampling of the imaged scene and

the narrow bands found in most MSFAs have weaker

inter-channel correlation than the R-G-B channels of

a Bayer filter camera. Previously proposed methods

for spectral demosaicing include expansions of long-

established interpolation-based methodologies [15, 32],

matrix-factorization/recovery-based methods [1, 44], and

most recently deep learning approaches [11, 16, 36, 38, 43].

While previously present methods for spectral demosaicing

vary in their methodologies, a commonality they share is

training and testing over very small data sets - with recent

works training over less than 100 images and testing over

less than 10 images.

Previously reported methodologies are difficult to com-

pare as they may differ in their target system (MSFA cam-

eras with a different amount of channels and/or different fil-

ter configurations) or in their selection of test images even

if the latter are drawn from the same data set. To facili-

tate equal grounds comparison of current and future state-

of-the-art multi-spectral filter array demosaicing methods

this challenge presents: a large-scale data set of 1,000 natu-

ral hyperspectral scenes, a single target 4×4 MSFA camera,

and a uniform testing procedure.

This challenge is one of the NTIRE 2022 associ-

ated challenges: spectral recovery [4], spectral demo-

saicing [3], perceptual image quality assessment [13],

inpainting [39], night photography rendering [10], effi-

cient super-resolution [30], learning the super-resolution

space [31], super-resolution and quality enhancement of

compressed video [49], high dynamic range [37], stereo

super-resolution [47], burst super-resolution [6].

2. Data Set

Name Scenes Spatial Resolution Spectral Resolution

CAVE [50] 32 512× 512 31 bands (400-700nm)

TokyoTech [33] 30 2048× 2048 31 bands (420-720nm)

TT59 [34] 40 2048× 2048 59 bands (420-1000nm)

Hytexila [20] 112 1024× 1024 186 bands (400-1000nm)

ICVL [2] 201 1392× 1300 519 bands (400-1000nm)

ARAD 1K (primary) [4] 1,000 480× 512 31 bands (400-700nm)

ARAD 1K (16 band) 1,000 480× 512 16 bands (400-1000nm)

Table 1. Summary of existing data sets of natural hyperspec-

tral images used to train/evaluate methods for MSFA demosaicing

compared to the ARAD 1K data set.

The development and testing of MSFA demosaicing

methods requires ground truth hyperspectral information

which is difficult to obtain [20]. For this reason, previ-

ous works [1] have either used data acquired by airborne

Figure 2. Response function of a prototype MSFA camera sensor

provided by one of ODDITY’s commercial partners. The sensor

provides 16 channels of spectral information over the 400-1000nm

range, spatially sub-sampled using a 4× 4 multi-spectral filter ar-

ray. The approximate peaks of each channel are denoted in the

legend. Line colors are roughly correlated to the perceived “color”

of each filter to a human observer.

hyperspectral platforms, such as the NASA AVIRIS [45],

or relied on much smaller data sets of natural hyperspec-

tral images. Table 1 summarizes existing data sets of natu-

ral hyperspectral images previously used [11, 14, 16, 38, 43]

to train/evaluate methods for MSFA demosaicing and com-

pares them the the ARAD 1K data set presented here.

This challenge expands on the ARAD 1K spectral image

data set presented as part of the NTIRE 2022 Spectral Re-

covery challenge [4]. While the former provides 31 band

hyperspectral images in the 400-700nm range, this chal-

lenge presents 16 channel hyperspectral images in the 400-

1000nm range - covering a wider range of wavelengths, but

at a reduced spectral resolution. Figure 3 depicts a set of

sample images from the ARAD 1K data set.

The MSFA demosaic expansion of the ARAD 1K pro-

vides the same 1,000 scenes presented in the ARAD 1K

data set, divided similarly to 900 training images, 50 valida-

tion images, and 50 confidential test images. Ground truth

hyperspectral information is provided as 480 × 512 spatial

resolution images across the 16 spectral bands depicted in

Figure 2.

Additional information regarding the data set, its rela-

tion to the previously published ARAD data set, instruc-

tions for data access, and relevant code is available at the

following GitHub repository: https://github.com/

boazarad/ARAD_1K
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Figure 3. Sample images from the ARAD 1K hyperspectral im-

age data set. Note the variety of settings and viewpoints (images

modified for optimal display).

2.1. MSFA Camera Simulation

As a first-of-its-kind large-scale evaluation of MSFA

demosaicing methods, this challenge aims to establish an

initial baseline for the spectral demosaicing task, with-

out adding compounding factors such as sensor acquisition

noise. To this end, the camera simulation pipeline makes

the following assumptions:

1. The camera’s spectral response function is known.

2. The camera determines its exposure settings automat-

ically - the exposure algorithm is known, but param-

eters used to compute it for each scene are not (e.g.

average scene brightness).

3. The camera has zero noise.

4. No post-processing is applied to acquired images ex-

cept for highlight clipping.

5. Images are saved in uncompressed “RAW”.

Participants were provided with training images pro-

duced by the challenge MSFA camera simulation pipeline,

camera simulation pipeline code, and the MSFA camera re-

sponse function used in the simulation. Figure 2 depicts the

response function used for MSFA camera simulation in this

challenge. Pipeline code and the MSFA camera response

function were provided to participants.

3. Challenge

The NTIRE 2022 Spectral Demosaic Challenge was pre-

sented as a competition on the CodaLab 1 platform which

consisted of two phases:

1. Development participants were provided with 900

training and 50 validation RGB images generated by

the camera simulation pipeline (c.f. Sec. 2.1). Corre-

sponding ground truth hyperspectral images were pro-

vided for the 900 training images. A test server was

made available where participants could upload recov-

ered spectral information for the 50 validation images

and receive immediate feedback on their performance

in terms of PSNR and SAM per-image (c.f. Sec. 3.1).

During the development phase, there were no limits on

the amount of submission per team.

2. Testing Ground truth hyperspectral images for the

50 validation images were released, alongside 50 test

RGB images. Similarly to the development phase,

a test server was made available where participants

could upload their results and receive feedback on their

performance, but each team was limited to a total of

three submissions. This feedback allowed participants

to select their best model, while limiting the possibility

of overfitting to the test set.

Code and other data provided to participants is curated

in the following GitHub repository:https://github.

com/boazarad/NTIRE2022_spectral

3.1. Evaluation Metrics

For this challenge, Peak signal-to-noise ratio (PSNR)

computed between the submitted reconstruction results and

the ground truth images was selected as the primary quan-

titative measure. Spectral Angle Mapper (SAM) [23] was

reported as well, but not used to rank results. PSNR is de-

fined as:

PSNR = 10 · log10

(

PEAK2

MSE

)

(1)

where PEAK denotes the maximum possible pixel value

to the image (For the ARAD 1K data set PEAK = 1) and

MSE and and SAM are defined as:

MSE =
1

|Pgt|

∑

i,c

(

Pgti,c − Preci,c

)2
(2)

SAM =
1

|Pgt|

∑

i

cos−1







∑

c Pgti,cPreci,c
√

∑

c P
2
gti,c

√

∑

c P
2
reci,c







(3)

1https://codalab.lisn.upsaclay.fr/competitions/

722
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Where Pgtic
and Precic

denote the value of the c spec-

tral channel of the i-th pixel in the ground truth and the

reconstructed image, respectively, and |Pgt| is the size of

the ground truth image (pixel count × number of spectral

channels).

3.2. Evaluation Protocol

Similarly to the NTIRE 2022 Spectral recovery chal-

lenge [4] a 50 image test set, including a large variety of

images from multiple settings (c.f. Sec. 2) were provided

for evaluation. Due to space and bandwidth constraints lim-

itations of the CodaLab platform evaluation was performed

over a cropped central region of the test images. Partici-

pants were provided with code to prepare images for eval-

uation over a central 226 × 256 region cropped from the

original 480 × 512 spatial resolution. Final results were

scored for PSNR and SAM over the selected central region

of the test images.

4. Challenge Results

Table 2 details the final rankings of all participants over

the primary evaluation metrics. The highest PSNR achieved

was 47.74 and the lowest SAM achieved was 0.00973.

SAM rankings differed significantly from PSNR rankings.

The top performing method in terms of inference time was

able to achieve ∼ 71 FPS which could be considered “real-

time” performance, though this frame-rate would only be

possible with an advanced GPU (NVIDIA RTX 2080Ti)

and for ∼ 0.25MP images. The high frame-rate solution

also comes at a cost of a ∼ 4.3db PSNR loss. Section 6

describes the methodologies used by top-performing teams

in this challenge, as described by their authors.

4.1. Performance on “Out­of­Scope” Image

Similarly to the NTIRE 2022 Spectral recovery chal-

lenge [4], finalists were presented with an “out-of-scope”

image to recover. Figure 4 depicts the out-of-scope im-

age selected for this challenge: it features a prominent hu-

man subjects and calibration target - objects which are very

rare in the training data set. Furthermore, the image was

taken under photographic studio lights, while the majority

of training images were captured under natural illumination

or conventional indoor lighting. While performance on the

out-of-scope image may be indicative of a methods extrap-

olation power, these measurements did not affect partici-

pants final ranking in the challenge. Table 4 details the per-

formance of most submitted methods over the out-of-scope

image.

The out-of-scope image contains a large amount of rela-

tively uniform surfaces. Spatially uniform surfaces should

present an easier target for demosaicing, a even naive in-

terpolation should produce good results over uniform ar-

eas. It is therefore surprising to see degradation in PSNR

Figure 4. “Out-of-scope” image used to gauge the extrapolation

ability of methods presented in this challenge. This image contains

a prominent human subject, a calibration target, and was taken

under studio lighting (image modified for optimal display).

performance of up to 10db for some of the top perform-

ing methodologies. Conversely, other methodologies saw

PSNR gains of almost 10db. This variability in perfor-

mance indicates that both the methodologies, as well as

the train/test data set used in this challenge have significant

room for improvement.

5. Conclusion

The NTIRE 2022 Spectral Demosaic Challenge presents

a first-of-its-kind large-scale evaluation of MSFA demo-

saicing methods. A larger-than-ever natural hyperspectral

image data set for both training and evaluation of MSFA de-

mosaicing methods is presented. Top performing method-

ologies, selected from a total of 157 participating teams are

presented as a baseline for future evaluations and/or chal-

lenges.

Top performing methodologies were all bases on neu-

ral nets and require high-end GPUs for inference. While

the 4th ranked method presented performance that could be

considered real-time for low-resolution images (∼ 0.2mp),

real time performance on modern > 2mp snapshot mosaic

HISs seems unattainable for edge devices or even with a

high-end GPU.

The high PSNR values achieved by top performing meth-

ods provide motivation to explore a more realistic cam-

era simulation, which includes sensor noise, in future chal-

lenges. It is our hope that this data set and the method-
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Rank Team Username PSNR SAM

1 HITZST01 Chen01 47.74 0.01114(3)
2 MIALGO mialgo ls 46.89 0.01090(2)
3 IFL Ptdoge 45.39 0.00973(1)
4 NPUMPI fengkainpu 43.39 0.01427(6)
5 SIP xleft 42.81 0.01323(4)
6 ZJU231 ZJU231 41.31 0.03204(7)
7 OnRoad (SRC-B) benfen 41.07 0.01383(5)

Table 2. NTIRE 2022 Spectral Reconstruction Challenge results and final rankings on the ARAD 1K HS test data. Secondary (SAM)

ranks are denoted in parenthesis.

Team Name CPU GPU Platform Train Time Inference Time

HITZST01 Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz NVIDIA TITAN Xp PyTorch 96 Hours 4s

MIALGO Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz * 2 8 x NVIDIA Tesla V100 32GB PyTorch 5 Days 0.43s

IFL Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz NVIDIA RTX3090 PyTorch 40 Hours 0.057

NPUMPI Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz NVIDIA RTX 2080Ti PyTorch 17 Hours 0.014s

SIP NVIDIA GeForceRTX 3090 PyTorch 0.61s

ZJU231 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz NVIDIA Tesla V100 PyTorch 52 Hours 0.45s

OnRoad (SRC-B) NVIDIA A100-40GB PyTorch 0.43s

Table 3. Self-reported training and inference runtimes for proposed methods.

Rank Team PSNR SAM

1 IFL(3) 55.06 0.005457

2 MIALGO(2) 52.92 0.006016

3 OnRoad (SRC-B)(7) 48.84 0.006548

4 HITZST01(1) 46.71 0.007060

5 ZJU231(6) 33.24 0.027480

6 NPUMPI(4) 33.06 0.014158

Table 4. Performance of proposed methodologies for “out-of-scope” image, ranking on the primary test set is denoted in subscript beside

the team name.

ologies described here will facilitate future improvement in

MSFA demosaicing.

6. Methods and Teams

6.1. HITZST01: Domain Adapted Multi­scale
Channel­attention Network (DAMCNet) for
multi­spectral demosaicing.

We present the DAMCNet for multi-spectral demosaic-

ing from 16 channel mosaic, that is, the task of restoration

of 16 channel multi-spectral images (label) from simulated

“RAW” 4 × 4 MSFA input (input). Figure 5 describes the

overall architecture of our proposed network. We divide the

demosaicing task into two sub-tasks, which are source do-

main adaptation stage and target domain demosaicing stage,

respectively. In the first stage, we convert MSFA inputs

from the source domain to the target domain to compen-

sate the quantified loss and the numerical distribution shifts

caused by ISP operations. In the second stage, we pro-

pose the MCNet which utilizes the cross-channel spatial

and spectral information globally and locally to reconstruct

the full-channel multi-spectral images. It is worth noting

that our DAMCNet is of strong nonlinear modeling ability,

which can be regarded as a general model for different de-

mosaicing missions with different raw inputs. As shown

in Figure 5, the network (DAMCNet) is composed of four

sub-modules: domain adaptation, source encoder module,

feature refinement module and final prediction module.

For the second stage, Source Encoder Module consists

of two convolution layers. Its role is to reconstruct image

texture information from the MSFA as the input (Iraw) of

feature refinement module. Feature Refinement Module

takes Iencode as input to fully select, refine and enhance

useful information in raw domain. It is formed by sequen-

tial connection of MCCA [21] [51] blocks of different scale.

After getting a great representation Irefine of the raw im-

age from the feature refinement network, Final Prediction

Module takes the Irefine as input and perform demosaicing

to reconstruct a full-channel multi-spectral image.

Our loss function is defined as:

loss = ∥IR − IG∥1 (4)
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Here IR and IG present the reconstructed image from mo-

saic image and corresponding ground truth image.
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Figure 5. The DAMCNet for multi-spectral demosaicing network

architecture.

• Training

The training details of the demosaicing network are as

follows: model is implemented in Pytorch and runs on

8 Nvidia Titan Xp graphical processing units (GPU).

The model is optimized with an Adam optimizer as

β1 = 0.9, β2 = 0.99 and learning rate = 1e-4 with a

batch size of 48.

• Testing

During the testing phase, we first predict the brightness

offset by domain adaptation. Then we input the mosaic

image with restored brightness into the trained model

to realize the restoration of multi-spectral image.

• Overexposure Correction

Due to the loss of information in the overexposed area,

the quantization loss of 12-bit data, and the scene

brightness shifting caused by camera’s auto exposure

in the source domain data, it is difficult to recover the

multi-spectral image directly from the source domain

data. The data in the target domain is easy to estab-

lish a mapping relationship to the multi-spectral image

due to the following advantages: a) the average bright-

ness is consistent with ground truth; b) the pixel value

distribution of MSFA is consistent with ground truth.

Considering these situations, we adopt domain adapta-

tion to transfer mosaic image from the source domain

to the target domain, thus realizing the brightness cor-

rection of mosaic image.

• Data augmentation

Because of the specific pattern of MSFA, some data

augmentation methods such as flipping and rotation

cannot be directly performed, otherwise the arrange-

ment of MSFA may be affected. For this dilemma, we

directly sample mosaic image from 16 channel multi-

spectral image which greatly increases the number of

training sets. Random geometric transformation (such

as translation, flip, rotation) is performed so as to ob-

tain the transformed multi-spectral image patch (la-

bel), and then sample it based on MSFA to obtain mo-

saic image patch (input). Through this process, on the

one hand, the input that strictly satisfies the MSFA pat-

tern can be obtained, and on the other hand, the train-

ing data can be greatly expanded.

• Data preprocessing

Considering the special pattern of the 4×4 MSFA used

in this challenge, we preprocess the input mosaic im-

age, that is, the adjacent pixels with similar wavelength

ranges are processed into one channel, so as to convert

the input mosaic image from single channel to 3 chan-

nels, which is inspired by quadbayer color filter array

(quadbayer CFA) and has been proved to make lower

crosstalk between different color channels.

6.2. MIALGO: Enhanced Holistic Attention Net­
work for Spectral Reconstruction

Spectral reconstruction, as a typical reconstruction task

is highly similar to the image super-resolution. We utilize

Holistic Attention Network(HAN [35]), a SOTA method in

the super-resolution tasks as the backbone to solve it. To

be specific, we notice that the brightness(mean) of the in-

put images is set to a fixed value(typical scene reflectivity,

0.18), it is particularly important to estimate the brightness

of the target, and thus we divide the RGB/Mosaic image

into two cases based on the maximum value. Followings

are detailed explanations for the two cases:

1. The maximum value is less than the upper limit (255

for rgb or 4095 for mosaic). In this case, the maximum

value of the input corresponds to the maximum value of GT

(ignoring the effects of mosaic processing and quantization

errors), so we add a simple normalization layer before the

backbone, after that, the brightness of the image is basically

same with GT. This case is relatively simple, and the net-

work can handle it well.

2. The maximum value of the input is equal the upper limit.

In this case, the clip operation during the generation of in-

put causes a lot of energy loss, so the brightness cannot be

estimated by referring to the maximum value like case 1. To

deal with this ill-conditioned and difficult problem, we use

a lot of augmented data for training.

We also remove the upsampling layer of HAN to keep the

size of the input, and add a normalization layer after the

backbone to avoid the loss caused by the clip operation.

Figure 6 describes the high-levle architecture of the so-

lution.

• Total Method Complexity

the total number of GMACS is 1,822, and the total

number of parameters is 7,457,168.
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Figure 6. Architecture of the Enhanced Holistic Attention Net-

work for Spectral Reconstruction.

• Additional Training Data

We found that the bottleneck of the task is the bright-

ness estimation, that is, the richness of the data,

so we tried to use a lot of additional data, includ-

ing ICLV citearad2016sparse, CAVE [50] and Har-

vardc̃itechakrabarti2011statistics.

• Training

According to the code provided by the organizer, we

generate and augment the input data ourselves, in-

cluding random brightness, random noise, random

padding, flip, rotation, etc. We first train on all the

data for 100k iterations, and then train separately on

each case’s data for 100k iterations. In the later stages

of training, we increase the proportion of hard sam-

ples. L1 and SSIM were used as training loss and in

late training, we keep only the luminance component

of SSIM.

• Testing

The model is switched according to the maximum

value of the input, which corresponds to the two cases

in the training phase.

6.3. IFL: Non­Local Residual Attention Network
(NLRAN)

Non-Local Residual Attention Block（NLRAB）

...

α 

IDM Conv1×1 NLRAB CAM
Conv3×3&

LeakyRelu
LeakyRelu Conv3×3

Element-wise

Sum
NLM

Non-Local Residual Attention Network（NLRAN）

R
a
w

 M
o
saic Im

a
g
e

O
u

tp
u

t

Figure 7. Overall Architecture of NLRAN.

In this challenge, we propose a non-local residual atten-

tion network (NLRAN) for multi-spectral filter array de-

mosaicing. Fig. 7 shows the detail architecture of NL-

RAN. Non-local residual attention block (NLRAB) is the

basic unit of NLRAN, which includes two key components,

the non-local module (NLM) and channel attention module

(CAM). Note that the structure of NLRAB benefits from

[27]. NLM and CAM [19] are introduced to capture spatial

long-range similarity and channel interdependence within

intermediate features respectively. Concretely, as shown in

Fig. 8, NLM adopts classic non-local operations. To re-

duce computational burden, different from [48], NLM re-

gards one patch as one pixel, which making it possible to

embed non-local operations in each basic unit of network

in the case of limited memory resources. Besides, we de-

sign a initial demosaicing module (IDM), which is based

on neighborhood spatial similarity, spectral correlation and

periodic repeat of mosaic image. As shown in Fig. 9,

IDM restores missing spectral bands at the current position

by weighted fusion neighborhood information simply, and

weights of different positions in the filter array are differ-

ent. The neighborhood size designed in IDM is 3 × 3. In

addition to the above well-designed network, we explore the

data processing strategy seriously. According to the public

code and resource provided by this challenge, we propose

the data pre-processing strategy shown in Fig. 10. The data

used to supervised the output of our network is not normal-

ized. Experiments prove that the strategy is effective in this

challenge. Besides, L1loss and mean relative absolute error

(MARE) loss [42] are used to train our model respectively.
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Figure 8. Diagram of Non-local Module.
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• Training

During the development phase, we train the proposed

model for five rounds with different settings. Those

models obtained are evaluated when validation data is

public. Table 5 shows the performance, parameters

setting, and training strategy of all models retained. In

addition, during the development phase, the batch size

of our model is set to 32 and 16 for models ensemble,
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Our Proposed Method Pipeline

Mosaic Mean
r

Max

Y
Ypost

4095

Learned Neural Network Model（NLRAN)

DivideDivide

X

Yout

L1Loss

or

MRAELoss

Figure 10. The Proposed NLRAN Pipeline.

and the Adam optimizer with β1 = 0.9, β2 = 0.999,

and ϵ = 10−8 is adopted. 64 × 64 RGB-HSI pairs

are cropped with a stride of 32 from the original data

set for training [27]. The learning rate is initialized

to 0.0001 and the linear function is set as the decay

strategy. Then PyTorch framework is used to realize

proposed models. The optimization of models is im-

plemented on NVIDIA GPU.

• Testing

During the testing phase, the whole mosaic image is

input into our trained model. Note that the correspond-

ing output needs to be normalized by dividing its max-

imum value. The output normalized, i.e. the recon-

structed multi-sepctral iamge, is submitted on the co-

dalab platform.

Model Name Batch Size
Number of

NLRAB

Number of

Feature Channle

Loss

Function

PSNR on

Cropped Image

BEST v1 32 10 128 L1 44.30487

BEST v2 32 10 128 MRAE 46.210949

BEST v3 16 10 128 L1 46.103226

BEST v4 16 10 128 MRAE 46.274715

BEST v5 32 8 176 MRAE 45.946461

Ensemble - - - - 46.529556

Table 5. Performance of individual models and model ensemble

over the challenge’s validation data.

• Ensembles and fusion strategies

Five models trained with different parameters setting

are used to restore multi-spectral image from the fil-

ter array. Then all results are weighted averaged as

the final result. Compared with the single model, as

shown in Tab. 5, model-ensemble strategy can further

improve the accuracy of demosaicing.

6.4. NPUMPI: Deep Joint Multispectral Demosaic­
ing and Anti­clipping (DJMDA)

We divide this challenge into spectral demosaicing and

spectral anti-clipping and remake the ground truth spec-

tral cubes. We think there is a difference between clipped

and non-clipped data. Therefore, we train two mosaic

convolution-attention models [11] for clipped and non-

clipped data respectively. Finally, we normalize the maxi-

mum value of the cube. Our training and evaluation pipeline

is as shown in 11.

Figure 11. A schematic diagram of our training and evaluation

pipeline.

Figure 12. A schematic diagram of the Deep Joint Multispectral

Demosaicing and Anti-clipping (DJMDA).

We think there is a difference between clipped and non-

clipped data, and the non-clipped scenes in the data set is

small. If they are directly mixed together for training, it is

not good for the non-clipped scenes. Therefore, we first

train a model using all the data for demosaicing clipped

scenes. Then, we take the model trained by all data as

the pre-trained model and fine-tune it on the non-clipped

scenes. In order to expand the amount of no-clipped data,

we still feed all kinds of data to the network but only calu-

late L1 loss on no-clipped regions of clipped cubes under

the guidance of mask M :

Lnon−clip = L1(Out,GT )⊙M (5)

where M is a binary mask that indicates non-clipped areas

computed on the coarse weighted interpolation results of

raw mosaic images.

We use the MCAN [11] as our base network architecture,

increase the number of mosaic residual attention blocks

(MRABs) to 10 and use a convolution layer to fuse the

residual blocks output and weighted interpolation results,

as shown in Fig. 12. The detailed implementation can be

viewed in [11].

• Training

For the pre-processing of the training data, we first

tune the average value of fully-defined ground-truth

cube to 0.18. Then we randomly spatially flip, ro-

tate, and crop these cubes to generate the correspond-

ing spectral mosaic images as inputs. Finally we use

889



32 as our training batch size and 128×128 as our train-

ing patch size.

For the training setup, we use L1 loss function and

Adam optimizer.

• Testing

We use the full spectral mosaic image provided as in-

put of network. Then we normalize the maximum

value of the cube outputted by the network. Finally,

we compute PNSR and SAM between the normalized

cube and the ground truth cube.

6.5. SIP ­ Spectral Image Processing: Multi­
Spectral Filter Array Demosaicing based on
Res2­Unet

Based on the spatial and spectral correlation existing

in multi-spectral filter array mosaic images, we propose a

deep neural network based on Res2-Unet for Multi-Spectral

Filter Array Demosaicing. As shown in Figure 13, the

whole network is based on Unet [40] framework, combined

with band separation and 7×7convolution, used Res2net-

SE module [12] [19] to construct backbone network. Pix-

elShuffle and PixelUnShuffle [41] are used to connect net-

work layers.

Figure 13. Network architecture of Res2-Unet.

(1)Band separation

Specifically, as shown in Figure 14, sixteen sam-

pling matrices is used to separate the band of the input im-

age from 480×512×1 to 480×512×16.

(2)Weighted bilinear interpolation reconstruction

Figure 14. Sixteen sampling matrices.

7×7 convolution filter is proposed as shown in

Equation 6 to carry out preliminary hyperspectral image re-

construction.

F = 1
1

6





















1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1





















(6)

(3)Network reconstruction

As shown in Figure 15, feature extraction is carried

out by combining 3x3 convolution with Res2net-SE mod-

ule. The Res2net-SE module has the character of residual

connection and multi-scale feature fusion, which can extract

images’ local and global features at a finer granularity level.

The SE module with channel attention mechanism is added

at the end of the module, which can adaptively adjust chan-

nel feature response and protect important channel features.

(a) Res2Net-SE module (b) SE block

Figure 15. Res2Net-SE module and SE block.

Define the loss in the training process as:

Loss = E[||G(x)− y)||1] + 0.01 ∗MRAE (7)
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MRAE = E[|G(x)− y|
y

+
10−6] (8)

Where, x is the input Mosaic image, y reference hyperspec-

tral image and G() is the reconstruction network Res2-Unet

proposed above.

• Training

The whole image is taken as the input of the net-

work, and Equasion 9 is adopted for normalization pro-

cessing:

HSInorm = Mos ∗mean(HSI)
(

4
095 ∗ 0.18) (9)

Where, Mos represents the input Mosaic image, HSI

is the corresponding ground-truth hyperspectral image,

and HSInorm is the normalized result.

The whole network was trained for 5000 epochs in to-

tal, the initial learning rate was 1e−4 and halved ev-

ery 1000 epochs. We use the Adam optimizer with

β1 = 0.5, β2 = 0.999 ,and the batchsize is set to 4.

LeakyReLU activation function was used after each

convolution layer. In order to enhance the network

generalization ability, the data is randomly flipped ver-

tically and horizontally.

• Testing

In the test phase, as shown in Equation 10,the in-

put image is divided by 4095 for normalization firstly,

and then divided by the maximum value of recon-

structed image as the final result.

HSI
′

= G(Mos
4

0
95)

m

a
x[G(Mos

4

0
95)] (10)

Where, Mos is the input Mosaic image, G() is the re-

construction network Res2-Unet proposed above, and

HSI
′

reference the reconstructed hyperspectral image.

6.6. ZJU231: Multi­Scale Mosaic Channel Atten­
tion Network for Multi­Spectral Filter Array
Demosaicing

As illustrated in Fig. 16, we present a multi-scale mosaic

channel attention network (MS-MCAN) for multi-spectral

filter array demosaicing. We use residual channel atten-

tion network (RCAN) which is the classical image super-

resolution model as our baseline [51].

We adopt the mosaic convolution module (MCM) to

softly split the periodic spectral mosaic in the raw image

during learning [11]. MCM assigns the same weight to pix-

els that belong to the same spectral band and softly splits

the spectral bands into full spatial resolution spectral feature

maps. We propose a multi-scale spectral feature extraction

method by using three MCM modules with different kernel

size, which can better extract spectral features at different

scales.

All spectral feature maps extracted by multi-scale MCM

will be concatenated and fed to adaptive weighted channel

attention module (AWCA) for selectively emphasizing the

informative features by exploring adaptive weighted feature

statistics [28]. AWCA module can adaptively recalibrate

channel-wise feature responses by exploiting the adaptive

weighted feature statistics instead of average-pooled ones.

We use the same residual in residual (RIR) structure as

RCAN, where the residual group (RG) serves as the ba-

sic module and long skip connection (LSC) allows residual

learning in a coarse level. In each RG module, we stack

several simplified residual block with short skip connection

(SSC). It’s worth noticing that we replace the channel at-

tention (CA) with AWCA module in each residual channel

attention block (RCAB). The details of RCAB and AWCA

module are shown in Fig. 17,

Taking the global skip connection into consideration, the

final demosaicing multi-spectral image (MSI) cube can be

obtained by concatenating the bilinear interpolated cube

with the reconstructed residual image cube.

• Training

We use 10 RG in the RIR structure. In each RG, we

set RCAB number as 20. Our model is optimized us-

ing Adam solver with default settings. The training

batch size is set to 2. For data augmentation, we ran-

domly rotate, flip and crop the HS images with the size

of 256×256 as labels then create mosaic images as in-

puts. Besides, the initial learning rate is set to 10−4

and is halved every 100 epochs. In total, 300 epochs

are adopted during the training phase. We train our

model using the L1 Charbonnier loss function.

• Testing

We adopt the model snapshots (×5) strategies to fur-

ther improve our model performance.

• Overexposure Correction

Due to the loss of information caused by mask sam-

pling and clip operation, it becomes difficult to restore

the scale coefficient, which has a huge impact on the

final result. We notice that HS images are normal-

ized. Based on this prior knowledge, we simply find

the maximum value Mbase in mosaic images and pro-

cess it in two ways:

1. If Mbase < 4095, it means that the mosaic image

has not been clipped. Obviously, due to mask sam-

pling, the maximum value of the original HS images

is not necessarily retained in the mosaic images, so
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Figure 17. Residual channel attention block (RCAB) and adaptive

weighted channel attention (AWCA) module.

the real maximum value Mreal ≥ Mbase. We build

a dictionary to save the maximum value of each chan-

nel (MC0
,MC1

, ...,MC15
) ∈ MC of all non-clipped

mosaic images and their corresponding difference Md

between Mreal and Mbase. For a new non-clipped mo-

saic image, we calculate its Mbase and MC , look up

the dictionary to rank by L1 distance of MC between

items of dictionary and the new one then pick the top-

m Md. The final estimated maximum value can be

calculated through Eq. 11.

Mreal = Mbase +

∑m

i=1 Mdi

m
(11)

2. If Mbase = 4095, it means that some pixels of the

mosaic image have been clipped. We build a dictio-

nary to save the clip number Nclip (number of pixel

value that equals to 4095), sum of the non-clipped

pixel value Sn and the corresponding Mreal of all

clipped mosaic images. Besides, we divide the mo-

saic images into 4×4 patches and calculate the sum of

each patch, select the one with the largest sum called

MAX PATCH and save it into the dictionary. For a

new clipped mosaic image, we look up the dictionary,

rank by the different of Nclip, Sn and L1 distance

of MAX PATCH between items of dictionary and the

new one, then pick the top-n Mreal and calculate their

mean as the final result.

Figure 18. Overview of our model and x means the input mosaic.

Figure 19. Left is extended channel attention block and right is

channel attention block.
⊗

refers to channel-wise multiplication.

6.7. OnRoad (SRC­B): Multi­Scale Image Recon­
struction Network for Spectral Demosaic

As shown in Fig. 18, our method consists of two parts

and we call them feature extraction module(FE module) and

high spectral reconstruction module(HSR module) respec-

tively. FE module extract multi-scale features through 6

stages and then features are mapping to scalars respectively.

Mosaic and its convoluted feature maps will be multiplied

by scalars. For better reconstructing high spectral images,

we concatenate these feature maps which consists of multi-

scale information and send them to a straight network. Spa-

tial resolution of feature maps in the straight network will

not change.
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• Multi-scale Feature Concatenation

To better utilize the semantic information extracted

by FE module, we mapping outputs of each stage

to scalars and then mosaic and its convoluted feature

maps are multiplied by the scalars. In experiments, we

find multi-scale information is important for high spec-

tral image reconstruction. We infer that our multi-scale

feature concatenation has similar effect to pyramid net-

work.

• Extended Channel Attention Block

Every stage in FE module consists of multiple ex-

tended channel attention blocks(ECA blocks). As

shown in Figure 19, our ECA block is on the left while

the channel attention block(CA block) is on the right.

Compared with CA block, our ECA block increases a

branch of minimum value per channel. Experiments

show that ECA blocks achieve better PSNR. The num-

ber of ECA blocks in each stage is 3.

• HSR Module

Compared with U-net, experiments show that straight

net that keeps the spatial resolution of feature maps

unchanged is more suitable for quality enhancement

tasks. At the end of the straight net, we find that pre-

dicting two different outputs and then calculate their

mean as final output can achieve a better reconstruc-

tion effect.

• Training

We train our model with weight decay and data aug-

mentation. The weight decay coefficient is 1e − 2.

Our used data augmentation methods consist of hor-

izontal flip, vertical flip, rotation, mixing up, blur, re-

size and crop and randomly scale. We train our model

around 3000 epochs to get the best model in valida-

tion data set. The optimizer we used is AdamW op-

timizer and the batch size is 10. We implement our

model and training process with Pytorch. We used a

single NVIDIA A100-40GB to train and test.

• Testing Our final testing result is the fusion of 5 model

results. With the use of a single NVIDIA A100-40GB

gpu, we can reconstruct a high spectral image per 430

ms.

• Ensembles and Fusion Strategies

We only fuse model results While testing. We fuse the

model results of 5 models to get the mean reconstruc-

tion results rather than one model. In experiments we

find that one model can only learn a part of data distri-

bution and sometimes model may overfit training set.

Multiple model ensemble can significantly solve this

problem.

Acknowledgments

We thank the NTIRE 2022 sponsors: Huawei, Reality

Labs, Bending Spoons, MediaTek, OPPO, Oddity, Voy-

age81, ETH Zurich (Computer Vision Lab) and University

of Wurzburg (CAIDAS).

A. Teams and affiliations

NTIRE2022 team

Members: Boaz Arad1,2(boazar@post.bgu.ac.il), Radu

Timofte3,4 (radu.timofte@uni-wuerzburg.de ), Rony

Yahel1,2,5, Nimrod Morag1,2,6, Amir Bernat1,2 Affilia-

tions:
1 Oddity tech Ltd.
2 Voyage81 Ltd.
3 Center for Artificial Intelligence and Data Science,

University of Würzburg
4 Computation Vision Lab, ETH Zürich
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[37] Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Richard

Shaw, Ales Leonardis, Radu Timofte, et al. NTIRE 2022

challenge on high dynamic range imaging: Methods and re-

sults. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

2022. 2

[38] Vishwas Rathi and Puneet Goyal. Convolution filter based

efficient multispectral image demosaicking for compact ms-

fas. In VISIGRAPP (4: VISAPP), pages 112–121, 2021. 2

[39] Andres Romero, Angela Castillo, Jose M Abril-Nova, Radu

Timofte, et al. NTIRE 2022 image inpainting challenge: Re-

port. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

2022. 2

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 9

[41] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1874–1883, 2016. 9

[42] Zhan Shi, Chang Chen, Zhiwei Xiong, Dong Liu, and Feng

Wu. Hscnn+: Advanced cnn-based hyperspectral recovery

from rgb images. In Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. Workshops, pages 939–947, 2018. 7

895



[43] Kazuma Shinoda, Shoichiro Yoshiba, and Madoka

Hasegawa. Deep demosaicking for multispectral filter

arrays. arXiv preprint arXiv:1808.08021, 2018. 2

[44] Grigorios Tsagkatakis, Maarten Bloemen, Bert Geelen, Mu-

rali Jayapala, and Panagiotis Tsakalides. Graph and rank

regularized matrix recovery for snapshot spectral image de-

mosaicing. IEEE Transactions on Computational Imaging,

5(2):301–316, 2018. 2

[45] Gregg Vane, Robert O Green, Thomas G Chrien, Harry T

Enmark, Earl G Hansen, and Wallace M Porter. The air-

borne visible/infrared imaging spectrometer (aviris). Remote

sensing of environment, 44(2-3):127–143, 1993. 2

[46] Kathleen Vunckx and Wouter Charle. Accurate video-rate

multi-spectral imaging using imec snapshot sensors. In 2021

11th Workshop on Hyperspectral Imaging and Signal Pro-

cessing: Evolution in Remote Sensing (WHISPERS), pages

1–7. IEEE, 2021. 1

[47] Longguang Wang, Yulan Guo, Yingqian Wang, Juncheng Li,

Shuhang Gu, Radu Timofte, et al. NTIRE 2022 challenge on

stereo image super-resolution: Methods and results. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2022. 2

[48] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., pages 7794–7803, 2018. 7

[49] Ren Yang, Radu Timofte, et al. NTIRE 2022 challenge

on super-resolution and quality enhancement of compressed

video: Dataset, methods and results. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2022. 2

[50] Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and

Shree K Nayar. Generalized assorted pixel camera: post-

capture control of resolution, dynamic range, and spectrum.

IEEE transactions on image processing, 19(9):2241–2253,

2010. 2, 7

[51] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very

deep residual channel attention networks. In Proceedings of

the European conference on computer vision (ECCV), pages

286–301, 2018. 5, 10

896


	. Introduction
	. Data Set
	. MSFA Camera Simulation

	. Challenge
	. Evaluation Metrics
	. Evaluation Protocol

	. Challenge Results
	. Performance on ``Out-of-Scope'' Image

	. Conclusion
	. Methods and Teams
	. HITZST01: Domain Adapted Multi-scale Channel-attention Network (DAMCNet) for multi-spectral demosaicing.
	. MIALGO: Enhanced Holistic Attention Network for Spectral Reconstruction
	. IFL: Non-Local Residual Attention Network (NLRAN)
	. NPUMPI: Deep Joint Multispectral Demosaicing and Anti-clipping (DJMDA)
	. SIP - Spectral Image Processing: Multi-Spectral Filter Array Demosaicing based on Res2-Unet
	. ZJU231: Multi-Scale Mosaic Channel Attention Network for Multi-Spectral Filter Array Demosaicing
	. OnRoad (SRC-B): Multi-Scale Image Reconstruction Network for Spectral Demosaic

	. Teams and affiliations

