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Abstract

Burst super-resolution has received increased attention
in recent years due to its applications in mobile photog-
raphy. By merging information from multiple shifted im-
ages of a scene, burst super-resolution aims to recover de-
tails which otherwise cannot be obtained using a simple in-
put image. This paper reviews the NTIRE 2022 challenge
on burst super-resolution. In the challenge, the partici-
pants were tasked with generating a clean RGB image with
4× higher resolution, given a RAW noisy burst as input.
That is, the methods need to perform joint denoising, de-
mosaicking, and super-resolution. The challenge consisted
of 2 tracks. Track 1 employed synthetic data, where pixel-
accurate high-resolution ground truths are available. Track
2 on the other hand used real-world bursts captured from a
handheld camera, along with approximately aligned refer-
ence images captured using a DSLR. 14 teams participated
in the final testing phase. The top performing methods es-
tablish a new state-of-the-art on the burst super-resolution
task.

∗Goutam Bhat, Martin Danelljan, and Radu Timofte are the NTIRE
2022 challenge organizers. The other authors participated in the challenge
and are listed alphabetically.
Appendix A contains the participants’ team names and affiliations.
NTIRE 2022 webpage:
https://data.vision.ee.ethz.ch/cvl/ntire22/

1. Introduction

Burst mode shooting has seen increased popularity in re-
cent years. Instead of capturing only a single picture, burst
mode captures multiple photos of the scene in quick succes-
sion. In addition to allowing the photographer to select the
best picture among the multiple images, burst mode capture
also provides the possibility of combining information from
the multiple images to generate a single higher quality im-
age. For instance, since the noise in the different images are
approximately independent, the burst images can be merged
together to perform denoising [35, 22]. Furthermore, if the
burst images are captured using different exposure settings,
they can be combined to perform HDR imaging.

A fundamental challenge when fusing information from
the burst images is the spatial shifts between the images in-
troduced due to natural hand motion. These shifts are a nui-
sance for tasks such as burst denoising, as it necessitates a
separate alignment step. However, recent works [51] have
shown that these shifts can in fact provide multiple aliased
samplings of the underlying scene. By merging informa-
tion from these multiple low-resolution samplings, a higher-
resolution version of the scene can be recovered. This task,
referred to as burst super-resolution, thus allows recover-
ing high-frequency details from the scene, which otherwise
cannot be obtained using a simple image. Consequently,
burst super-resolution has many practical applications in
mobile photography, where the resolution and quality of the
captured images are limited by small sensor size.

The goal of the NTIRE 2022 Burst Super-Resolution
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challenge is to promote further research in the burst super-
resolution task, and to establish the current state-of-the-art.
As part of the challenge, the participants were required to
generate a clean high-resolution image give multiple noisy
RAW images as input. Thus the task required performing
joint denoising, demosaicking, and super-resolution which
are fundamental steps in an ISP. The challenge contained
two tracks, namely Track 1 and Track 2. In Track 1, the
input bursts were generated synthetically using the pipeline
introduced in [4]. Since an accurate pixel-wise ground truth
is available in this case, the performance of various network
architectures can be quantitatively evaluated using standard
fidelity metrics like PSNR. To further evaluate the real-
world performance of the participating methods, Track 2
employed real-world bursts from the BurstSR dataset [4]
for evaluation. The methods were ranked using a human
study in this track.

The NTIRE 2022 Burst Super-Resolution challenge saw
participation from 14 different teams. The top ranked meth-
ods set a new state-of-the-art on the burst super-resolution
task. This report briefly describes the solutions proposed by
the participating methods, and reports their performance on
the test sets of both Track 1 and Track 2.

2. NTIRE 2022 Challenge

The NTIRE 2022 Burst Super-Resolution challenge aims
to stimulate research in the burst SR problem and bench-
mark the current approaches using a standard evaluation
protocol. This challenge is one of the NTIRE 2022 as-
sociated challenges: spectral recovery [3], spectral de-
mosaicing [2], perceptual image quality assessment [13],
inpainting [39], night photography rendering [11], effi-
cient super-resolution [20], learning the super-resolution
space [28], super-resolution and quality enhancement of
compressed video [53], high dynamic range [37], stereo
super-resolution [45]. This is the second edition of the chal-
lenge. The participants were required to develop methods
which takes a noisy RAW burst containing 14 images as in-
put, and generates a clean RGB image with 4 times higher
spatial resolution. As a starting point, the participants were
provided a public toolkit (https://github.com/
goutamgmb/NTIRE22_BURSTSR) which contained in-
tegration of standard burst SR datasets, and basic tools for
training and evaluation. The challenge contained two sepa-
rate tracks which are described in the next sections.

2.1. Track 1: Synthetic

In Track 1, the input burst are generated synthetically
using a single sRGB image. This ensures that an accurate
pixel aligned ground truth is easily available to both evalu-
ate the methods, as well as for training. Consequently, the
impact of different architectural choices on super-resolution

performance can be readily analysed in this setting, using
standard fidelity metrics such as PSNR.

In order to generate the synthetic bursts, we use the
pipeline introduced in [4]. Here, an sRGB image is first
converted to linear sensor space using an inverse camera
pipeline [7]. Random translations (maximum 24 pixels) and
rotations (maximum 1 degree) are then applied to this lin-
ear image to obtain a burst. A RAW low-resolution burst
is then obtained by downsampling each of the images by a
factor of 4 using bilinear interpolation and mosaicking them
using bayer pattern. The RAW burst is then corrupted with
independent read and shot noise to obtain the noisy input
burst.

The participants were provided the scripts to generate
synthetic bursts for training and evaluation via the public
toolkit. The participants were free to use any image dataset
except the validation split of the BurstSR dataset [4] to gen-
erate synthetic bursts for training. The official validation set
for Track 1 was generated using DSLR images from the val-
idation split of the BurstSR dataset [4]. The validation set
consisted of 100 bursts, each containing 14 RAW images
of resolution 256 × 256. The participants could evaluate
their methods on the validation set during the development
phase, using an evaluation server (https://codalab.
lisn.upsaclay.fr/competitions/1750). The
server also provided a live public leaderboard. The final test
set containing 92 bursts of size 14 and resolution 256× 256
was generated similarly using DSLR images from the test
split of BurstSR [4]. The participants were only provided
the input bursts asked to submit their predictions. These
were then evaluated by the challenge organizers to obtain
the final ranking.

2.2. Track 2: Real-World

Track 2 aims at evaluating the real-world performance
of the burst super-resolution methods. For this purpose, we
employ the BurstSR dataset introduced in [4] for our evalu-
ation. The BurstSR dataset contains 200 RAW bursts, each
containing 14 images, captured using a hand held Samsung
Galaxy S8 camera. For each burst, the dataset also provides
a higher resolution RGB image captured using a DSLR for
reference. However, since this HR image is captured using
a separate camera, there exists spatial mis-alignment as well
as color space differences between the burst images and the
DSLR reference. This makes training and evaluation of the
model on the real-world bursts challenging. We refer to [4]
for more details about the BurstSR dataset.

The test set for Track 2 consisted of 20 bursts of reso-
lution 256 × 256, each containing 14 images. The test set
was constructed using bursts from the test split of BurstSR
dataset, as well as new bursts captured using the same cam-
era which was used to collect BurstSR dataset, i.e. Samsung
Galaxy S8 camera. The participants were allowed to utilize
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the training split of the BurstSR dataset, as well as any other
real-world or synthetic datasets to train and validate their
models. Due to the difficulties associated with evaluating
the models on real-world bursts, no evaluation server was
provided in Track 2. Instead the participants were required
to submit their predictions for the final test phase, which
were then ranked via a human study.

3. Challenge Results

Here, we evaluate the participating methods on the test
set of both the tracks. In total, 14 teams participated in the
challenge, out of which 13 submitted results for Track 1,
while 11 submitted results for Track 2. A brief description
of the participating methods is provided in Section 4. The
details of the participating teams are provided in Appendix
A.

3.1. Evaluation Metrics

In this section, we briefly describe the evaluation met-
rics used to rank the methods in Track 1 and Track 2. The
aim in burst super-resolution is to recover the original high
frequency details by multi-frame fusion, instead of hallu-
cinating realistic looking details. Thus we utilize fidelity
based metrics to rank the methods.
Track 1: As discussed in Section 2.1, the bursts in Track
1 are generated using a synthetic pipeline. Hence an accu-
rately aligned high resolution ground truth is readily avail-
able. Thus we utilize the fidelity-based metric Peak Signal-
to-Noise Ratio (PSNR) to rank the methods. Additionally,
we also report the Structural Similarity Index (SSIM) [50]
and LPIPS [55] score for all the methods. Note that the
metrics are computed in the linear sensor space.
Track 2: Unlike in Track 1, an accurately aligned ground
truth image is not available for the real-world bursts in
Track 2. As a result, it is not possible to directly use im-
age metrics such as PSNR to evaluate the methods. The
previous edition of the challenge [5] employed a spatial and
color alignment strategy utilized in [4] in order to align the
network predictions to the ground truth before computing
metrics such as PSNR. However, such an evaluation strat-
egy can introduce a bias towards methods which are trained
using an identical loss. Thus, in order to encourage partici-
pants to investigate alternate training strategies, we did not
employ this evaluation strategy. Instead the methods were
ranked purely using a human study.

The human study was conducted by two doctoral stu-
dents working on super-resolution. This was to ensure that
the reconstruction ability of the methods was rewarded over
generating visually pleasing but fake details, which can
be the case when using inexperienced evaluators from e.g.
Amazon Mechanical Turk (AMT). We first performed an
initial round of study to select the top 5 methods. The hu-

PSNR↑ SSIM↑ LPIPS↓
Noah TerminalVision SR 46.50 0.986 0.017
VIDAR A 46.09 0.985 0.018
HIT-IIL 45.98 0.985 0.021
Ver 45.90 0.984 0.019
CUCteam 45.88 0.984 0.021
okfine 45.84 0.984 0.019
VIDAR B 45.63 0.984 0.021
S&C 45.62 0.984 0.020
MegSR 45.38 0.984 0.025
VDSL 44.22 0.979 0.040
MultiTeam 44.19 0.979 0.024
TeamIITRPR 42.07 0.970 0.041
TTI IIM SR 37.89 0.929 0.101

Table 1. Comparison of the participating methods on the test set
from Track 1, in terms of PSNR, SSIM, and LPIPS.

man study participants were then asked to rank the predic-
tions of these methods for each of the 20 bursts in the test
set, based on their similarity w.r.t. a high resolution refer-
ence image. The mean of these rankings (MOR) was then
used to obtain the final ranking of the methods.

3.2. Track 1: Synthetic

Here, we report the results on the participating methods
on the test set of Track 1. The mean PSNR, SSIM, and
LPIPS scores over the 92 bursts in the test set are provided
in Table 1. The best results in terms of all three metrics were
obtained by team Noah TerminalVision SR, with a PSNR
score of 46.50. The team employs an ensemble of 4 mod-
els, each of them based on NoahBurstSRNet, the winner of
Track 1 in the previous edition of the challenge [5]. The
second rank was obtained by team VIDAR A, which uses
a transformer based module, in addition to the PCD mod-
ule [46] for alignment. Team HIT-IIL obtained the third best
performance with a PSNR score of 45.98. Their approach
is based on EBSR [30], with the key difference that a trans-
former based module is used for reconstruction. Team Ver,
which also employs a variant of EBSR [30] obtained the
fourth rank. The fifth rank was obtained by team CUCteam,
which explicitly trains a network module to denoise the ref-
erence image, as part of the burst SR architecture.

A qualitative comparison between the participating
methods is provided in Figure 1 and 2. We also visual-
ize the first image in the burst (after demosaicking using
OpenCV and bilinear upsampling) for reference. The sub-
mitted methods perform very well, generating cleaner im-
ages with better details compared to simple processing us-
ing OpenCV. Observe that the top ranking methods obtain
results which are very close to the ground truth despite us-
ing noisy RAW images with 4 times lower resolution as in-
put.
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Figure 1. Qualitative comparison on test set of Track 1. Input denotes the reference image of the burst, after demosaicking using OpenCV
and bilinear upsampling.

3.3. Track 2: Real-World

Here, we present the results for Track 2. In
total, 11 teams submitted results to Track 2,
namely: CUCteam, HIT-IIT, LD, MegSR, Multi-
Team, Noah TerminalVision SR, S&C, TeamIITRPR,
TTI IIM SR, VDSL, Ver. Out of these, HIT-IIT, MegSR,
Noah TerminalVision SR, S&C, and VDSL were selected

as the top 5 methods based on an initial human study.
The mean rankings of these 5 methods over the bursts
from the test set is provided in Table 2. MegSR obtained
the best results with a mean ranking of 1.77. MegSR
employs a flow-guided deformable convolution network
for alignment, while also incorporating Swin Transformer
blocks [27] for reconstruction. The second rank was
obtained by team HIT-IIL, which uses a perceptual loss

41044



Figure 2. Qualitative comparison on test set of Track 1. Input denotes the reference image of the burst, after demosaicking using OpenCV
and bilinear upsampling.

in addition to a fidelity-based loss for training the model.
Team S&C who use EBSR [30] network architecture
obtained the third rank. Noah TerminalVision SR which
employs the NoahBurstSRNet [5] obtained the fourth place
with a mean rank of 3.11. The fifth place was obtained by
team VDSL.

A qualitative comparison between all the participating
methods is provided in Figures 3, 4, 5 and 6. We addi-

tionally include a high-resolution reference captured using a
DSLR, as well as the first image of the burst processed using
LibRaw. We applied simple post-processing to the predic-
tions to approximately match the color space to that of the
ground truth. We observe that while CUCteam can recover
high-frequency details, it also adds checkerboard artifacts.
The predictions of TTI IIM SR contains artifacts. The im-
ages generated by LD, Ver, and MultiTeam are blurry. The
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MOR↓
MegSR 1.77
HIT-IIL 2.29
S&C 2.53
Noah TerminalVision SR 3.11
VDSL 3.50

Table 2. Results of human study on the test set from Track 2.
The methods are ranked based on the mean ranking (MOR) of the
method in the human study.

top ranking method in the human study, MegSR produces
impressive results, recovering high-frequency details while
also performing denoising. HIT-IIL produces sharper re-
sults in general due to the use of perceptual loss in the train-
ing.

4. Challenge Methods and Teams
Here, we briefly describe the methods proposed by the

participating teams.

4.1. CUCteam

CUCteam propose a framework called RAW Burst
Super-Resolution with Enhanced Multi-Residual Denoising
Net (RBSR), as shown in Figure 7. RBSR solves the burst
SR problem by two steps, a reconstruction step and a Multi-
Residual step. The method employs a denoising architec-
ture in burst SR task, in order to make information compen-
sation for subsequent super resolution modules.
Network Architecture: In the reconstruction step, the net-
work extracts shallow features of all 14 LR burst images.
It aligns other neighboring features to the reference feature,
using a Feature Alignment module based on FEPCD [30].
The aligned features are fused by a Temporal Fusion mod-
ule. Then, Multi-Group Spatial Reconstruction (MGSR)
module reconstructs the SR images. The output feature
adopts the method of adaptive residual learning, which in-
cludes conv layers with different filter sizes to extract multi-
scale features. In the Multi-Residual step, the reference
frame is passed through a multi-residual framework, which
includes a denoising residual enhancement flow and a RAW
residual enhancement flow. Denoising residual enhance-
ment flow consists of a Sep-Unet module and a 2x upsample
module. After processing, it outputs denoised clean features
to supplement the network with more noise-free informa-
tion. The RAW residual enhancement flow consists of a 4x
upsample module, which provides the model with RAW in-
formation lost by the network.
Training: For track 1, the method employs synthetic bursts
generated using the data generation pipeline employed in
[4]. Before read and shot noise are added to image to ob-
tain the noisy RAW burst, the noise free RAW image as

ground truth for training the Sep-Unet module. The network
is trained with a combined loss which is reconstruction loss
and denoising loss which are all set to L1 loss. Track 2
employs BurstSR dataset [4] which contains RAW bursts
captured from a handheld Samsung Galaxy S8 smartphone
camera.
Inference details: In Track 1, the method uses Test Time
Augmentation(TTA) [41] data enhancement strategy during
testing time to improve the results. In Track 2, an edge-
enhanced filter is applied to enhance details and sharpen
edges of the RGB image output by the RBSR network.

4.2. HIT-IIL

Network Architecture: The team proposes a transformer
model for burst image super-resolution named TBSR, as
shown in Fig. 8. TBSR borrows the alignment and fusion
modules from EBSR [30], and takes the transformer module
as the reconstruction module. The reconstruction module
includes m transformer groups, and each transformer group
includes n transformer blocks. The basic block proposed in
Restormer [54] is employed as the transformer block. The
block implicitly captures long-range pixel interactions by
applying self-attention across channels. Thus, the compu-
tational complexity of the blocks grows linearly with the
spatial resolution, while that of the transformer-based meth-
ods that apply self-attention across the spatial dimension
grows quadratically. The efficient blocks make TBSR ap-
plicable to large images. During the experiment, they use
m = n = 8. The total number of parameters for TBSR
model is ∼ 24 M.
Training: For track 1, the team utilizes ℓ1 loss to train
TBSR end to end. The training burst data is synthesized
from sRGB images in the Zurich RAW to RGB [15] train-
ing set. The model pre-trained in track 1 is used as the ini-
tialization model for track 2. Then the model is trained with
a combination of ℓ1 loss with alignment [57], VGG-based
perceptual loss [42] and sliced Wasserstein (SW) loss on
BurstSR [4] training set.
Inference: During testing, the team uses a self-ensemble
strategy [24] for better quantitative performance.

4.3. LD

The team employs the Deep-Rep [6] model. Please refer
to [6] for more details.

4.4. MegSR

MegSR proposes a Burst Super-Resolution Transformer
(BSRT) which improves the capability in alignment and
reconstruction processes by proposing a Pyramid Flow-
Guided Deformable Convolution Network (Pyramid FG-
DCN) and incorporating Swin Transformer Blocks [27] as
the main backbone.
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Figure 3. Qualitative comparison on test set of Track 2. Input denotes first image of the burst processed using LibRaw to obtain an RGB
image. Note that the predictions of the methods have been post-processed to approximately match the color space of the ground truth.

Network Architecture: The overview of the proposed
BSRT framework is shown in Figure 9. Inspired by Ba-
sicVSR++ [9], BSRT combines the flow-based alignment
and deformable alignment. Specifically, the optical flow
estimated by the SpyNet [38] can be regarded as a coarse
alignment prior. Based on these flows, DCNs are used to
learn more accurate and refined offsets for aligning features.
The input images {xi}Ni=1 are 4-channel ‘RGGB’ RAW se-

quence. These are firstly flattened to single channel and
passed through SpyNet [38] to obtain multi-level optical
flows which are calculated from each frame and the ref-
erence frame. Particularly, BSRT uses pre-trained SpyNet
weights and preserve the top-3 levels of flows to guide cor-
responding level’s deformable convolution network (DCN)
alignment. Meanwhile, the original 4-channel RAW inputs
are send to several Swin Transformer Blocks (ST Blocks)
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Figure 4. Qualitative comparison on test set of Track 2. Input denotes first image of the burst processed using LibRaw to obtain an RGB
image. Note that the predictions of the methods have been post-processed to approximately match the color space of the ground truth.

to extract informative features. These features are then up-
scaled to match the sizes of the obtained flows and align
them with the reference frame’s feature via a pyramid flow-
guided deformable alignment module. The details of the
Flow-Guided DCN (FG-DCN) level is illustrated in Figure
10. After that, these features are fused (1×1 Conv) and
passed via several Swin Transformer Groups to reconstruct
the high-resolution image. Please refer to [29] for more de-

tails.

Training and inference: The model is trained on the Syn-
thetic dataset for Track 1, and then finetuned on the real
world BurstSR dataset [4] for Track 2. Following [4, 5],
the team employed AlignedL1 loss for real dataset (Track
2) with a pre-trained PWC-Net [43]. In testing, since this
Challenge is on RAW domain, MegSR adopted the Test
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Figure 5. Qualitative comparison on test set of Track 2. Input denotes first image of the burst processed using LibRaw to obtain an RGB
image. Note that the predictions of the methods have been post-processed to approximately match the color space of the ground truth.

Time Augmentation (TTA) strategy proposed by [25] for
Synthetic data (Track 1).

4.5. MultiTeam

Network architecture: An overview of the network is pro-
vided in Fig. 11. The SR network contains six modules:
Denoise Module, Feature Extractor, Align Module, Fusion

Module and Upsampler. The Denoise Module is based on
U-net [40]. In the Feature Extractor, five Wide Activation
Residual Blocks are applied. The FEPCD module[31] is
empolyed in Align Module. The Fusion Module is simi-
lar to BurstSR[4]. The Upsampler is realized by combined
U-shape with residual block. The Discriminator Network
consists of ResNet18[14] and three fully-connect layers.
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Figure 6. Qualitative comparison on test set of Track 2. Input denotes first image of the burst processed using LibRaw to obtain an RGB
image. Note that the predictions of the methods have been post-processed to approximately match the color space of the ground truth.

Training: In the Track 1, the synthetic dataset is used to
train the model using L2 Loss. Then, Track 2 Real, Multi-
Team combines the alignedL2 loss of real dataset [4] with
the discriminator loss of GAN[36] to finetune the model
trained by synthetic dataset.

4.6. Noah TerminalVision SR

The team employs previously proposed state-of-the-art
NoahBurstSRNet [5] that consists of 4 modules: encoder,
alignment module, weight prediction fusion, and recon-
struction blocks (see Fig. 12). As an alignment mod-
ule, NoahBurstSRNet uses Pyramid, Cascading, and De-
formable (PCD) alignment module [46] that consists of de-
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Figure 7. An overview of RAW Burst Super-Resolution with Enhanced Multi-Residule Denoising Net (RBSR) proposed by team CUCteam.
The net contains two steps, a reconstruction step and a Multi-Residule step. The reconstruction step contains a Feature Alignment module,
a Temporal Fusion module, and a Multi-group Spatial Resconstruction (MGSR) module; The Multi-Residule step contains a denoising
residual enhancement flow and a RAW residual enhancement flow. Each lambda (λ) is a trainable scalar parameter.

Figure 8. Overview of the network architecture for TBSR pro-
posed by team HIT-IIL

formable convolution (DConv) layers [58]. According to
[8], DConv suffers from unstable training, since the offset
overflow may cause severe performance degradation and is
not implemented for smartphone devices. Thus, the team
demonstrates that the PCD module can be replaced by a
conventional CNN-based module with negligible loss of
performance. Particularly, they replace all DConv layers
from PCD with small ResUNet with depth 2.

Training and Inference: For track 1, besides previous
year’s state-of-the-art model NoahBurstSRNet, the team
trained other 3 models with the same procedure: (a) NBSR-

PCD, which is a NoahBurstSRNet with less number of
RFDB blocks [23], (b) NBSR-ResUNet A and B are two
NBSR models with ResUNet instead of DConv. The
weighted ensemble of 4 models with the self-ensemble
technique achieves the best performance. The inference
time of the ensemble solution is 16.85 sec. per 256 × 256
burst sequence. For track2, the team employed a single
NoahBurstSRNet model, which was trained as described
in [5].

4.7. okfine

The team proposes an efficient model with deformable
alignment and adaptive feature fusion for burst SR (AFF-
BSR), which can be divided into four parts: feature extrac-
tion, alignment, fusion and reconstruction.
Network architecture: The architecture of the proposed
model is shown in Fig 13. Several RCABs[56] are first
stacked to extract features from raw burst images. The
features are then aligned by a pyramid alignment module
(PAM). PAM directly processes features on three different
scales, and then concatenates all the aligned features into
a channel attention layer for finer alignment. The aligned
features are then passed to a Conv3d-based residual block
for feature fusion. In this step, the input features are pro-
gressively reduced on temporal dimension using Conv3d
convolutions for adaptive feature fusion. Finally, the SFT
Layer[48] is introduced to embed feature priors for better
reconstruction. The network takes features before the up-
sampling layer of the pretained EBSR [30] as a prior, and
EBSR is fixed during training. With the embedded features,
a progressive upsample module with PixelShuffle operation
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is applied to generate the final SR image.

Training and inference: The team randomly crops 16
patches of size 64×64 from the raw burst images as in-
put for each training mini-batch. Data augmentation is per-
formed on the training set, such as random rotations and
horizontal flips. The proposed model is trained by minimiz-
ing L1 loss function with Adam optimizer and L2 loss is
also used for fine-tuning. For the final submission, the team
uses self-ensemble technique[31] to boost the performance.

4.8. S&C

The team uses the same network architecture as
EBSR [30]. The pre-trained EBSR model is fine-tuned ac-
cording to spatial resolution of the validation dataset used
in both track 1 and track 2 to reduce domain gap.

4.9. TeamIITRPR

The team proposes adaptive feature consolidation net-
work (AFCNet) for burst super-resolution. The proposed
architecture combines and processes the information from
individual low-resolution (LR) images for generating high-
resolution (HR) output. AFCNet works in four steps: (a)
Feature alignment, (b) Feature extraction, (c) Feature fusion
and (d) Feature up-sampling. Burst features are initially
aligned using a deformable convolution based feature align-
ment module. Further, high-frequency residue is evalu-
ated by taking the difference between these aligned features
and reference frame features followed by its addition to the
aligned features [10]. The aligned features are processed
through multi-head multi-level transformer backbone [54]
which overall enhances the aligned features. These con-
solidated burst features are further passed through a fusion
module similar to [10] to enable inter-frame communication
by generating pseudo bursts. The final high-resolution im-
age is reconstructed through a progressive adaptive group
up-sampling (AGU) module [10]. For more details, please
refer to [34].
Training: The shared parameters across several stages are
jointly learned by minimizing the L1 loss with respect to
network parameters. For Track 1, the network is trained on
synthetic bursts generated by utilising 46,839 sRGB images
from Zurich-RAW-to-RGB dataset [15] for 100 epochs. For
Track 2, network trained on synthetic data is fine-tuned for
25 epochs on BurstSR train set with alignedL1 loss [4].

4.10. TTI IIM SR

The team extends Single Image Super-Resolution (SISR)
network architectures to the Burst Image Super-Resolution
(BISR) task. This is achieved by changing the number of
channels in the first convolution layer so that a fixed num-
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Figure 11. Overview of network architecture employed by MultiTeam.

Figure 12. The architecture overview of the NoahBurstSRNet employed by the Noah TerminalVision SR team.

ber of multiple images could be fed into the network. The
overview of the model is shown in Fig. 15. SwinIR [21] is
used as the base model in track 1, while Real-ESRGAN [47]
is used in track 2.

Training: The team uses a SISR model trained on sev-
eral datasets (i.e., DIV2K [1], Flickr2K [44], OST [49],
WED [32], FFHQ [17], Manga109 [33], and SCUT-
CTW1500 [26]) as the base model. The first layer of
the model is modified to receive 14 RAW images as in-
put. For track 1, the modified network is finetuned on the
synthetic burst dataset using L1 loss. In track 2, the loss
function used in Real-ESRGAN [47] is used to finetune
on the BurstSR dataset [4]. Specifically, the loss function
is a weighted linear sum of adversarial loss Ladv [12, 19]
which restores high-frequency components, reconstruction
loss Lrecon which restores global structure, and perceptual
loss Lpercep [16] which enhances the perceptual quality.

4.11. VDSL

The method presented by team VDSL is inspired by
DBSR [4] and DeepRep[6], improving the performance in
two ways. First, the original alignment module in DBSR
is replaced with Enhanced Residual Deformable Alignment
module (ERDA) which enables more accurate alignment.
Second, after the fusion of the aligned features, the MAP
step [6] is implemented between the upsampling stages of
X2 and X4. Furthermore, in the reconstruction stage, the
MAP step enables the reconstruction error to minimized by
learning the latent space.

Network Architecture: An overview of the network archi-
tecture is provided in Figure 16. In order to obtain accurate
alignment, the network adds the Residual DCN alignment
along with the optical flow based PWCNet[43] employed
in DBSR[4]. The flow warped feature and the base fea-
ture are first aligned to produce offsets for DCN. The resid-
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Figure 13. Overview of the network architecture of the AFFBSR proposed by team okfine.

Figure 14. Overall pipeline of the adaptive feature consolidation network for burst super-resolution network (AFCNet) proposed by TeamI-
ITRPR.

ual feature between the base feature and the DCN align-
ment feature is passed through a conv layer and added to
DCN alignment feature to obtain final aligned feature [10]
(see Figure 17). The aligned features are merged using the
attention-based fusion from DBSR[4]. Motivated by the

DeepRep[6] model, VDSL performs reparameterized max-
imum a posteriori estimation in the deep feature space. The
MAP step operates to minimize the reconstruction error be-
tween the fused feature and a simulated feature map. The
optimized latent space representation is up-sampled using
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Figure 15. The overview of the approach used by team TTI IIM SR.

Figure 16. Overview of the network architecture employed by team VDSL.

Figure 17. Enhanced Residual Deformable Alignment module em-
ployed by team VDSL

the pixel shuffle to obtain the output image.
Training: The model in track 1 is trained using an
ADAM optimizer and minimizing L1 loss for 600 epochs
on synthetic bursts generated using Zurich RAW to RGB
dataset. This model is fine-tuned for 50 epochs on BurstSR
dataset[4] using aligned L1 loss for track 2.

4.12. Ver

The team uses EBSR [31] as the backbone of the pro-
posed method. The specific modifications are: (1) Learn
high frequency information to improve texture.(2) Better
learning rate strategies. (3) Additional high quality datasets.

The team explores the use of multi-scale non-local fusion.
Next, in order to improve the details after super-resolution,
wavelet calculation is added to the loss to constrain high-
frequency information more strongly. Residual channel at-
tention is also employed in the model backbone to improve
the performance.

4.13. VIDAR A

The team proposes a Multi-fusion Network for burst
super-resolution, as shown in Figure 19. Motivated by [31],
they solve the burst SR problem in four steps: alignment,
fusion, reconstruction, and refinement. Previously, infor-
mation from multiple burst images are fused through con-
catenation [31] or Weight Predictor (WP) [4]. Instead, team
VIDAR A proposes to fuse information in both spatial and
frequency domains.
Network architecture: Following [31], the network ex-
tracts features with a feature enhance pyramid network and
aligns the features from the burst images using the well-
known Pyramid, Cascading and Deformable (PCD) mod-
ule [46]. To conquer the drastic dimension reduction in the
fusion module, the team proposes a Multi-Fusion Module.
As shown in Figure 19, the aligned features are fused in
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Figure 18. An overview of the architecture employed by team Ver.

Burst LRs Feature 
Extractor

PCD 
Alignment

Non-Loccal
Fusion

CAFusion

RTFusion

Concat

LRCN

LRCN

LRCN

LRCN

RSTB SR Image

Figure 19. Overview of the multi-fusion network architecture employed by team VIDAR A

different ways, including Channel Attention Fusion (CA-
Fusion), Residual Frequency domain Fusion (RFFusion),
Non-Local Fusion, and a normal concatenation fusion. The
Long Range Concatenation Network (LRCN) [31] is then
used to reconstruct an intermediate SR image and multiple
Residual Swin Transformer Blocks (RSTB) [21] are used to
refine the SR image.
Training: The network is first pre-trained on the synthetic
bursts generated from Zurich raw to RGB dataset [15] and
then finetuned on the BurstSR Dataset [4], using L1 loss.

4.14. VIDAR B

The team proposes multi-scale transformer for burst im-
age super-resolution (TBSR), which divides this task into
two key parts: alignment and fusion (see Figure 20). For
alignment, TBSR uses a novel transformer-based module,
named as MS-TR module, which captures the correspon-
dence of input features leveraging the multi-scale atten-
tion heads (see Figure 21). Additionally, it also uses the
PCD alignment module [46] to align the input features.
The aligned features of the two modules are concatenated
and fed to fusion module. For fusion, TBSR uses the
pyramid temporal-spatial attention module [52] to fuse the
aligned features. The fused features are then passed through
a reconstruction module, which is a cascade of residual
channel-wise attention blocks. The upsampling operation

is performed at the end of the network to increase the spa-
tial size. Finally, the high-resolution frame is obtained by
adding the predicted image residual to a direct upsampled
image.
Training and inference: The network is trained using L1

loss function. An ensemble strategy with multiple check-
points and multiple models is used to enhance the recon-
structed results. Four other models in addition to TBSR are
used to obtain the prediction. For model 1, the PSA module
is replaced with “CrossNonLocal Fusion” [30]. For model
2, the feature extractor and reconstruction module are re-
placed with coupling layers [18]. For model 3, the PSA
module, feature extractor and reconstruction module are re-
placed as in model 1 and 2. For model 4, the original EBSR
[30] is employed. These four models together with TBSR
generates five results which are fused to achieve a better
performance.

5. Conclusion

This paper reviews the NTIRE 2022 Burst Super-
Resolution challenge. In the challenge, the participants
were tasked with performing joint denoising, demosaick-
ing, and super-resolution using multiple input images. That
is, given a burst containing multiple noisy RAW images, the
task is to combine these images to generate a clean, high-
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Figure 20. Overview of the network architecture employed by team VIDAR B.

Figure 21. The structure of Multi-Scale Head Transformer Module
employed by team VIDAR B.

resolution RGB image as output. The challenge was held
in two tracks, one employing synthetically generated data,
while the other used real-world bursts for evaluation. 14
teams participated in the challenge, employing diverse net-
work architectures and training strategies to tackle the burst
super-resolution task.
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age81, ETH Zürich (Computer Vision Lab) and University
of Würzburg (CAIDAS).

Appendix

A. Teams and Affiliations
NTIRE2022 Organizers

Members:
Goutam Bhat1 (goutam.bhat@vision.ee.ethz.ch)
Martin Danelljan1 (martin.danelljan@vision.ee.ethz.ch)
Radu Timofte1,2 (radu.timofte@uni-wuerzburg.de)
Affiliations:
1 Computer Vision Lab, ETH Zürich, Switzerland
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