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Abstract

Image inpainting aims to inpaint missing pixels of an im-
age naturally and realistically. Previous deep learning ap-
proaches typically require specific design for different types
of masks and cannot generalize well to multiple inpaint-
ing scenarios simultaneously. Thus on top of most com-
mon stroke-type mask approaches, we in this paper pro-
pose a unified framework to handle multiple types of masks
simultaneously (e.g. strokes, object shapes, extrapolation,
dense and periodic grids et al). We address this problem
by proposing a progressive learning scheme to an Seman-
tic Aware Generative Adversarial Network (SA-PatchGAN).
Specifically, the overall training proceeds in multiple stages
with different type of mask inputs, so that the model can
gradually generate an output image from coarse to fine with
mask independent property. In our experiments, we show
that this strategy yields a large performance gain compared
to the single-scale learning methods. We also introduce ad-
ditional semantic conditioning to the discriminator which
encourage high quality local style statistics, and show that
this approach is effective on a wider scenario/tasks and
could better adapt to various types of mask. Our method
produces promising results on various mask types using one
single model.

1. Introduction

Image completion (also known as image inpainting) is a
very useful editing tool to remove unwanted objects or to
fill missing pixels based on surrounding context. Although
this task has been studied for more than a decade, it remains
an active computer vision research area due to its highly ill-
posed nature, and the recent deep learning methods bring
semantics into this task.

In order to improve performance, previous methods usu-
ally reduce the difficulty by solving a specific subset of in-
painting problem. For example, they usually train on street
view images, faces or paintings separately, to make net-
works focus on certain scenarios. Also, researchers de-
signed different network structures to handle different mask

types. Here we classify these mask types into 3 classes: a)
inpainting: stroke, object or regular shapes b) outpaint-
ing: one or multiple image borders c) interpolation: dense
and periodical missing pixels. We list seven types of mask
into these 3 classes as shown in Fig. 1. In fact, they in-
deed require special design choices. Inpainting task aims
to remove objects or scratches and fill with natural back-
ground patterns. Previous methods [18, 27, 30, 31] focus on
establish correspondences between background the missing
areas. Outpainting task expects to propagate and predict be-
yond image borders. Therefore, current approaches [22,28]
exploit large receptive fields to better understand context.
Interpolation task focus more high quality local prediction.

We in this paper propose a new framework to solve var-
ious mask types in one single model. As mentioned above,
the proposed network requires a large receptive field to bet-
ter understand global structures, while it should also be able
to pay enough attention on pixel-level fine details. It is ex-
cepted to find the best match from known pixels to recover
and approximate missing ones, as well as to make good pre-
dictions beyond image borders.

In summary, we propose a progressive coarse to fine
Generative Adversarial Network for Image Inpainting under
the scenario of various kinds of masks. It applies the pro-
gressive learning to the network to make the overall training
procedure more stable.This unified model can handle mul-
tiple types of masks simultaneously and mitigates the in-
stability of training caused by extremely variance and chal-
lenging types of mask. Furthermore, our work also helps
to avoid the quality degradation problem by performing the
upsampling process progressively.

* Progressive learning are applied to the network to
make the overall training procedure more stable.

* We use semantic information from a pretrained deep
network to Enhanced semantic awareness of the dis-
criminator in a Patch-GAN, which is a stabilization our
training and improve our performance.

* Our method has achieved the 3rd place on the
NTIRE [20] 2022 Inpainting public leaderboard (the
3rd on both PSNR and SSIM) and significantly out-
performs existing methods on benchmark datasets.
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Figure 1. We list some examples of mask in 7 types and split these masks into three kinds of inpainting tasks: Inpainitng, Interpolation,
Outpainting. We also plot part of the mask of Interpolation task in the blue close-up box, where white demonstrate the invalid pixels(mask
area) and black demonstrate valid pixels(valid pixels). 15/16 of the pixels should be interpolate in Nearest Neighbour case and 1/4 pixels
to be interpolate in Every N Lines case.

2. Related works
In recent years, many inpainting related works have been

proposed to push the limit of this area. Here, we give a brief
review of these methods most related to our method.

2.1. Image Inpainting

Patch-based [4] and diffusion-based [2] [12] methods
were firstly proposed to handle the inpainting issues. Af-
ter that, deep learning based methods are used with bet-
ter performance and potentially architectures. Pathak et
al. [18] used generative adversarial netowork for a realis-
tic and stable image inpainting task. Later on, encoder and
decoder with generative methods [30,31] are widely used to
learn a latent space mapping, filling the missing holes into
a feature level. Iizuka et al. [8] proposed a network with
multi-discrimator and dilated convolutions to enhance the
global consistency result. Liu et al. [14] utilized partical
convolutions with style loss and perceputual loss in the in-
painting task. Yu et al. [31] proposed a gated convolution
with coarse-to-fine network to repair the image with irregu-
lar mask. [25] [13] [38] used multi-scale modules to obtain
larger receptive field while handling large mask. And [26]

estimates mask in a blind way. However, those methods can
only filled the image with internal masks, leading chaotic
contents and artifacts with image outpainting tasks.

2.2. Image Outpainting

Image extrapolation, same as image outpainting, tried to
fill in the content outside the original image. [35] [24] de-
scribed the outpainting task as matching and stitching prob-
lem from the training task. Thus, it led to limited results.
Wang et al. [28] proposed a cGAN and contextual attention
based network which handled a one side expand mask ex-
trapolation problem. Teterwak et al. [22] used pre-trained
InceptionV3 [21] output as semantic condition as the input
of a discriminator for the extension result. However, those
methods also suffered quality degradation along the extrap-
olate mask from the origin image.

2.3. Progressive Training

Progressive training adopted multi-stage networks to fur-
ther enhance the quality of reconstructed image. Denton et
al. [7] proposed a Laplacian pyramid to generate multi-size
residual images. Then they were fed into the reconstruc-
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Figure 2. Total network. Illustration of progressive training for the 4 scale image inpainting task. The number that is denoted in each layer
name means the image size in which the corresponding module dealing with. For instance, 1

4
means the input and the output of this stage

is 1
4

size of the total network input.

tion phase along with upsampled original image. Karras et
al. [10] proposed a progressive growing generative adver-
sarial network from low spatial resolution. Lai et al. [11]
started from low resolution image, progressively increased
the resolution with residual images. The weight were shared
along multi-level pyramids.

3. Methods

In this section, we describe the methodology of the pro-
posed model that uses progressive learning based on Deep-
fillv2 [30, 31]. We select Deepfillv2 because it achieves a
good balance between efficiency and performance. In Sec-
tion 3.1, we first overview the model, before presenting our
progressive SA-PatchGAN model in Section 3.2.

3.1. Coarse-to-Fine deep inpainting network

Inspired by [30, 31], we use Coarse-to-fine network ar-
chitecture with gated conv as our backbone. The network
architecture of our improved model is shown in Figure 2.
The model is based on gated convolutions which is used to
learn a dynamic feature selection mechanism for each chan-
nel at each spatial location across all layers, significantly
improving the color consistency and inpainting quality of
free-form masks and inputs.

3.2. Semantic aware patch GAN (SA-PatchGAN)

The objective of the discriminator network is to deter-
mine whether an image is generator-produced or real. In
our problem setup, the concern is not just whether the out-
put of G appears real, but also that it is a plausible extension
of G’s inputs.

SA-PatchGAN is proposed for the reason that multi-type
masks may appear anywhere in images with any shape.
Previously introduced global and local GANs [8] designed
for a single rectangular mask are not applicable. To ad-
dress this, we add another form of conditioning, which is a
modified version of the conditional projection discriminator
(cGAN) [16]. In the original cGAN paper, a one-hot class
label y is passed into the discriminator in addition to the
image x to be classified as real or fake. The discriminator
output is:

D (x∗,y) = fϕ (ϕ (x∗)) +
〈
ϕ (x∗) ,fy(y)

〉
(1)

where ϕ is a learned function mapping an image to a
vector, fϕ is a learned fully-connected layer that maps that
vector to a scalar, fy is a learned fully-connected layer map-
ping y to a vector of the same size as the output of ϕ. The
cGAN paper shows that this parameterization of the GAN
objective enables the model to simultaneously learn the dis-
tributions p(x) and p(y|x). However, sometimes class la-
bels are not available, and we also want our conditioning
vectors to contain more information than class labels would
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provide. Previous work on perceptual metrics [9, 34] re-
placed y with the activation of a pretrained image classi-
fication network, C, when applied to x (the ground truth
image). We chose to instantiate C as an InceptionV3 [21]
network trained on ImageNet [6] with the final softmax re-
moved. We found that it helps to normalize these activation
by subtracting the mean activation over the dataset and then
dividing the result by its l2 norm. We change equ 1 to add
semantic condition:

D (x∗,M ,x) = fϕ (ϕ (x∗,M))+⟨ϕ (x∗,M) ,fC(C(x))⟩
(2)

Where M is the input mask. The architecture of ϕ is
based on [5, 31] which consists of six strided convolutional
layers, followed by a fully connected layer. The output di-
mensions of ϕ and fC are both 256.

The total loss is the weighted summation of L1 loss, ad-
versarial loss, perceptual loss, and style loss:

Ltotal = λrec ·Lrec+λadv ·Ladv+λper ·Lper+λsty ·Lsty (3)

Where the reconstruction loss: Lrec = ∥x−G(z,M)∥1.

3.3. Progressive learning Method

We progressively apply our backbone in different scales
at different image size in a coarse-to-fine manner. We use
multi scales strategy in our method. Firstly, we set the num-
ber of stages as three in the 1/4, 1/2, 1/1 scale inpainting
task. That is, in each stage, the model performs 1

4x → 1
4x ,

1
2x → 1

2 x, 1x → 1x inpainting tasks sequentially.
The training starts from stage one, which produces the

1
4x scale image from the first stage. After the end of the
first stage, we upsample it to 1

2x scale and combine the it
with background pixels from 1

2x scale input as the input of
stage 2. We freeze the stage 1 parameters when train stage 2.
When we train stage3the procedure is the same with stage2.

We also found that adding two extra scale
√
2
4 x and

√
2
2 x

after stage 1 and stage 2 could improve model performance.
We proposed to progressive learning scheme [10] to ef-

fectively reconstruct uncompleted images. The key concept
of the methodology is similar to that of Karraset al. [10], but
we adapt this scheme for our multi-painting task as shown
in Figure 2

3.4. Ensembles and fusion strategies

Using ensemble strategies on different mask can provide
performance gain. However, we did not contain any ensem-
ble strategies, in order to demonstrate the robustness and
stability of our method on different type of mask and differ-
ent kinds of tasks. We are able to handle various of inpaint-
ing / outpainting / interpolation tasks with a single model.

4. Experiments
Our proposed solutions is robust and stable dealing with

diverse type of mask and multi-inpainting tasks. We are
able to handle various of inpainting / outpainting / interpo-
lation tasks with a single model. We didn’t use ensemble
strategies on different mask although it can provide perfor-
mance gain. We demonstrate that for multi-inpainting task,
our mask agnostic network design is capable of producing
high-quality results with the best perceptual quality with re-
spect to the ground truth.

4.1. Data preparation

Masks In addition to the typical strokes, in this paper,
we aim at more generalizable solutions. We use seven
types of masks in this paper as shown in Fig 1, and sep-
arate these seven types of masks into three classes repre-
senting three tasks: Thick, Medium and Thin Strokes repre-
sent traditional inpainting task. Nearest Neighbor and Ev-
ery N Lines represent Image interpolation. Completion and
Expand represent Outpainting task.

Datasets Following a common practice in Image In-
painting methods, we use three popular datasets for our
challenge: FFHQ, Places, and ImageNet. Additionally, to
explore a new benchmark, we also use the WikiArt dataset
to tackle inpainting towards art creation.

4.2. Inplementation and training details

Our implementation is based on Pytorch with Nvidia
Tesla V100 32GB GPU. The networks are trained with
Adam optimizer. The method trained for about 15 hours on
one V100 GPU. All images are random cropped and resized
to 512×512 pixels. The batch size is set to 20. The training
process is fast and converges in about 150K iterations: 15
hours on one GPU. The testing process is also fast which
cost 0.38s to infer per image in four datasets (Places, Im-
ageNet, FFHQ, WikiArt) on average. No human effort are
required for implementation in training or validation, and
the performance is stability during training and testing.

Training description We train the network using a joint
loss consisting of a reconstruction l1 loss, adversarial loss,
perceptual loss, and style loss. We use multi scales strategy
in our method, the scale of each stage is 0.25,

√
2
4 ,0.5,

√
2
2 ,

1 respectively.
For Places2 dataset, our model is trained on places2

training set from scratch, and test the model on Places2
validation and test set. For ImageNet/ WikiArt/ FFHQ
datasets, we initialise the model using parameters pretrained
on Places2 dataset, then finetune the model on the training
set of ImageNet/ WikiArt/ FFHQ datasets respectively.

Testing description For testing Places dataset, we use
model trained on Places2 training set. For testing ImageNet
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Figure 3. Interpolation-inpainting Task for Every N Line and Nearest Neighbor on four datasets.

Figure 4. Conventional inpainting Task for stroke masks on four datasets.

dataset, we use the model trained on ImageNet training set
which finetuned from the Places2 pretrained model. The
WikiArt and FFHQ dataset is the same strategy with Ima-

geNet. Since the first stage in our model is 1/4 x scale of the
model and the image size should be divided evenly by 8, the
input size(height and width) for the whole image divisible

982



Figure 5. Out-painting Task for Completion and Expend masks on four datasets.

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Datasets mean std mean std mean std mean
FFHQ 25.06 8.669 0.838 0.147 0.239 0.173 21.345
Places 23.41 7.892 0.787 0.195 0.255 0.193 18.334

ImageNet 23.804 8.781 0.776 0.221 0.249 0.213 18.854
WikiArt 23.142 7.305 0.759 0.204 0.276 0.185 26.395

Table 1. Quantitative results of our proposed model on all of the datasets for four datasets.

by 32. The test image are reshape to an integral number
multiple of 32.

Execution time The execution time is evaluated on a ma-
chine with one Nvidia Tesla V100 GPUs. The speed of our
model is 2.5 frame per second (FPS).

4.3. Comparison with state-of-the-art methods

Our model performs well on three kinds of masks (con-
ventional inpainting mask, outpainting mask and interpo-
lation mask), which is robustness for different mask types.
We compare our methods with SOTA outpainting tasks on
Places dataset in table 4. We provide We provide FID
scores for FID correlates with perceptual quality best. We
also compared our methods with SOTA inpainting tasks on
Places2 dataset in table 5. Our results are tested from 1000
test images from Places 2 with 7 types of masks which
is from Colab from NTIRE 2022 image inpainting chal-
lenge [19].

4.4. Pros and cons for each type of mask

Mask of Strokes Inpainting with stroke mask is the con-
ventional image inpainting setting. Our model could han-
dle this circumstance well and the reconstruct region match

the valid area at the textural, structural and semantic levels.
The result of our model on four datasets (FFHQ, Places,
ImageNet, Wikiart) are shown in Fig 4. We also found
the mask attributes substantially impact the difficulty of
conventional image painting(with strokes). in particular,
widely distributed free-form masks lead to better perfor-
mance which are often non-contiguous and non-convex, al-
though some of them has over 50% invalid pixels. So when
invalid percentage is the same, thin strokes performs bet-
ter than thick strokes. However, in addition to the typi-
cal strokes, we aim at more generalizable solutions dealing
with multi-inpainting task, namely various types of masks
simultaneously(for instance, strokes, half completion, near-
est neighbor up-sampling.)

Mask of completion and expand Completion Mask in
out-painting tasks is a challenge task since it aims at cre-
ating new contents according to the semantic information
rather than filling in partial regions guided by available sur-
rounding pixels. So out-painting task requires a substantial
understanding of scenes and semantic information of the in-
put image. On the other side, out-painting can be achieved
in more diverse ways since the problem is less constrained
by the surrounding pixels. So traditional quantitative result
used in inpainting model (such like PSNR, SSIM) is not in
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Strokes Interpolation Completion
Mean Thick Medium Thin Every N Lines Nearest Neighbor Completion Expand

PSNR ↑ 22.89 23.330 23.992 27.284 31.772 24.873 16.130 12.877
SSIM ↑ 0.785 0.866 0.879 0.910 0.940 0.757 0.688 0.454
LPIPS ↓ 0.248 0.158 0.134 0.112 0.147 0.347 0.522 0.313
FID ↓ 20.314 15.213 12.341 10.214 14.906 21.924 37.484 30.098

Table 2. Quantitative results of our proposed model on Partial of Places datasets with different mask types. Our Partial test set contains
1, 000× 7× 4 images for seven type of mask on four dataset.

Figure 6. Quantitative results of our model on Interpolation task compared to Boundless [22] and CV2 Bicubic interpolation.

direct proportion to visual quality. So we use FID score in
Table 4 since FID correlates with perceptual quality best.
From qualitative and quantitative results, our model per-
forms well on mask of completion and expand by appearing
a plausible extension, demonstrate that we could not only
deal with context and texture but also using semantic info
to creating new contents. We also tried other outpainting
methods [22, 28, 29] which GAN models which formulate
the problem as an image-to-image task. We retrained these
methods specifically for these three kinds of tasks. How-
ever, [28, 29] can not adapt to interpolation-inpainting task
and tend to produce blur results, which is not a generaliz-
able solutions for multi-inpainting task. [22] tends to create
overly-smoothed results with raindrop-shaped artifacts.

Nearest neighbor up-sampling Mask. Nearest neighbor
up-sampling Mask is the easiest task among these mask
types. We found that our model could perform well on mask
with V : M = 1 : 4, 1 : 9, 1 : 16. Where V and P
and number of valid pixels before and after inapinting. We
found that Deep network [30,31] performs well on Interpo-
lation task since it is good at deal with context and texture.
Although the missing pixels don’t have a larger amount of
available surrounding pixels serving as the boundary condi-
tions like Strokes Mask inpainting, the sparse valid pixels
serves as boundary conditions and can also provide crucial
guidance for interpolational-inpainting. We found that our
model performs better on Interpolation task and good at deal
with context and texture since the missing pixels have a few

available surrounding pixels, serving as the boundary con-
ditions and providing crucial guidance for inpainting.

4.5. Ablation Study

We perform ablation study on the effect of multi stage
and semantic aware PatchGAN. We list out results in Ta-
ble 3. B means backbone of our model, while B3s demon-
strate 3 stage multi scale progressive learning. and B5s

demonstrate 5 stage backbone (adding two extra scale
√
2
4 x

and
√
2
2 x after stage 1 and stage 2). SA means add semantic

aware Patch GAN discriminator in the model. Multi scale
experiences substantial gains with the origin three stage,
and performs better with increased two extra stage. SA
helps to capture semantic information and helps to better
explore the global structures.

4.6. Results of the comparison to other approaches

For Nearest neighbour and Enery-N-Line masks, we
compare our method with cv2.resize method, we extract
the valid pixels and resize them to the same size as in-
put image using cv2.resize with INTER CUBIC interpola-
tion. As shown in Figure 6. Our methods performs better
compared with cv2 on both qualitative results and quantita-
tive results. However, Bicubic method can not deal with
outpainting task with We also compare our method with
Boundless [22]. Boundless [22] tend to produce color dif-
ference results compared to input valid pixels on Interpola-
tion task. Our method could converge easier than them and
performs more stable on different types of masks.
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Strokes Interpolation Completion

whole model

Mean Thick Medium Thin N Lines Neighbor Comp Expand
PSNR↑ 22.89 23.330 23.992 27.284 31.772 24.873 16.130 12.877
SSIM↑ 0.785 0.866 0.879 0.910 0.940 0.757 0.688 0.454
LPIPS↓ 0.248 0.158 0.134 0.112 0.147 0.347 0.522 0.313

FID↓ 20.314 15.213 12.341 10.214 14.906 21.924 37.484 30.098

B5s+SA

Mean Thick Medium Thin N Lines Neighbor Comp Expand
PSNR↑ 22.01 22.506 23.505 27.127 30.739 22.709 16.280 13.192
SSIM↑ 0.776 0.862 0.877 0.907 0.922 0.675 0.662 0.471
LPIPS↓ 0.260 0.180 0.142 0.131 0.166 0.359 0.540 0.301

FID↓ 21.613 17.201 13.251 12.005 16.211 23.014 38.129 31.482

B3s+SA

Mean Thick Medium Thin N Lines Neighbor Comp Expand
PSNR↑ 21.89 22.368 23.383 27.022 30.422 22.704 16.295 12.944
SSIM↑ 0.774 0.862 0.876 0.906 0.917 0.670 0.676 0.397
LPIPS↓ 0.263 0.184 0.145 0.133 0.171 0.361 0.520 0.330

FID↓ 21.939 17.512 13.492 12.395 16.592 23.288 38.529 31.771

B+SA

Mean Thick Medium Thin N Lines Neighbor Comp Expand
PSNR↑ 21.66 23.508 24.066 26.527 28.241 19.778 15.363 12.126
SSIM↑ 0.774 0.856 0.866 0.891 0.876 0.498 0.702 0.488
LPIPS↓ 0.289 0.199 0.166 0.147 0.179 0.371 0.577 0.383

FID↓ 22.530 17.892 13.625 12.766 16.983 23.504 39.733 33.207

B

Mean Thick Medium Thin N Lines Neighbor Comp Expand
PSNR↑ 20.9 23.196 23.623 25.489 27.227 17.627 15.327 12.056
SSIM↑ 0.670 0.855 0.858 0.875 0.841 0.395 0.703 0.487
LPIPS↓ 0.302 0.204 0.173 0.161 0.199 0.394 0.588 0.401

FID↓ 22.912 18.533 13.935 12.805 17.029 23.881 40.428 33.771

Table 3. Ablation study on Partial of Places test set. The test set contains 1,000 images for each type of mask for each dataset. B means
our backbone. B3s demonstrate 3 stage multi-scale progressive learning. and B5s demonstrate 5 stage backbone (adding two extra scale√

2
4

x and
√
2

2
x after stage 1 and stage 2). SA means add semantic aware Patch GAN discriminator in the model.

Method FID ↓
Boundless [22] 35.02

NS-outpaint [29] 50.68
DeepFillv2 [30, 31] 56.14

Image2StyleGAN [1] 25.36
In&Out [3] 23.57

Very Long [29] 13.71
Ours 18.33

Table 4. Comparing our methods with SOTA outpainting tasks on
Places dataset. We provide We provide FID scores for outpainting
task since FID correlates with perceptual quality best.

5. Conclusion

In this work, we proposed a progressive cascading Se-
mantic Aware GAN network that can perform image in-
painting accurately even in an various types of tasks in com-
plex scenario. The main idea behind our work is to apply
progressive learning scheme to Semantic Aware GAN net-
work. By using the progressive scheme, the training pro-
cess becomes much easier and more stable, since the model
first learns the coarse structure and gradually learns how to
restore details in the later stages. Our experiment shows

PSNR ↑ SSIM ↑ FID ↓
Method Thin Thick Thin Thick
EC† [17] 26.52 22.23 0.880 0.731 30.13
GC† [31] 26.53 21.19 0.881 0.729 30.13

MEDFE† [15] 26.47 22.27 0.877 0.717 31.40
PIC† [36] 26.10 21.50 0.865 0.680 33.47
ICT† [23] 26.6 23.32 0.880 0.724 25.42

AOT-GAN [33] 26.03 22.62 0.890 0.804 5.47
BAT-Fill† [32] 26.47 21.74 0.879 0.704 22.16
pluralistic [36] 26.47 21.74 0.879 0.704 25.42

Ours 27.28 23.33 0.910 0.866 18.33

Table 5. Quantitative comparison of our model with state-of-the-
art conventional inpainting methods on Places2 [37] validation im-
ages (1,000) with irregular masks. † denotes the results are copy
from [32]

that employing this idea leads to better performance on var-
ious benchmark datasets compared to the non-progressive
approaches. We also introduce semantic conditioning to the
discriminator of the GAN which only penalizes structure
at the scale of image patches, to capture local style statis-
tics, and show that this approach is effective on a wider sce-
nario/tasks and could better adapt to various types of mask.
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