
IMDeception: Grouped Information Distilling Super-Resolution Network

Mustafa Ayazoğlu
Aselsan Research
Ankara, Turkey

mayazoglu@aselsan.com.tr

Abstract

Single-Image-Super-Resolution (SISR) is a classical
computer vision problem that has benefited from the recent
advancements in deep learning methods, especially the ad-
vancements of convolutional neural networks (CNN). Al-
though state-of-the-art methods improve the performance
of SISR on several datasets, direct application of these net-
works for practical use is still an issue due to heavy compu-
tational load. For this purpose, recently, researchers have
focused on more efficient and high-performing network
structures. Information multi-distilling network (IMDN) is
one of the highly efficient SISR networks with high per-
formance and low computational load. IMDN achieves
this efficiency with various mechanisms such as Interme-
diate Information Collection (IIC), working in a global set-
ting, Progressive Refinement Module (PRM), and Contrast
Aware Channel Attention (CCA), employed in a local set-
ting. These mechanisms, however, do not equally con-
tribute to the efficiency and performance of IMDN. In this
work, we propose the Global Progressive Refinement Mod-
ule (GPRM) as a less parameter-demanding alternative to
the IIC module for feature aggregation. To further decrease
the number of parameters and floating point operations per
second (FLOPS), we also propose Grouped Information
Distilling Blocks (GIDB). Using the proposed structures, we
design an efficient SISR network called IMDeception. Ex-
periments reveal that the proposed network performs on par
with state-of-the-art models despite having a limited num-
ber of parameters and FLOPS. Furthermore, using grouped
convolutions as a building block of GIDB increases room
for further optimization during deployment. To show its po-
tential, the proposed model was deployed on NVIDIA Jetson
Xavier AGX and it has been shown that it can run in real-
time on this edge device.

1. Introduction
Single-Image-Super-Resolution (SISR) is a well-studied

computer vision problem. The problem’s goal is to create

(a) Original: Div2K 0886

(b) IMDeception
(ours)

(c) CARN (d) IMDN (e) Bicubic

Figure 1. Results of our method compared with other methods

a high-resolution image from a single low-resolution im-
age. Due to its nature, it is an ill-posed problem. Start-
ing with the seminal work of Dong et al. [5] the problem
is addressed by using deep-learning approaches. Dong’s
model used a CNN with only 3-layers and beat the tradi-
tional approaches. Later on, to decrease the computational
load, FSRCNN [6] proposed postponing the upscaling to
the end of the network while most of the computation and
feature extracting done in low-resolution. Shi. et al. pro-
posed ESPCN, [26] which replaced the transposed convolu-
tion layer with Depth2Space operator. Later, Kim et al. pro-
posed [15], a 20-layer network, and showed that increasing

756

the number of parameters can improve the network’s per-
formance. EDSR proposed by Lim et al. [21] further im-
proved the state-of-the-art by increasing the number of lay-
ers and omitting BatchNorm layers from the network. Later
on, Yu et al. proposed WDSR [32], a network with 75M
parameters and improved super-resolution results. Indeed,
increasing the number of parameters improves the perfor-
mance of a network, but it also makes it harder to use it in
many practical real-time scenarios. For these reasons, re-
searches started working on efficient models which aim to
maintain image reconstruction performance with those of
millions-of-parameter-networks while still being applicable
for real-time scenarios [20, 33]. To decrease the number of
parameters, recursive networks are employed [14, 29], but
the number of FLOPS is very high for these networks. Be-
sides this work, there are some work incorporating the at-
tention idea into the SISR domain, such as [24, 34], which
increases the receptive field and hence the performance of
the network while keeping the parameters low at the cost of
an increased number of operations.

In this context, Hui et al. proposed IDN [12] which
uses channel splitting method to separate the high-level
features from the low-level ones while keeping the num-
ber of parameters low and maintaining acceptable perfor-
mance. IMDN [11] further investigated the channel split-
ting idea at a granularity level and further improved the
performance and inference speed. Besides channel split-
ting, IMDN employed Intermediate Information Collection
(IIC) at the global level to accumulate the information from
different information multi-distilling blocks (IMDB) and in
the IMDBs it used Progressive Refinement Module (PRM)
which splits the outputs of different convolution layers such
that a portion of the information is directly flows to the end
of the block while the rest is fed to the next Conv2d layer
for further refinement.

Although IMDN is an efficient and well-performing net-
work, global information fusion modules (IIC) and IMDB
blocks are not ideal and there is still room for improve-
ment. To this end, following the Network-in-Network [22]
and Inception [28] spirit, we propose the Global Progres-
sive Refinement Module (GPRM), which is an extension of
the PRM in the global setting, in-place of the IIC module.
Using GPRM gives us the flexibility to control the num-
ber of parameters while being able to integrate the mid-
level information to the end of the network. To further
reduce the number of parameters and operations, we pro-
posed grouped information distilling blocks (GIDB) as the
building blocks that employ grouped convolutions. Using
grouped convolutions increases the room for further opti-
mization during deployment. Furthermore, by incorporat-
ing the block-based non-local attention (NLA) blocks at the
global level, [30] we further improved the performance of
the proposed model.

Reconstruction efficiency of the model is shown in vari-
ous different datasets, and inference efficiency is shown us-
ing NVIDIA TensorRT since it is training framework ag-
nostic and optimizes the network for the hardware at the
hand.

2. Related Works
As with many computer vision problems, SISR has ben-

efited a lot from the recent advancements in deep learning.
The first SISR model using deep learning started with the
work of Dong [5]. Later on, by postponing the upscaling
stage to the end and processing the input image at a lower
resolution, FSRCNN [6] improved the inference speed. FS-
RCNN also replaced ReLU activation with PReLU. Later
on VDSR [15] introduced a deeper network and introduced
a long upscaling skip connection. These showed that deeper
networks improve the performance and long skip connec-
tion helps with the optimization. The same spirit contin-
ued with recursive architectures where a shared parameter
sub-network is repeatedly applied at a cost of increased op-
erations to solve SISR problem. LapSRN [16] aimed effi-
cient super-resolution and used Laplacian pyramids to pro-
gressively extract features and reconstruct images at differ-
ent scales with the same network. EDSR [21] improved
the reconstruction results by eliminating Batch Normaliza-
tion layers from the network and increasing the number of
parameters to 43M. WDSR [32] further increased the pa-
rameters of the model to 75M and improved the results of
EDSR. RDN [35] used DenseNet [10] style intermediate
feature aggregation with residual blocks. More recently,
researchers incorporated new ideas (such as grouped con-
volutions, attention layers etc.) into super resolution net-
works [3, 4, 24]. One obvious thing that can be deduced
from these advancements is that as the number of parame-
ters increases, the performance of the model increases as
well. However, this comes at the cost of the model be-
ing practically not applicable. For these reasons, research
interest in SISR has recently shifted towards building effi-
cient models [20, 33]. IDN [12] follows this spirit; it uses
channel splitting to distil features efficiently. IMDN further
improves on this idea and uses channel splitting at granu-
larity level and proposes information multi-distilling block
(IMDB) which also includes a contrast-aware channel at-
tention (CCA) layer. At the global level distilled infor-
mation from the IMDBs are aggregated using Intermedi-
ate Information Collection (IIC). In this type of information
collection, the information from the intermediate levels di-
rectly flows to the ends of the model. Indeed, this can be
seen as a subset of the information collection type used in
DenseNet and RDN, where DenseNet structure in RDN al-
lows intermediate-to-intermediate flow as well.

The problem of a deep learning model not being prac-
tically applicable is indeed a problem with other deep-

757

learning models from different fields as well. Because
of this, researchers proposed different approaches that can
make a model run in real-time, such as, Hand Picked Archi-
tectures / Blocks, Network Pruning/ Sparsification, Knowl-
edge Distilling, Quantization, Network Architecture Search
(NAS)

Hand-picked architectures focuses on manually designed
architectures and blocks. Network sparsification and prun-
ing, such as [8], follow a different approach and try to elim-
inate the redundancies in a larger network to come up with a
more efficient network. Knowledge distilling [9] uses heavy
teacher and lighter student networks in a setting where the
teacher network guides the student network. Quantization,
such as [25], focuses on the deployment side and tries to
keep the network performance under lighter arithmetic op-
erations. Network architecture search [36] goes beyond
these ideas and tries to find the network architecture in an
optimization setting.

Indeed, these ideas can be used to design super-
resolution networks as well. For this purpose, Li et al. [18]
proposed a differentiable pruning model. Their method re-
duced the number of parameters, FLOPS, and run-time of
EDSR Baseline [21] and several other networks by a sig-
nificant amount. In [19], Li et al. proposed Layer-Wise
Differentiable Network Architectures to adjust the channel
sizes of predefined networks and successfully reduced the
number of parameters of EDSR Baseline while improving
its performance. Song et al. [27] proposed an evolutionary
network search algorithm for efficiently searching residual
dense blocks for super-resolution networks. Wu et al. [31]
proposed a trilevel NAS algorithm for optimizing networks,
cells, and kernels of super-resolution networks at the same
time. In [17] Li et al. followed a different approach for re-
ducing the number of parameters, and proposed a learning
basis for convolutional layers. Their method compresses the
number of parameters of EDSR Baseline by up to 93%.

While designing IMDeception we followed a manual ap-
proach since other approaches can still be applied to further
push its limits.

3. Proposed Method
In this section, we describe the details of the proposed

network. As it was mentioned before, the main motiva-
tion of this paper is efficiency while keeping performance
at a comparable level with million-parameter networks. As
a starting point, IMDN [11] is selected as the baseline of
our work. The original IMDN architecture can be seen in
Fig. 3a.

The variations of this network are already known to be
high-performing [20,23,33] and improving it is challenging.
This is due to the already employed network mechanisms
such as Progressive Refinement Module (PRM) (Fig. 3c)
Contrast Aware Channel Attention (CCA) (Fig. 3c) and In-

termediate Information Collection(IIC) (Fig. 3a) are very
efficient. The modules are indeed studied further in the orig-
inal work, and each of these modules’ contributions to the
final model is noted. The individual contributions of each
module can be seen in Tab. 1

Module-Dataset Set5 Set14 Manga109

Basic 31.86 28.43 29.92
PRM Improvement 0.15 0.06 0.24
CCA Improvement 0.09 0.02 0.09
IIC Improvement 0.01 0.01 0.03

Table 1. PRM, CCA and IIC modules’ contributions to the basic
network, *The table is derived from Table 3 of [11]

Note that in IMDN, PRM and CCA are used locally in-
side the IMDBs, however IIC is used in a more global set-
ting. Also note that the improvement provided by the PRM
is much larger than the CCA and IIC. Furthermore the num-
ber of parameters drops with the PRM. Motivated by these
facts and inspired by the Inception network’s repeated struc-
ture [28] we created a network structure where PRM is re-
peated locally in the blocks and globally among the blocks
to improve performance and reduce the number of param-
eters. This is done in such a way that IIC in the global
setting is replaced with the proposed Global PRM (Fig. 2a).
Furthermore, CCA layers are used in every IMDB, but the
performance contributions from these layers are marginal
compared to the number of operations and parameters that
they add to the network. However, since attention lay-
ers are great at increasing the receptive field, we decided
to use a limited number of block-based non-local attention
blocks [30] in our proposed network’s main path. To further
reduce the number of parameters and number of operations
of the network, every single Conv2D operation inside the
IMDB is replaced with Gblocks (Fig. 2b) as in XLSR [3]
which is based on grouped convolutions. We call these
group convolution based structures as Grouped Information
Distilling Blocks (GIDB). Although the grouped convolu-
tions are not well optimized in training frameworks, [7] if
utilised correctly within an inference-oriented framework,
group convolutions can lead to speed ups as noted in [3, 7]
especially in mobile devices where efficient network struc-
tures are usually employed.

Mathematically, the model can be described as follows;
Given a low resolution image I lr, super-resolved image,
Isr, can be obtained as follows:

Isr = HIMDeception(I
lr) (1)

Here, HIMDeception() is our proposed optimized super-
resolution model. In the begining of the network a 64 chan-
nel 3x3 convolution is employed for feature extraction, as

758

LR

C
onv2d 3x3

G
ID

B

S
plit

G
ID

B

S
plit

G
ID

B

S
plit

G
ID

B

S
plit

G
ID

B

S
plit

G
ID

B

B
lock N

LA

B
lock N

LA

C
onv2d 1x1

C
oncat

C
onv2d 3x3 U

ps
am

pl
er

S
R

Global Progressive Refinement
Module (GPRM)

64
3core
/core

3core
/core

3core
/core

3core
/core 4core 64

3core
/core

4core 4core 4core 4core 4core core

(a) IMDeception Network

C
hunk

4

C
onv2d
3x3

C
onv2d
3x3

C
onv2d
3x3

C
onv2d
3x3

Group Convolution
groups=4,

output channels = 64

4core

core

core

core

core

C
oncat

C
onv2d 1x1

4core

(b) Gblock: Here Red and Orange Stripes show ReLU and
LeakyReLU activations respectively.

G
block

S
plit

G
block

S
plit

G
block

S
plit

G
block

C
oncat

4core 3core
/core

4core 3core
/core

3core
/core

4core core

C
onv2d 1x1

Progressive Refinement
Module (PRM)

(c) GIDB Block

Figure 2. IMDeception: Proposed Architecture

in IMDN, let Ifeat0 represent these features. These features
are both transferred to the end of the network and processed
in the Global Progressive Refinement Module as follows:

Idfeat1 , Isfeat1 = Split(GIDB1(I
feat
0))

Idfeat2 , Isfeat2 = Split(GIDB2(I
dfeat
1))

Idfeat2 = NLA(Idfeat2)

Idfeat3 , Isfeat3 = Split(GIDB3(I
dfeat
2))

Idfeat4 , Isfeat4 = Split(GIDB4(I
dfeat
3)) (2)

Idfeat4 = NLA(Idfeat4)

Idfeat5 , Isfeat5 = Split(GIDB5(I
dfeat
4))

Isfeat6 = GIDB6(I
dfeat
5)

Ifeat7 = Concat([Isfeat1 , ..., Isfeat6])

In the above equations, Split(), Concat(), NLA() rep-
resent 3/1 ratio channel splitting, channel concatenation,
and block based non-local attention. Idfeatn , Isfeatn are

channel split features of nth GIDB block which is our pro-
posed Grouped Information Distilling Block (GIDB). Note
that here GPRM is used for global feature distilling and ag-
gregation, and operating on the outputs of GIDBs. At the
local level, features are further processed by GIDBs as fol-
lows:

Idfeat1n−1 , Isfeat1n−1 = Split(GBlock1(I
dfeat
n−1))

Idfeat2n−1 , Isfeat2n−1 = Split(GBlock2(I
dfeat1
n−1))

Idfeat3n−1 , Isfeat3n−1 = Split(GBlock3(I
dfeat2
n−1)) (3)

Idfeat4n−1 , Isfeat4n−1 = Split(GBlock4(I
dfeat3
n−1))

Idfeatn = Hfuse(Concat([I
sfeat1
n−1 , ..., Isfeat4n−1 , Idfeatn−1]))

Here Hfuse represents 1x1 convolution operation used
for information fusion, Note that at the local level input
features Idfeatn−1 are processed and refined in grouped fash-
ion using Gblock()s. Gblock() is implemented using 3x3
grouped convolution (groups=4) and cascaded 1x1 convo-
lution to allow information flow between the groups. Us-
ing information grouping and processing the features in a

759

LR

C
onv2d 3x3

IM
D

B

IM
D

B

IM
D

B

IM
D

B

C
onv2d 1x1

C
onv2d 3x3 U

ps
am

pl
er

S
R

C
oncat

64 64 64

Intermediate Information
Collection (IIC)

IM
D

B

IM
D

B

(a) IMDN Original Network: Note that here conv2d 1x1 includes a leaky relu activation.

C
onv2d 3x3

D
epth2Space

3 x s2

(b) Upsampler

C
onv2d 3x3

Split

C
onv2d 3x3

Split

C
onv2d 3x3

Split

C
onv2d 3x3

C
oncat

64 48/16 64 48/16 48/1664 16

C
C

A Layer

C
onv2d 1x1

Progressive Refinement
Module (PRM)

(c) IMDB Block: Here each conv2d 3x3 block includes a leaky relu activation

Figure 3. IMDN Structure and the submodules PRM and IIC are included here for reference. CCA layer details are omitted and can be
found in the original work.

grouped fashion reduces the number of parameters while al-
most at no cost of performance loss. The detailed Gblock()
implementation along with the used activation functions can
be seen in Fig. 2b.

The output of the GPRM module, Ifeat7 , is further pro-
cessed to construct the super-resolved image, Isr as fol-
lows:

Ifeat8 = LeakyReLU(H1x1(I
feat
7))

Ifeat9 = LeakyReLU(H3x3(I
feat
8)) + Ifeat0 (4)

Isr = Upsample(Ifeat9)

HereH1x1, H3x3 represent 1x1 and 3x3 convolution lay-
ers respectively. We used Leaky ReLU (slope=0.05) activa-
tions. Upsample() is the upsampling layer implemented as
shown in Fig. 3b

Our proposed network structure, which we call IMDe-
ception, combining all of these ideas, can be seen in Fig. 2.

Note that we used global PRM among the GIDB and lo-
cal PRM as in IMDB inside GIDB. Our proposed architec-
ture defines a class of highly efficient architectures sharing
the same structure with different channel numbers on the

filters. As it can be seen from Fig. 2, we define the com-
plexity of the models using core parameter. Depending on
the needs, the core parameter can be used to adjust the com-
plexity of the network. From our experiments, we have ob-
served that even core = 4 with no attention blocks can still
show high reconstruction performance with great inference
timings.

The performance parameters of various IMDeception
networks using core parameter and existence of attention
blocks can be seen in Tab. 2

4. Experiments
4.1. Datasets

For the training, we used Div2K Dataset [1], and
Flickr2K [21] combined (DF2K). In total, the training set
includes, 3450 images, and for validation we used Div2K
validation set, which includes 100 images.

4.2. Training Details

The proposed model (core = 16+NLA) was trained in
two different phases in all of the phases we used;

760

IMDeception core = 16 + NLA core = 12 core = 8 core = 4 + NLA core = 4

#Params 316K 198K 113K 57K 57K
FLOPS[G] 20.7 12.9 7.4 3.7 3.7

Act.[M] 206 149 103 57 57
Runtime[ms]∗ 60 45 31 24 21

#Conv2d 62 58 58 62 58
#Div2K Val. (PSNR) 29.02 28.82 28.70 28.48 28.45

Table 2. IMDeception performance parameters,
*Averaged on Div2K Validation Set on NVIDIA 2080 Super

• Adam optimizer with β1 = 0.9, β2 = 0.999.

• Mini-batch size of 8.

• Cropped HR Image Size of 512 x 512.

• Zero padding is used when necessary.

• Each epoch contains 800 mini batches.

• Knee Learning Rate Scheduling [13] with 10 epochs
warm-up 400 epochs exploit and 400 epochs cool-
down period with maximum learning rate 0.5e−3

(Fig. 4b).

• PyTorch model is trained within PyTorch-Lightning
framework.

For the first phase, we used Charbonnier loss with ε =
0.1 as in Eq. (5) and trained for 2000 epochs, which lasted
2 days and 7 hours on a single NVIDIA Tesla v100. See
Fig. 4 for training curves and learning rate policy.

Charbonnier(x) =
√
x2 + ε2 (5)

The second phase of the training started from the best
checkpoint, and this time L2-norm was used as the loss
function, and trained for 1300 epochs which lasted 1 day
and 16 hours.

4.3. Results

In this section, the proposed architecture’s PSNR results
are given on various different datasets. The PSNR results
of IMDeception and other state-of-the-art methods can be
seen in Tab. 3. From the experiments it can be seen that,
although IMDeception (core = 16 + NLA) has very lim-
ited number of parameters and FLOPS, it has on par perfor-
mance with state-of-the-art algorithms. Especially, IMDe-
ception’s performance on Urban100, Manga109 datasets is
well above E-RFDN, IMDN, CARN, LapSRN methods ex-
cept EDSR (which has 43M parameters). An interesting
result is IMDeception (core = 4)’s PSNR performance
on Urban100 and Manga109 surpasses LapSRN although
it has only 7% of number of parameters. The number-of-
parameters and PSNR results of these methods can be best
seen in Fig. 5

(a) Validation PSNR of the 1st Phase of Training

(b) Knee Learning Rate Scheduler Policy used for the training phases

Figure 4. Training Curves

Another important property that IMDeception has, its
precise output on the repeated structures and patterns which
can be seen in Fig. 6.

In terms of run-time, our proposed method has great po-
tential for optimization on edge devices [7], due to paral-
lel grouped convolutions and a reduced number of parame-
ters. As it can be seen from the Tab. 3, the proposed model
defines a set of efficient architectures, which can be used
in different devices with different inference run-times with
good reconstruction performance. As a reference and as
an indication of its potential, we run our proposed models
on NVIDIA RTX 2080 Super and NVIDIA Jetson Xavier
AGX 30W devices. To do this, we have converted trained
models to ONNX format and used NVIDIA’s TRT Engine
application to convert them to an inference engine to use

761

Model Set5 Set14 BSD100 Urban100 Manga109 Div2K (Val)
Bicubic 28.42 26.00 25.96 23.14 24.89 26.66
LapSRN (812K) 31.54 28.19 27.32 25.21 29.09 28.75
IMDN (779K) 32.21 28.58 27.56 26.04 30.45 28.94
EDSR (43M) 32.46 28.80 27.71 26.64 31.02 29.25
CARN [2] (1.5M) 32.14 28.61 27.58 26.07 30.46 28.96
E-RFDN (433K) 32.16 28.65 27.60 26.15 30.59 29.04
IMDeception (316K)
core=16 + NLA 32.14 28.64 27.60 26.20 30.67 29.02∗

IMDeception(198K)
core=12 31.83 28.47 27.50 25.82 30.28 28.83

IMDeception(113K)
core=8 31.69 28.35 27.42 25.60 29.89 28.69

IMDeception(57K)
core=4 31.35 28.12 27.27 25.23 29.20 28.45

IMDeception(57K)
core=4 + NLA 31.42 28.18 27.26 25.26 29.28 28.48

Table 3. Experimental results of the proposed method were compared with various different methods for x4 scaling. Note that except for
Div2K Validation result, all PSNR values are calculated on Luminance (Y) channel to be consistent with the literature.
∗ Div2K Test Set PSNR is 28.73

EDSR

CARN
IMDN

LapSRN

E-RFDN

IMDeception
16 NLA

IMDeception
12

IMDeception
8

IMDeception
4 NLA

Figure 5. PSNR vs Number of Parameters for Urban100 Dataset
for Different Super-Resolution Models

the hardware’s full potential. The run-times are listed in
Tab. 4. Note that IMDeception can run on this edge device
at up to 24fps while outputting high-resolution 2K images.
An important conclusion that can be made from the run-
time experiments although the number of parameters and
FLOPS are lower for IMDeception core = 12 compared
to core = 16 + NLA, the inference run-times are higher.
This is due to the fact that GPUs are usually optimized for
the channel sizes, which are powers of 2. Because 12 is not
a power of 2, additional processing in the GPU is required,
negating the benefits of the reduced number of parameters
and FLOPS. This is an important conclusion to make since
this phenomenon is not observable during inference with a
training framework such as PyTorch.

Model\Hardware
RTX 2080
TensorRT (ms)

Jetson Xavier
TensorRT (ms)

IMDeception
core=16+NLA 17.7 88.9

IMDeception∗

core=12 19 98.9

IMDeception
core=8 9.9 51.1

IMDeception
core=4+NLA 9.8 44.7

IMDeception
core=4 9.2 41.9

Table 4. Inference Results for an input image size of 512x256
∗ Note the increased inference time. This is because 12 is not a
power of 2 and the GPUs are optimized and have kernels specific
to sizes of power of 2.

5. Conclusion
We proposed an efficient model based on the IMDN

network called IMDeception. IMDeception employs the
proposed Global Progressive Refinement Module (GPRM),
which is an extension of the Progressive Refinement Mod-
ule (PRM). Unlike PRM that works only with the Conv2d
layer at the local scale, GPRM can be used with any arbi-
trary block, as we did with the newly proposed Grouped In-
formation Distilling Blocks (GIDB). Both of the proposed
mechanisms/blocks can be used for different networks and
in different structures. These structures are designed with

762

(a) Original: BSD100 8023.png

(b) Bicubic

(c) CARN

(d) IMDeception (ours)

(e) IMDN

(f) Original: Urban100 img 048.png

(g) Bicubic

(h) CARN

(i) IMDeception (ours)

(j) IMDN

Figure 6. Example Images from Reference Datasets. IMDeception is compared with other methods

efficiency in mind, which reduces the number of parameters
and FLOPS while maintaining high performance. GPRM is
an efficient way of combining features and can be an alter-
native to Dense Networks style or IIC-style feature aggre-
gating methods. One nice feature of it is that it separates
the aggregated part from the distilled part, which helps con-
trolling the network size while maintaining network perfor-

mance. On the other hand, GIDB uses grouped convolu-
tions, which, if implemented with efficiency in mind, can
provide a speed boost during inference. We also showed
that the proposed model is very high-performing on various
different datasets and has great inference timings on differ-
ent hardware, including NVIDIA Jetson Xavier AGX.

763

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In IEEE
Conf. Comput. Vis. Pattern Recog. Worksh., July 2017. 5

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,
accurate, and lightweight super-resolution with cascading
residual network. In Eur. Conf. Comput. Vis. 7

[3] Mustafa Ayazoglu. Extremely lightweight quantization ro-
bust real-time single-image super resolution for mobile de-
vices. In IEEE Conf. Comput. Vis. Pattern Recog. Worksh.,
pages 2472–2479, 2021. 2, 3

[4] Ming Zhuo Chen and Jun Ming Wu. Group feature informa-
tion distillation network for single image super-resolution. In
2021 7th International Conference on Computer and Com-
munications (ICCC), pages 1827–1831, 2021. 2

[5] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super-resolution. volume 8692, pages 184–199, 2014. 1,
2

[6] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerat-
ing the super-resolution convolutional neural network. Eur.
Conf. Comput. Vis., 9906:391–407, 2016. 1, 2

[7] Perry Gibson, José Cano, Jack Turner, Elliot J. Crowley,
Michael O’Boyle, and Amos Storkey. Optimizing grouped
convolutions on edge devices, 2020. 3, 6

[8] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Int. Conf.
Comput. Vis., pages 1398–1406, 2017. 3

[9] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling
the knowledge in a neural network. In Adv. Neural Inform.
Process. Syst., 2015. 3

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In IEEE Conf. Comput. Vis. Pattern Recog., pages
2261–2269, 2017. 2

[11] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In Proceedings of the 27th ACM Inter-
national Conference on Multimedia. ACM, oct 2019. 2, 3

[12] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-
rate single image super-resolution via information distilla-
tion network. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 723–731, 2018. 2

[13] Nikhil Iyer, V. Thejas, Nipun Kwatra, Ramachandran Ram-
jee, and Muthian Sivathanu. Wide-minima density hypoth-
esis and the explore-exploit learning rate schedule. CoRR,
abs/2003.03977, 2020. 6

[14] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-
recursive convolutional network for image super-resolution,
2015. 2

[15] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accu-
rate image super-resolution using very deep convolutional
networks. IEEE Conf. Comput. Vis. Pattern Recog., pages
1646–1654, 2016. 1, 2

[16] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-
Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In IEEE Conf. Comput. Vis. Pat-
tern Recog., 2017. 2

[17] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.
Learning filter basis for convolutional neural network com-
pression. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.
3

[18] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu
Timofte. DHP: differentiable meta pruning via hypernet-
works. In Eur. Conf. Comput. Vis., 2020. 3

[19] Yawei Li, Wen Li, Martin Danelljan, Kai Zhang, Shuhang
Gu, Luc Van Gool, and Radu Timofte. The heterogeneity
hypothesis: Finding layer-wise differentiated network archi-
tectures. In IEEE Conf. Comput. Vis. Pattern Recog., pages
2144–2153, 2021. 3

[20] Yawei Li, Kai Zhang, Luc Van Gool, Radu Timofte, et al.
Ntire 2022 challenge on efficient super-resolution: Methods
and results. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2022. 2, 3

[21] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In IEEE Conf. Comput. Vis. Pattern
Recog., July 2017. 2, 3, 5

[22] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work, 2014. 2

[23] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-
tillation network for lightweight image super-resolution. In
Eur. Conf. Comput. Vis. 3

[24] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping
Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and
Haifeng Shen. Single image super-resolution via a holistic
attention network. Int. Conf. Comput. Vis., 2020. 2

[25] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang,
Liang Shen, and Mickey Aleksic. A quantization-
friendly separable convolution for mobilenets. CoRR,
abs/1803.08607, 2018. 3

[26] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network.
IEEE Conf. Comput. Vis. Pattern Recog., pages 1874–1883,
2016. 1

[27] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu,
and Yunhe Wang. Efficient residual dense block search for
image super-resolution. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(07):12007–12014, Apr. 2020. 3

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 1–9, 2015. 2, 3

[29] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-
resolution via deep recursive residual network. In IEEE
Conf. Comput. Vis. Pattern Recog., 2017. 2

[30] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks, 2017. 2, 3

[31] Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Suk-
thanker, Radu Timofte, and Luc Van Gool. Trilevel neural ar-

764

chitecture search for efficient single image super-resolution.
CoRR, abs/2101.06658, 2021. 3

[32] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Zhaowen
Wang, Xinchao Wang, and Thomas S. Huang. Wide activa-
tion for efficient and accurate image super-resolution. IEEE
Conf. Comput. Vis. Pattern Recog. Worksh., 2018. 2

[33] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, et al.
Aim 2020 challenge on efficient super-resolution: Methods
and results. In Computer Vision – ECCV 2020 Workshops,
pages 5–40, 2020. 2, 3

[34] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Eur. Conf. Comput.
Vis., pages 294–310, 2018. 2

[35] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. In IEEE Conf. Comput. Vis. Pattern Recog. 2

[36] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. IEEE Conf. Comput. Vis. Pattern Recog., pages
8697–8710, 2018. 3

765

