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Abstract

Stereo image super-resolution aims at enhancing the
quality of super-resolution results by utilizing the comple-
mentary information provided by binocular systems. To ob-
tain reasonable performance, most methods focus on finely
designing modules, loss functions, and etc. to exploit in-
formation from another viewpoint. This has the side ef-
fect of increasing system complexity, making it difficult for
researchers to evaluate new ideas and compare methods.
This paper inherits a strong and simple image restoration
model, NAFNet, for single-view feature extraction and ex-
tends it by adding cross attention modules to fuse features
between views to adapt to binocular scenarios. The pro-
posed baseline for stereo image super-resolution is noted
as NAFSSR. Furthermore, training/testing strategies are
proposed to fully exploit the performance of NAFSSR. Ex-
tensive experiments demonstrate the effectiveness of our
method. In particular, NAFSSR outperforms the state-of-
the-art methods on the KITTI 2012, KITTI 2015, Middle-
bury, and Flickr1024 datasets. With NAFSSR, we won 1st
place in the NTIRE 2022 Stereo Image Super-resolution
Challenge. Codes and models will be released at https:
//github.com/megvii-research/NAFNet.

1. Introduction

Stereo image super-resolution (SR), which aims at re-
constructing high-resolution (HR) details from a pair of
low-resolution (LR) left and right images, has attracted
much attention in recent years. To solve this task, both con-
text information within a single view (i.e. intra-view infor-
mation) and information between left and right image (i.e.
cross-view information) are crucial [38]. On the one hand,
recent works in stereo image SR [4, 34, 41] mainly focus
on the finely designing novel network architectures, losses,
and etc. to effectively incorporate additional information
from another viewpoint, as the cross-view information pro-
vided by binocular systems enhances the image quality.

*Equal contribution.
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Figure 1. Parameters vs. PSNR of models for 4× stereo SR on
Flickr1024 [33] test set. Our NAFSSR families achieve the state-
of-the-art performance with up to 79% of parameter reduction.

But the system complexity is increasing, which may hin-
der the convenient analysis and comparison of methods.
On the other hand, remarkable progress in single image
restoration has been witnessed with deep learning tech-
niques, e.g. Transformer-based SwinIR [19] outperforms
state-of-the-art methods on single-image SR. NAFNet [2]
achieves state-of-the-art performance without nonlinear ac-
tivation functions on denoising and deblurring tasks. How-
ever, these single image restorers are suboptimal for stereo
image SR as they cannot utilize the cross-view information.

Inspired by NAFNet [2] which achieves competitive per-
formance on single image restoration tasks with low system
complexity, we propose a novel baseline for stereo image
SR, NAFSSR, by adding simple cross attention modules to
NAFNet. It can fully utilize both intra-view information
and cross-view information to achieve the competitive per-
formance of stereo super-resolution. Specifically, we stack
NAFNet blocks (NAFBlocks for short) and extract intra-
view features for both views in a weight-sharing manner.
It inherits the strong representation (within the viewpoint)
of NAFNet. Specifically, to further improve the representa-
tion of NAFNet, we propose stereo cross-attention module
(SCAM) to attend and fuse the left/right viewpoint features.
It first computes bidirectional cross attention from left to

1239

https://github.com/megvii-research/NAFNet
https://github.com/megvii-research/NAFNet


right and right to left views, and then fuses the interacted
cross-view features with intra-view features. In contrast to
the original cross-attention used in a standard Transformer
decoder [30], which attends to all locations in an image,
our stereo cross-attention attends to corresponding features
along the horizontal epipolar line, following [32, 34].

Although NAFSSR has strong representational power, it
may suffer from overfitting due to the lack of data for the
stereo SR task. To solve this, we adopt stochastic depth
[13] as regularization and channel shuffle (i.e., shuffle the
RGB channels of input images randomly) as data augmen-
tation during the training phase. Besides, we reveal that
there is also the train/test inconsistency issue mentioned in
TLSC [3] in the stereo SR task. Thus we adopt TLSC [3] in
the testing phase to alleviate the inconsistency issue. These
training/testing strategies, together with NAFSSR, consti-
tute a baseline for the stereo SR task. As shown in Figure 1,
our NAFSSR families have better performance and param-
eters trade-off than existing methods.

Our contributions can be summarized as follows:
• We analyze the drawbacks of existing methods and

propose NAFSSR, which is simple and easily imple-
mented. It inherits the advantages of NAFNet’s sim-
plicity and power, and uses the characteristics of the
stereo SR task to improve the representation through a
simple stereo cross-attention module.

• Based on NAFSSR, we design its training/testing
strategies, thus addressing the obstacles to its compet-
itive performance on the stereo SR task. The strategies
together with NAFSSR constitute a strong baseline for
this task: the baseline achieves the state-of-the-art per-
formance with fewer parameters (Figure 1) and faster
inference speed (Table 6).

• Extensive experiments are conducted to demonstrate
the effectiveness of our proposed NAFSSR. With the
help of NAFSSR, we won 1st place in the NTIRE 2022
Stereo Image Super-resolution Challenge [31].

2. Related Works
2.1. Single Image Super-resolution

Single image restoration tasks, e.g., image super-
resolution (SR), aim at reconstructing high-quality images
by using only intra-view information from low-quality in-
put. Deep learning-based methods have dominated sin-
gle image super-resolution tasks since the pioneering work
of Super-Resolution Convolutional Neural Network (SR-
CNN [8]). More complicated neural network architecture
designs have been presented to improve model represen-
tation ability by increasing the depth and width of mod-
els [15], applying residual [20, 39] and dense [40] con-
nections, as well as introducing different attention mech-
anism (e.g., channel attention [5,23,39], channel-spatial at-

tention [6, 19, 24, 26]). Specifically, SwinIR [19] proposes
a Swin Transformer-based image restoration method and
achieves state-of-the-art performance on single image SR.
In this paper, we extend NAFNet [2], a simple baseline with
competitive performance on single image restoration tasks,
to stereo image SR task.

2.2. Stereo Super-Resolution

Stereo super-resolution task aims at reconstructing high-
resolution details of a pair of low-resolution images on the
left and right views. StereoSR [14] learns a mapping be-
tween continuous parallax shifts and a high-resolution im-
age by jointly training two cascaded sub-networks for lu-
minance and chrominance, respectively. To handle differ-
ent stereo images with large disparity variations, PASS-
Rnet [32] introduces a parallax-attention mechanism with
a global receptive field along the epipolar line. Ying et
al. [38] propose a stereo attention module (SAM) to extend
pre-trained single image SR networks for stereo image SR.
StereoIRN [37] introduces two disparity attention losses
and uses a pre-trained disparity flow network to align two
views features. Song et al. [29] propose self and parallax at-
tention mechanism for simultaneously aggregating informa-
tion from its own image and the counterpart stereo image.
To effectively interact cross-view information, iPASSR [34]
propose symmetric bi-directional parallax attention module
(biPAM) and an inline occlusion handling scheme to ex-
ploit symmetry cues for stereo image SR. CVCnet [41] inte-
grates cross view spatial features from both global and local
perspectives. SSRDE-FNet [4] simultaneously handles the
stereo image SR and disparity estimation in a unified frame-
work and interacts two tasks in a mutually boosted way.

We also design a simple stereo cross-attention module to
extend single image restoration networks for stereo image
SR. In contrast to SAM [38], which uses single image SR
models pretrained on extra datasets and only fine-tunes on
stereo datasets with multiple losses, our NAFSSR is trained
directly on stereo images from scratch with only L1 loss.

2.3. Training and Testing Strategies

Regularizations (e.g., weight decay [35], dropout and
stochastic depth [13]) are widely used to improve model
performance in high-level computer vision tasks [35]. How-
ever, there is still no consensus on whether regularization
techniques should be used in image super-resolution (SR)
tasks. For example, Lin et al. [21] discover that underfit-
ting is still the main issue limiting the model capability of
RCAN [39]. On the contrary, Kong et al. [16] demonstrate
that proper use of dropout [10] benefits SR networks by pre-
venting overfitting to a specific degradation. In this paper,
we find that the proposed networks (except the smallest one)
are overfitting to the stereo training data, so we use stochas-
tic depth to improve their generality.

1240



SC
A

M

SC
A

M

SC
A

M

C
on

v 
3x

3
C

on
v 

3x
3

N
A

FB
lo

ck

+

N
A

FB
lo

ck

N
A

FB
lo

ck
N

A
FB

lo
ck

…

…

…

N
A

FB
lo

ck
N

A
FB

lo
ck

N
A

FB
lo

ck
N

A
FB

lo
ck

N
A

FB
lo

ck
N

A
FB

lo
ck

N
A

FB
lo

ck
N

A
FB

lo
ck

C
on

v 
3x

3
C

on
v 

3x
3

Pi
xe

l
Sh

uf
fle

Pi
xe

l
Sh

uf
fle

Sharing
Weights

+

…

…

…

SC
A

M

𝐈𝑳𝐋𝐑

𝐈𝐑𝐋𝐑

𝐈𝐋𝐒𝐑

𝐈𝐑𝐒𝐑

Figure 2. The overall architecture of NAFSSR. SCAM represents Stereo Cross Attention Module (shown in Figure 4).

La
ye

r N
or

m

C
on

v 
1x

1

D
ep

th
w

is
e

C
on

v 
3x

3

Si
m

pl
e 

G
at

e

C
ha

nn
el

A
tte

nt
io

n

C
on

v 
1x

1

La
ye

r N
or

m

C
on

v 
1x

1

Si
m

pl
e 

G
at

e

C
on

v 
1x

1

+ +

 MBConv FeedForward Network

Figure 3. NAFBlock. Simple Gate and Channel Attention Module
are shown in Equation 2 and Equation 7, respectively.

3. Method
In this section, we introduce our method in details. We

first describe the architecture of our network in Section 3.1,
then discuss the training and testing strategies throughout
the paper in Section 3.2 and 3.3, respectively.

3.1. Network Architecture

3.1.1 Overall Framework

An overview of our proposed NAFNet-based [2] Stereo
Super-Resolution network (NAFSSR) is illustrated in Fig-
ure 2. NAFSSR takes the low-resolution stereo image pair
as input and super-resolves both left and right view images.
Two weight-sharing networks (stacked by NAFBlock) ex-
tract the intra-view features of the left and the right images
separately. And Stereo Cross-Attention Modules (SCAMs)
are provided to fuse features extracted from the left and the
right images. In detail, NAFSSR can be divided into three
parts: intra-view feature extraction, cross-view feature fu-
sion, and reconstruction.

Intra-view feature extraction and reconstruction. In
the beginning, a 3× 3 convolution layer is used to map the
input image space to a higher dimensional feature space.
Then, N NAFBlocks are used for deep intra-view feature
extraction. The details of NAFBlock are described in Sec-
tion 3.1.2. After feature extraction, a 3×3 convolution layer
followed by a pixel shuffle layer [28] is used to upsample
the feature by a scale factor of s. Furthermore, to allevi-
ate the burden of feature learning, we use global residual
learning and predict only the residual between the bilinearly

upsampled low-resolution image and the ground-truth high-
resolution image [18].

Cross-view feature fusion. To interact with cross-view
information, we insert SCAM after each NAFBlock. It uses
stereo features generated by previous NAFBlocks as inputs
to perform bidirectional cross-view interactions, and out-
puts interacted features fused with input intra-view features.
The details of SCAM are described in Section 3.1.3.

3.1.2 NAFBlock

The NAFBlock is introduced by NAFNet [2], and its de-
tails are shown in Figure 3. It should be noticed that there
are no nonlinear activation functions in it. NAFBlock con-
sists of two parts: (1) Mobile convolution module (MB-
Conv) based on point-wise and depth-wise convolution with
channel attention (simplified SE [12]); (2) a feed-forward
network (FFN) module that has two fully-connected layers
(implemented by point-wise convolution). The LayerNorm
(LN [1]) layer is added before both MBConv and FFN, and
the residual connection is employed for both modules. The
whole process is formulated as:

X = MBConv(LN(X)) +X

X = FFN(LN(X)) +X
(1)

The main differences between NAFBlock and original
blocks (e.g., MBConv in MobileNetV3 [11] and FFN in
Transformer [30]) lie in the simple gate mechanism, which
makes block nonlinear activation free. Specifically, NAF-
Block uses SimpleGate unit to replace nonlinear activation
(e.g., ReLU, GELU). Given an input X ∈ RH×W×C , Sim-
pleGate first split the input into two features X1,X2 ∈
RH×W×C/2 along channel dimension. Then, it computes
the output with linear gate as:

SimpleGate(X) = X1 ⊙X2, (2)

where ⊙ represents element-wise multiplication. The Sim-
pleGate unit is added after depth-wise convolution and be-
tween two fully-connected layers.
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Figure 4. Stereo Cross Attention Module (SCAM). It fuses the
features of the left and right views.

3.1.3 Stereo Cross Attention Module

The details of the proposed Stereo Cross Attention Module
(SCAM) are shown in Figure 4. It is based on Scaled Dot-
Product Attention [30], which computes the dot products of
the query with all keys and applies a softmax function to
obtain the weights on the values:

Attention(Q,K,V) = softmax
(
QKT /

√
C
)
V (3)

where Q ∈ RH×W×C is query matrix projected by source
intra-view feature (e.g., left-view), and K,V ∈ RH×W×C

are key, value matrices projected by target intra-view feature
(e.g., right-view). Here, H,W,C represent height, width
and number of channels of feature map. Since stereo images
are highly symmetric under epipolar constraint [34], we use
the same Q and K to represent each intra-view features, and
calculates the correlation of cross-view features on a hori-
zontal line (i.e., along W dimension). In detail, given the
input stereo intra-view features XL,XR ∈ RH×W×C , we
can get layer normalized stereo features X̄L = LN(XL)
and X̄R = LN(XR). Then, we calculate bidirectional
cross-attention between left-right views by:

FR→L = Attention(WL
1 X̄L,W

R
1 X̄R,WR

2 XR),

FL→R = Attention(WR
1 X̄R,WL

1 X̄L,W
L
2XL),

(4)

where WL
1 ,W

R
1 ,WL

2 and WR
2 are projection matrices.

Note that we can calculate the left-right attention matrix
only once to generate both FR→L and FL→R (as shown
in Figure 4). Finally, the interacted cross-view informa-
tion FR→L,FL→R and intra-view information XL,XR are

fused by element-wise addition:

FL = γLFR→L +XL,

FR = γRFL→R +XR,
(5)

where γL and γR are trainable channel-wise scale and ini-
tialized with zeros for stabilizing training.

3.2. Training Strategies

Combat overfitting. In stereo image SR tasks, it is com-
mon practice to train models with small patches cropped
from full-resolution images [4, 32, 34]. These patches are
randomly flipped horizontally and vertically for data aug-
mentation. To further utilize the training data, we introduce
Channel Shuffle: which randomly shuffles the RGB chan-
nels of input images for color augmentation. In addition,
we adopt stochastic depth [13] as regularization.

Loss. For simplicity, we only use the pixel-wise L1 dis-
tance between the super-resolution and ground-truth stereo
images:

L =
∥∥ISR

L − IHR
L

∥∥
1
+

∥∥ISR
R − IHR

R

∥∥
1

(6)

where ISR
L and ISR

R represent the super-resolution left and
right images generated by model respectively, and IHR

L and
IHR

R represent their ground-truth high-resolution images.

3.3. Train-test Inconsistency

Chu et al. [3] discover that the distribution of image-
based features during inference differs from that of patch-
based features during training, and show that this train-
test inconsistency harms model performance on debluring,
denosising, deraining, and dehazing tasks. For stereo im-
age super-resolution task, the regional range of the inputs
for training and inference also varies greatly, e.g., the range
of region for each patch is only 4.5% of low-resolution im-
ages (30 × 90 vs. 300 × 200) in Flickr1024 dataset. This
prompts us to check the potential train-test inconsistency is-
sue of channel attention used in our network.

In detail, given input features X , the channel atten-
tion (CA) first aggregates global spatial information using
global average pooling (pool), and then redistributes the
pooled information to input features as follows:

CA(X) = X ∗W pool(X), (7)

where W represents learnable matrix and ∗ is a channel-
wise product operation. We apply TLSC [3] to CA in Equa-
tion 7, which converts pool operation from global average
pooling to local average pooling during inference, allowing
it to extract representations based on local spatial region of
features as in training phase. According to [3], the local
size for pooling is simply set to 1.5× the size of the training
patch.
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Table 1. Architecture Variants of NAFSSR.

Models #Channels #Blocks #Params

NAFSSR-T C = 48 N = 16 0.46M
NAFSSR-S C = 64 N = 32 1.56M
NAFSSR-B C = 96 N = 64 6.80M

Table 2. 4× SR results (PSNR) achieved on the Flickr1024 [33]
dataset by NAFSSR-S with different number of SCAMs.

#SCAM 0 1 4 8 16 32

PSNR 23.56 23.74 23.76 23.79 23.82 23.85
∆PSNR - +0.18 +0.20 +0.23 +0.26 +0.29

4. Experiments
4.1. Implementation Details

Evaluation Metrics. Peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) were used as quantitative
metrics. These metrics are calculated on RGB color space
with a pair of stereo images (i.e., (Left + Right) /2).

Architecture. As shown in Table 1, we construct 3 dif-
ferent size of NAFSSR networks by adjusting the number of
channels and blocks, which are named NAFSSR-T (Tiny),
NAFSSR-S (Small) and NAFSSR-B (Base). Besides, we
use TLSC [3] during inference as described in Section 3.3.

Training. All models are optimized by the AdamW with
β1 = 0.9 and β2 = 0.9 with weight decay 0 by default. The
learning rate is set to 3× 10−3, and decreased to 1× 10−7

with cosine annealing strategy [22]. If not specified, mod-
els are trained on 40 × 100 patches with a batch size of 32
for 1 × 105 iterations. We apply skip-init [7] in our net-
work, which may facilitate the training process. Data aug-
mentation is implemented as described in Section 3.2. To
overcome the overfitting issue, we use stochastic depth [13]
with 0.1 and 0.2 probability for NAFSSR-S and NAFSSR-
B, respectively. In particular, since our lightweight model
NAFSSR-T encounters underfitting rather than overfitting,
it uses 4× training iterations without stochastic depth.

Datasets. We use the training dataset and validation
dataset provided by NTIRE Stereo Image Super-Resolution
Challenge [31]. In detail, we use 800 stereo images from
the training set of Flickr1024 [33] dataset as the training
data and 112 stereo images in the validation set of the
Flickr1024 [33] dataset as the validation set. The low-
resolution images are generated by bicubic downsampling.

4.2. Ablation Study

Stereo Cross-Attention Module. Here, we take
NAFSSR-S without Stereo Cross-Attention Module
(SCAM) as a naive baseline to investigate the impact of
the proposed SCAM on the model performance. In this

Table 3. 4× SR results (PSNR) achieved on Flickr1024 [33] by
NAFSSR-S trained with different data augmentations. hflip and
vflip represent horizontal flip and vertical flip, respectively.

hflip vflip channel shuffle PSNR ∆PSNR

✗ ✗ ✗ 23.43 -

✓ ✗ ✗ 23.64 +0.21
✗ ✓ ✗ 23.63 +0.20
✗ ✗ ✓ 23.62 +0.19

✓ ✓ ✗ 23.73 +0.30
✓ ✓ ✓ 23.82 +0.39

experiment, we apply different number of SCAM to the
naive baseline, ranging from 0 to 32. In detail, we use
SCAM after a specific number of NAFBlocks in the middle
of the naive baseline. Note that our naive baseline (with 0
SCAM) only uses single-view information. In contrast, our
NAFSSR-S (with 32 SCAMs) interacts with cross-view
information after every NAFBlocks.

As demonstrated by the results in Table 2, our SCAM
offers significant performance improvements compared to
the baseline. The more number of SCAMs, the better per-
formance. Compared to the naive baseline that uses only
intra-view information, the PSNR on the Flickr1024 dataset
can be improved by 0.18 dB with only one SCAM and by
0.29 dB with 32 SCAMs. These results indicate the impor-
tance of incorporating both cross-view information (intro-
duced by our SCAM) and intra-view information (extracted
by the NAFBlock).

Data augmentations. We trained our NAFSSR-S using
different data augmentations to validate their effective-
ness. Since we focus on data augmentation, we do not use
Stochastic-Depth in this experiment. As shown in Table 3,
the performance of NAFSSR-S is improved by introducing
the data augmentation: random flip horizontally, random
flip vertically, and channel shuffle mentioned in Section 3.2.

When applying each data augmentation individually, the
PSNR value of NAFSSR-S is improved by 0.19 dB with
channel shuffle augmentation, which is compatible with
random horizontal flip (+0.21 dB) and random vertical flip
(+0.20 dB). This shows the effectiveness of channel shuf-
fle augmentation. Moreover, channel shuffle is complemen-
tary to other augmentations. Using all three data augmenta-
tions boosts the PSNR value of NAFSSR-S from 23.43 dB
to 23.82 dB, which is 0.09 dB better than random flip only.

Stochastic-Depth and TLSC. We use NAFSSR-S and
NAFSSR-B to investigate the impact of stochastic
depth [13] during training and TLSC [3] during infer-
ence. In Table 4, we report results on one in-distribution
dataset (i.e., Flickr1024 [32] validation set) and three out-
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Table 4. Effect of stochastic depth [13] and TLSC [3] to PSNR values of different models for 4× SR on different datasets.

Training Test In-distribution Out-distribution

Model Stoch. Depth TLSC Flickr1024 [32] KITTI 2012 [9] KITTI 2015 [25] Middlebury [27] Average

NAFSSR-S
✓ ✓ 23.85 26.91 26.74 29.63 27.76
✗ ✓ 23.82 (−0.03) 26.88 (−0.03) 26.71 (−0.03) 29.61 (−0.02) 27.73 (−0.03)
✓ ✗ 23.78 (−0.07) 26.86 (−0.05) 26.67 (−0.07) 29.54 (−0.09) 27.69 (−0.07)

NAFSSR-B
✓ ✓ 24.10 27.05 26.89 29.93 27.96
✗ ✓ 23.98 (−0.11) 26.92 (−0.13) 26.70 (−0.19) 29.78 (−0.15) 27.80 (−0.16)
✓ ✗ 24.01 (−0.09) 27.00 (−0.05) 26.80 (−0.09) 29.81 (−0.12) 27.87 (−0.09)

distribution datasets (i.e., KITTI 2012 [9], KITTI 2015 [25],
Middlebury [27]).

During training, stochastic depth [13] slightly improves
the performance on all datasets (+0.03 dB) for NAFSSR-
S, while it improves more for larger model NAFSSR-B
on both model performance (+0.11 dB on in-distribution
data) and generality (+0.16 dB on out-distribution test data).
When training without stochastic depth, NAFSSR-B per-
forms 0.16 dB better than NAFSSR-T on Flickr1024 but
only 0.07 dB better on out-distribution data. However, when
using stochastic depth, NAFSSR-B outperforms NAFSSR-
T on Flickr1024 and out-of-distribution data by 0.25 dB and
0.2 dB, respectively. This shows that large models suffer
from overfitting on Flickr1024 training data, while stochas-
tic depth benefits networks and improves generality.

During inference, TLSC [3] achieves similar improve-
ments to both NAFSSR-T and NAFSSR-B on all datasets.
This indicates that NAFSSR without TLSC provides sub-
optimal performance at test time due to the train-test incon-
sistency in stereo image SR tasks.

4.3. Comparison to state-of-the-arts methods

4.3.1 Settings

Training data. We use training data that are identical
to iPASSR [34] to provide a fair comparison with previ-
ous work. In detail, the 800 images from training set of
Flickr1024 [33] and 60 Middlebury [27] images are used
for training. Following [34], we perform bicubic down-
sampling by a factor of 2 on images from the Middle-
bury dataset to generate high-resolution (HR) ground truth
images so that they match the spatial resolution of the
Flickr1024 dataset. To produce low-resolution images, we
apply bicubic downsampling to HR images on specific scal-
ing factors (i.e., 2× and 4×) and then crop 30× 90 patches
with a stride of 20 as inputs. Limited by the size of the of-
fline cropped patches, we do not use additional random crop
in this section.

Evaluation details. To evaluate SR results, 20 images
from KITTI 2012 [9] and 20 images from KITTI 2015 [25],
5 images from Middlebury [27], and 112 images from the
test set of Flickr1024 [32] are utilized for testing. Note that

different from Section 4.1, the test images used in this sec-
tion are from the test set instead of the validation set of
Flickr1024 dataset. Following [34], we report PSNR/SSIM
scores on the left images with their left boundaries (64 pix-
els) cropped, and average scores on stereo image pairs (i.e.,
(Left + Right) /2) without any boundary cropping.

4.3.2 Results

We compare our NAFSSR (with 3 different variants) with
existing super-resolution (SR) methods, including single
image SR methods (i.e., VDSR [15], EDSR [20], RDN [40],
and RCAN [39]) and stereo image SR methods (i.e., Stere-
oSR [14], PASSRnet [32], SRRes+SAM [38], IMSSR-
net [17], iPASSR [34] and SSRDE-FNet [4]). This methods
are trained on the same training datasets as ours and their
PSNR and SSIM scores are reported by [4].

Quantitative Evaluations. The quantitative compar-
isons with existing SR methods are shown in Table 5. Our
smallest NAFSSR-T achieves competitive results as previ-
ous state-of-the-art (SSRDE-FNet [4]), and our NAFSSR-S
outperforms the state-of-the-art results on all datasets and
upsampling factors (×2, ×4). Furthermore, our NAFSSR-B
improves state-of-the-art results of all datasets by a signifi-
cant margin. For example, for 4× stereo SR, our NAFSSR-
B surpass previous state-of-the-art model SSRDE-FNet [4]
by 0.38 dB, 0.48 dB, 0.66 dB, 0.48 dB on KITTI 2012 [9],
KITTI 2015 [25], Middlebury [27] and Flickr1024 [32], re-
spectively. This clearly shows the effectiveness of the pro-
posed NAFSSR.

Parameter Efficiency and Scaling Ability. We also vi-
sualize the trade-off results between total numbers of pa-
rameters and PSNR on Flickr1024 dataset for 4× stereo SR.
As shown in Figure 1, compared with SSRDE-FNet [4], our
NAFSSR-T achieves state-of-the-art result with 79% pa-
rameter reduction. This shows that our NAFSSR has high
parameter efficiency. Furthermore, by scaling up the model
size, our NAFSSR-S clearly surpasses competitive methods
with similar total numbers of parameters, and NAFSSR-B
further pushes the state-of-the-art stereo SR performance.
This shows the scaling ability of our NAFSSR.
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Table 5. Quantitative results achieved by different methods on the KITTI 2012 [9], KITTI 2015 [25], Middlebury [27], and Flickr1024 [32]
datasets. #P represents the number of parameters of the networks. Here, PSNR/SSIM values achieved on both the left images (i.e., Left)
and a pair of stereo images (i.e., (Left + Right) /2) are reported. The best results are in bold faces.

Method Scale #P
Left (Left + Right) /2

KITTI 2012 KITTI 2015 Middlebury KITTI 2012 KITTI 2015 Middlebury Flickr1024

VDSR [15] ×2 0.66M 30.17/0.9062 28.99/0.9038 32.66/0.9101 30.30/0.9089 29.78/0.9150 32.77/0.9102 25.60/0.8534
EDSR [20] ×2 38.6M 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087
RDN [40] ×2 22.0M 30.81/0.9197 29.91/0.9224 34.85/0.9488 30.94/0.9227 30.70/0.9330 34.94/0.9491 28.64/0.9084
RCAN [39] ×2 15.3M 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082
StereoSR [14] ×2 1.08M 29.42/0.9040 28.53/0.9038 33.15/0.9343 29.51/0.9073 29.33/0.9168 33.23/0.9348 25.96/0.8599
PASSRnet [32] ×2 1.37M 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.9190 30.60/0.9300 34.23/0.9422 28.38/0.9038
IMSSRnet [17] ×2 6.84M 30.90/- 29.97/- 34.66/- 30.92/- 30.66/- 34.67/- -/-
iPASSR [34] ×2 1.37M 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.9240 30.81/0.9340 34.51/0.9454 28.60/0.9097
SSRDE-FNet [4] ×2 2.10M 31.08/0.9224 30.10/0.9245 35.02/0.9508 31.23/0.9254 30.90/0.9352 35.09/0.9511 28.85/0.9132

NAFSSR-T (Ours) ×2 0.45M 31.12/0.9224 30.19/0.9253 34.93/0.9495 31.26/0.9254 30.99/0.9355 35.01/0.9495 28.94/0.9128
NAFSSR-S (Ours) ×2 1.54M 31.23/0.9236 30.28/0.9266 35.23/0.9515 31.38/0.9266 31.08/0.9367 35.30/0.9514 29.19/0.9160
NAFSSR-B (Ours) ×2 6.77M 31.40/0.9254 30.42/0.9282 35.62/0.9545 31.55/0.9283 31.22/0.9380 35.68/0.9544 29.54/0.9204

VDSR [15] ×4 0.66M 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR [20] ×4 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN [40] ×4 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295
RCAN [39] ×4 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
StereoSR [14] ×4 1.42M 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460
PASSRnet [32] ×4 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
SRRes+SAM [38] ×4 1.73M 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
IMSSRnet [17] ×4 6.89M 26.44/- 25.59/- 29.02/- 26.43/- 26.20/- 29.02/- -/-
iPASSR [34] ×4 1.42M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287
SSRDE-FNet [4] ×4 2.24M 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352

NAFSSR-T (Ours) ×4 0.46M 26.69/0.8045 25.90/0.7930 29.22/0.8403 26.79/0.8105 26.62/0.8159 29.32/0.8409 23.69/0.7384
NAFSSR-S (Ours) ×4 1.56M 26.84/0.8086 26.03/0.7978 29.62/0.8482 26.93/0.8145 26.76/0.8203 29.72/0.8490 23.88/0.7468
NAFSSR-B (Ours) ×4 6.80M 26.99/0.8121 26.17/0.8020 29.94/0.8561 27.08/0.8181 26.91/0.8245 30.04/0.8568 24.07/0.7551

img 0035 (Left)

Bicubic StereoSR [14] EDSR [20] RDN [40] RCAN [39]

SRRes+SAM [38] iPASSR [34] SSRDE-FNet [4] NAFSSR-B (ours) Reference

img 0035 (Right)

Bicubic StereoSR [14] EDSR [20] RDN [40] RCAN [39]

SRRes+SAM [38] iPASSR [34] SSRDE-FNet [4] NAFSSR-B (ours) Reference

Figure 5. Visual results (×4) achieved by different methods on the Flickr1024 [32] dataset.

Runtime Efficiency. We also report the runtimes (eval-
uated with 128 × 128 input on RTX 2080Ti GPU) to com-
pare the computational complexity between existing best
model SSRDE-FNet [4] and our NAFSSR. As shown in

Table 6, all variants of NAFSSR outperform SSRDE-FNet
by a PSNR margin of 0.05 ∼ 0.48 dB on Flickr1024 [32]
dataset, with up to 5.11× speedup. This indicates that the
NAFSSR architecture is fast and efficient.
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Bicubic RCAN [39] SRRes+SAM [38] iPASSR [34] SSRDE-FNet [4] NAFSSR-B (ours) Reference

Bicubic RCAN [39] SRRes+SAM [38] iPASSR [34] SSRDE-FNet [4] NAFSSR-B (ours) Reference

Figure 6. Visual results (×4) achieved by different methods on the KITTI 2012 [9] (top) and KITTI 2015 [25] (bottom) dataset. The
images with red and green borders represent the left and right views respectively.

img sword2 (Left)

Bicubic StereoSR [14] EDSR [20] RDN [40] RCAN [39]

SRRes+SAM [38] iPASSR [34] SSRDE-FNet [4] NAFSSR-B (ours) Reference

img sword2 (Right)

Bicubic StereoSR [14] EDSR [20] RDN [40] RCAN [39]

SRRes+SAM [38] iPASSR [34] SSRDE-FNet [4] NAFSSR-B (ours) Reference

Figure 7. Visual results (×4) achieved by different methods on the Middlebury [27] dataset.

Table 6. PSNR vs. runtimes on Flickr1024 dataset for 4× SR.

Models PSNR Time(ms) Speedup

SSRDEFNet [4] 23.59 238.5 1.00×

NAFSSR-T (Ours) 23.64 (+0.05) 46.7 5.11×
NAFSSR-S (Ours) 23.88 (+0.29) 91.8 2.60×
NAFSSR-B (Ours) 24.07 (+0.48) 224.9 1.06×

Visual Comparison. In Figures 5, 6 and 7, we show the
visual comparisons for ×4 stereo SR on Flickr1024 [32],
KITTI 2012 [9], KITTI 2015 [25] and Middlebury [27].
These figures show that our NAFSSR-B reconstructs pleas-
ing SR images with rich details and clear edges. In contrast,
other compared methods may suffer from unsatisfactory ar-
tifacts. This confirms the effectiveness of our NAFSSR.

4.4. NTIRE Stereo Image SR Challenge

We submitted a result obtained by the presented ap-
proach to the NTIRE 2022 Stereo Image Super-Resolution
Challenge [31]. In order to maximize the potential per-
formance of our method, we further enlarge the NAFSSR-
Base by increasing its depth and width. We adopt stronger

stochastic depth [13] with 0.3 or 0.4 probability to over-
come the overfitting issue. During test-time, we adopt both
self-ensemble [20] and model ensemble strategy. Specifi-
cally, the data augmentations mentioned in Section 3.2 are
used as test-time data augmentations for self-ensemble. In-
spired by [36], we further ensemble multiple models trained
with various hyper-parameters. As a result, our final sub-
mission achieves 24.239 dB PSNR on the validation set and
won the first place with 23.787 dB PSNR on the test set.

5. Conclusion

This paper proposes a simple baseline named NAFSSR
for stereo image super-resolution (SR). We use a stack of
NAFBlock for intra-view feature extraction and combine it
with stereo cross attention modules for cross-view feature
interaction. Furthermore, we adopt stronger data augmen-
tations for training and solve the train-test inconsistency in
stereo image SR tasks by the test-time local converter. We
also employ stochastic depth technique to improve the gen-
erality of large models. Extensive experiments show that
NAFSSR surpasses current models and achieves state-of-
the-art performance.
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strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 2

[36] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Ko-
rnblith, et al. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increasing in-
ference time. arXiv preprint arXiv:2203.05482, 2022. 8

[37] Bo Yan, Chenxi Ma, Bahetiyaer Bare, Weimin Tan, and
Steven CH Hoi. Disparity-aware domain adaptation in stereo
image restoration. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13179–13187, 2020. 2

[38] Xinyi Ying, Yingqian Wang, Longguang Wang, Weidong
Sheng, Wei An, and Yulan Guo. A stereo attention module
for stereo image super-resolution. IEEE Signal Processing
Letters, 27:496–500, 2020. 1, 2, 6, 7, 8

[39] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 2, 6, 7, 8

[40] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472–2481, 2018. 2, 6, 7, 8

[41] Xiangyuan Zhu, Kehua Guo, Hui Fang, Liang Chen, Sheng
Ren, and Bin Hu. Cross view capture for stereo image super-
resolution. IEEE Transactions on Multimedia, 2021. 1, 2

1248


	. Introduction
	. Related Works
	. Single Image Super-resolution
	. Stereo Super-Resolution
	. Training and Testing Strategies

	. Method
	. Network Architecture
	Overall Framework
	NAFBlock
	Stereo Cross Attention Module

	. Training Strategies
	. Train-test Inconsistency

	. Experiments
	. Implementation Details
	. Ablation Study
	. Comparison to state-of-the-arts methods
	Settings
	Results

	. NTIRE Stereo Image SR Challenge

	. Conclusion

