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Abstract

Digital art restoration has benefited from inpainting
models to correct the degradation or missing sections of
a painting. This work compares three current state-of-
the art models for inpainting of large missing regions.
We provide qualitative and quantitative comparison of
the performance by CoModGANs, LaMa and GLIDE
in inpainting of blurry and missing sections of images.
We use Escher’s incomplete painting Print Gallery as
our test study since it presents several of the challenges
commonly present in restorative inpainting.

1. Introduction
Artworks and images are part of our cultural her-

itage, but have a tendency to deteriorate over time.
Inpainting is a restoration technique that has been ap-
plied traditionally to restore or complete the missing
or damaged sections in a way that the restorative work
passes unnoticed. In cases where the missing region is
of considerable size, this task becomes delicate as the
aim is to fill-in the area with content that ensembles
well with the painting, whilst also fitting the painter’s
style and historical period.

With the recent development of Machine Learning
techniques, new inpainting models are available to the
Cultural Heritage restorers. However, at present only
few models are developed specifically with artwork
restoration in mind. The training of these models re-
quires dataset of images in the counts of thousands, a
laborious and resource-intensive task per-se. The tra-
ditional solution is to fine-tune these models and re-
train them with images similar to the restored piece;
this is typically also a challenge, as it can be difficult
to provide large sets of examples of relevant artwork.

Some examples of inpainting models specifically de-
veloped for art reconstruction include the works of
Guptal et al. [10] and Amiri and Messinger [3], which

both propose models derived from computer vision in-
painting and extended to the art domain. Note that
in both works domain experts were used to evaluate
model performance, as an acknowledgment of the spe-
cific difficulty of evaluating inpainting in the specific
context of art.

Our work aims to extend the current literature and
provide an evaluation on how current state-of-the-art
inpainting models can be used in an art restoration
context. We offer a qualitative and quantitative com-
parison of three models developed for the inpainting
of large missing sections, namely CoModGANs [20],
LaMa [19] and GLIDE [2]. It is worth noting how none
of these models was developed specifically for art recon-
struction; however, given their versatility and simplic-
ity, our aim is to show the context on which each of
them can be successfully used as a restorative tool.

In order to stress-test the models in a challenging
territory, we selected M.C Escher’s lithography, Print
Gallery, as a test case. This work contains an entire
missing region at the center where different semantic
contents blend, thus being an excellent test case for in-
painting models. Additionally, we compare the perfor-
mance of each model in other well-known artworks, like
the Ecce Homo by Elias Garcia Martinez and Escher’s
”Bird-Fish” used to highlight the weak and strengths
of each model under different settings.

2. Inpainting Methods for Large Regions
The focus of our comparison is Computer Vision

models developed specifically for the inpainting of large
missing regions. In such contexts, the unmasked re-
gions typically provide little information to guide the
model towards the right choice of content, thus pre-
senting additional challenges. Additionally, the larger
the output required from the model, the more evident
effects like pixelation and content mismatches can be.
The three models selected are currently the state-of-
the-art models for large-mask inpainting tasks.
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CoModGAN. The model Large Scale Image Com-
pletion via Co-Modulated Generative Adversarial Net-
works (CoModGANs), implements a modulation of the
unconditional image vectors into the traditional Gen-
erative Adversarial Networks to generate content con-
sistent with the image’s semantics. It is based on the
StyleGAN family of models [14], which allows to con-
trol salient features or styles of an image. To enhance
performance on large-mask inpainting tasks, the model
was trained using randomized large masks over the
training datasets. A limitation of the current model
distribution is the relatively low resolution required
for input images: the model was trained on images
of 512x512 size, requiring any other input image to
match such size (thus potentially lowering the resolu-
tion of the overall output) when using the model. The
model was trained on Places2 [21], CelebA-HQ [17] and
COCO-Stuff [4] datasets, making it versatile for a wide
type of objects.

LaMa. The model Resolution-robust Large Mask In-
painting with Fourier Convolutions was designed with
large regions in mind as well. It is a simple determin-
istic Pix2Pix-like model [13] with segmentation-based
perceptual loss and a ResNet-like architecture with fast
Fourier convolutions instead of the StyleGan logic. The
strength of the model is to target regular patterns in an
image to repeat them across the masked region. The
results of the model largely depend on the presence
of regularities on the area surrounding the masked re-
gion. For example, in images with tiles, bricks and
windows surrounding the mask. As an advantage over
the others, this model is able to work with a higher
resolution of 2048x2048. The model was trained only
on two datasets, Places2 and CelebA-HQ.

GLIDE. The model Guided Language-to-Image Dif-
fusion for Generation and Editing is a multimodal dif-
fusion model with text guidance. Diffusion models
work similarly to upsampling models: the generator
net is trained by progressively adding noise to an im-
age and the learning objective is to revert the noise
process, generating a de-noised image back. An ad-
ditional component is the text-guided module, which
allows the user to guide the image generation process
by inserting a text prompt that acts like an additional
constraint to the model. This prompt allows for virtu-
ally infinite possibilities in the number of outputs gen-
erated, while also avoiding the inconvenience of fine-
tuning large models, as is the case of CoModGAN and
LaMa. Additional model parameters such as the guid-
ance scale and temperature allow the user to control
the mix of conditional and unconditional outputs. An
ablation study of GLIDE’s parameters is presented on
the supplemental material. Resolution-wise, the re-

leased version of GLIDE accepts image inputs as large
as 6Kx6K pixels; however, it then down-samples inputs
to 64x64 for memory optimization and on the last stage
it up-samples them back to 256x256, which is its final
output resolution. The upsampling process, together
with its training are the key to producing its claimed
photorealistic quality. The model version released by
OpenAI was trained on a fil- tered dataset excluding
human figures from the MS-COCO [16] dataset for im-
ages the and CLIP’s dataset for text [18].

Model Type Input size Output Size

CoModGANs StyleGan 512x512 512x512
LaMa Fourier Conv 2048x2048 2048x2048
GLIDE Text guided diff 6000x6000 256x256

Table 1. Comparison of model type, input and output sizes
across models.

3. M.C. Escher’s Print Gallery
The artwork chosen for the present model testing

exercise is Print Gallery (original title: Prententen-
toonstelling), made in 1956 by the Dutch artist M. C.
Escher. Figure 1 presents the original lithography, por-
traying a man that observes a painting in a gallery; the
painting, in turn, portrays a gallery in the waterfront
of the Grand Harbour of Valletta in Malta.

Figure 1. M.C. Escher’s lithography Print Gallery
(Prentententoonstelling), 1956. Image reproduced under
WikiMedia Commons.

Print Gallery is a peculiar work for several reasons:

• It features a so-called Droste effect (i.e. a roto-
homothecy): the man stands in a gallery which
is eventually portrayed again in the painting he is
observing, creating a theoretical infinite loop;
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• The painting is embedded in a spiral-like struc-
ture, clearly evident in the twisting of buildings,
columns and other elements;

• Lastly, Escher did not complete the center of the
painting, instead only adding his signature in the
resulting blank - to this day, there is no definitive
explanation for his choice.

The seemingly incomplete nature of the painting is
arguably the main reason for the notoriety of Print
Gallery among the artistic and mathematical commu-
nity. Due to its challenging nature, several mathemati-
cians and artist have attempted to complete it [6, 11].
In [6], Lenstra and de Smit present a class of exponen-
tial (conformal) complex maps [5] that share a simi-
lar shape with the spiral-like structure in the original
painting. Such maps provide a bridge between a nor-
mal, undistorted space and the twisted space of the
painting. Their work provides the mathematical foun-
dation that we leverage upon in this present paper, to-
gether with Machine Learning techniques, to complete
the center of the original Print Gallery. In particular,
we show how the conformal map formulation can be
used to pave the way for Computer Vision techniques
- the performance of which we aim to compare as the
main objective of our work.

3.1. Unrolling From Warped to Straight

It is worth noting that any attempt to apply Com-
puter Vision/inpainting techniques directly on the
blank of Print Gallery is faced with two main com-
plications:

1. The painting, as described in the previous section,
features a significant amount of twisting and ro-
tation - Machine Learning models are, in general,
not equipped to deal with extreme transformations
in the sample image, since they are not equivari-
ant to rotations, scaling and generally warping of
images [9];

2. The size of objects to be completed in the center
is very small in relation to the rest of the paint-
ing, once again creating challenges for any model
trying to understand the sample image context.

The exponential maps described in [6] provides a
solution, in that the twisted space in Print Gallery can
be deconstructed into eight straightened pictures in the
Euclidean space - each of which features an incomplete
area in the shape of a spiral. This set of eight pictures
are individually inpainted to complete the center.

The two equations below provide the mappings to
first translate Pirnt Gallery’s warped space into the Eu-
clidean space (obtaining the eight straight images) and

then back from Euclidean to warped. Let z = (x, y) be
the coordinates of RGB pixels in the complex plane,
with (x, y) being standard Cartesian coordinates, and
T (z) : C → C be the following complex exponential
map:

T (z) = expαLn(z) (1)
In the specific case of Print Gallery, a suitable value

of the constant is: α = 2Πi+Ln(256)
2Πi [6]. Note that

Equation 1 maps the straight Euclidean space into an
approximation for the twisted space featured in the
original Print Gallery. In order to map the twisted
space into the straight one, we define the inverse map
T−1 as below:

T−1(z) = exp
1
αLn(z) (2)

Note that Equation 2 describes a one-to-many map-
ping, as it is in fact periodic, with period 44 = 256. As
a result of the periodicity of the map, we obtain a set
of eight straight images from Print Gallery, (which are
shown in Figure 2), each of which is in relation to the
next one via a zoom factor of 4.

The eight straight images obtained are used in the
model comparison exercise as follows. First apply
Equation 2 to Print Gallery, obtaining 8 straight sam-
ple images, second apply the tested models on the
straight sample images, aiming to complete the spiral-
shaped blank region, and lastly evaluate the perfor-
mance of the models on each of the eight straight im-
ages. Summary metrics of our testings together with
qualitative examples are presented in the following sec-
tions.

4. Model Comparison
Assessing the quality of an image depends very much

on its context and usage. In the case of digital art,
while the technical correctness of a restoration is im-
portant, there is an increased importance on subjec-
tive qualities of the restoration. We evaluated the
three models using a group of subjective criteria such
as: artistic consonance with the rest of the lithogra-
phy;adherence to the painter’s style and adherence of
any new content to the historical period depicted in the
artwork. Additionally, we compared model outputs us-
ing objective metrics traditionally used for no-reference
image quality assessment.

4.1. Qualitative Analysis

As mentioned in Section 3.1, we tested the three
models on the inpainting of the straight images in
Fig. 2. For CoModGAN we used the demo provided1

1https://github.com/zsyzzsoft/co-mod-gan
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Figure 2. M.C. Escher’s lithography converted into eight
straight images. The blank center appears as a white spiral
on each image.

with the Places 2 dataset. For LaMa, we used the demo
provided with the high-quality setting 2. For GLIDE
we used the Colab demo with a Guidance Scale of 4
and the text prompt ”Print Gallery” 3.

Fig. 3 shows an example output for each of the three
models. The top-left image shows the target masked
image. Note that the mask is placed in the left-most
border of the image, requiring the model to do inpaint-
ing as well as outpainting. This is an important ob-
servation, as CoModGAN and LaMa are models not
natively suited for outpainting.

We now outline findings of the qualitative analysis
2https://cleanup.pictures/
3https://github.com/openai/glide-

text2im/blob/main/notebooks/inpaint.ipynb

in the form of conclusions.
Conclusion 1. The model output is significantly de-

termined by the placement of the mask.
The three models evaluated are heavily dependant

on the pixels surrounding the masked region. GLIDE
and CoModGANs have a higher context awareness
than LaMa. Besides the context, GLIDE is highly in-
fluenced by the prompt and other tunable parameters.
An ablation study of GLIDE’s parameters is presented
on the Appendix and the supplementary material.

Conclusion 2. GLIDE’s output is determined by the
prompt, the seed and the guidance scale parameter,
which determines the degree at which the prompt af-
fects the output. For LaMa and CoModGANs, the
only way to improve the output image is by perform-
ing costly fine-tuning.

Due to its multimodality, GLIDE can produce, in
theory, an infinite number of outputs for the same
mask, solely by changing the seed and the text prompt.
This allows the user to rank the outputs or handpick
the best inpainting solution for the context. The other
models give a single output option per masked region,
and thus, are more sensitive to the mask definition.

Conclusion 3. GLIDE is superior in outpainting (ex-
trapolation) tasks when compared to LaMa and Co-
ModGANs.

LaMa and CoModGANs are models developed for
inpainting, this is, their output is primarily based on
the information content read from the surrounding pix-
els of the mask. However, in outpainting, the mask ex-
tends beyond the borders of the image which leads the
model with no surrounding information to work with.
The images on the bottom show that LaMa and Co-
ModGANs under-perform on outpainting tasks. This
is in line with expectations, since none of them were
developed specifically for outpainting.

Conclusion 4. GLIDE has a higher output variance,
often producing uncanny objects.

Different from GAN models, GLIDE was not trained
using a discriminator net, which is used to avoid the
production of unrealistic artifacts. GLIDE on the other
hand, is mostly text-guided, and as result, it produces
a wide variance of surrealistic objects. In the artis-
tic arena this diversity can be beneficial depending on
the use case. The diversity of GLIDE’s output will be
further analyzed on Sec. 4.3.

4.2. Detailed analysis of each model

This section analyses the results from each individ-
ual model in more detail. We present cases of both
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Figure 3. Example of model output for the same mask. The
white area on the upper left image is the masked region.

good performance and failures of each, with the aim of
showing the aim is to show that each of these models
specializes on different domains. To summarise, LaMa
performs exceptionally well on image colors with well-
defined patterns, CoModGANS is best suited for hu-
man faces and landscapes. As for GLIDE, while seems
to be an all-terrain model, even capable of perform-
ing outpainting, its public release was filtered to not
produce human figures. Additional comparison is pre-
sented in the supplementary material, where figures
comparing the same failure cases across models are pre-
sented.

Fig. 4 below shows two examples of CoModGANs
runs with the masked region boxed in red. The left
image shows the limitations of the model on a simple
outpainting task, where the natural expectation would
have been for it to follow the color pattern. The image
on the right shows instead a setting where the model
performs very well as the model correctly learned to re-
produce the buildings surrounding the mask. While the
content generated is correct from a visual point of view,
it is not in line with the painter’s style or the historical
period of the painting, as the CoModGANs model has
been trained on the modern (Places2) dataset. The
way to shift the generation into a more suitable con-
tent is to fine-tune the net, which requires building a
dataset of related artworks in the count of thousands,
which is usually not available.

Fig. 5 below shows two examples of LaMa runs,
again masked regions are shown boxed in red. The
image on the left shows how the model fails on out-

Figure 4. Example outputs of CoModGANs. The masked
region is boxed in red. Note the graffiti painting produced
by CoModGANs on the right image.

painting of images; in this particular case, the sample
image presents a high degree of pixelation, making the
recognition task harder. The output on the right shows
a correct output, where the model correctly identifies
and mimics the pattern present in the surroundings of
the mask. While the produced content is correct, the
output still shows a certain degree of blurriness and
pixelation.

Figure 5. Example outputs from LaMa. Masked region
boxed in red.

Fig. 6 below shows two failure cases of GLIDE. On
the left image, the model tries to mimic the human fig-
ure and fails, producing additional inconsistent details.
This is likely due to the fact that GLIDE’s training
dataset does not contain humans, as a design choice.
The image on the right shows a failure as a consequence
of the model’s output variance which is further anal-
ysed on Sec. 4.3. We can see how the model produces
unrealistic objects, which have no resemblance with a
particular object on its training set. This could be ex-
plained by the fact that the model does not contain a
discriminator network, as the output is only guided by
the cosine similarity with the text prompt.

4.3. Analysis of GLIDE’s Output Diversity

As explained before, GLIDE’s distinctive feature is
its multimodality, it takes as input a masked image
with a text prompt and produces a (theoretically) in-
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Figure 6. Example outputs from GLIDE. Masked sections
boxed in red. Guiding Scale of 5

finite supply of inpainting options. This creates the
problem of image selection; it is not clear a priory, how
many batches of images are needed to find the best in-
painting option and additionally, there is no selection
metric provided with the model.

An example of the diversity of GLIDE’s output is
shown below. We generated samples for the same
mask, prompt and seed. We can see that the output
is very dissimilar among the images selected and in
a sense uncanny with the expectations for an Escher
painting. Note that here we analyze dissimilarity over
the content created, and not on image quality.

Figure 7. Examples of inpainted images generated by
GLIDE for the caption ”a gallery with arches wooden win-
dows and arcades and floors with tiles” and a Guiding Scale
of 5. The white area in the top-left image is the masked
region.

To measure the diversity of the inpainted content
created in an objective way, we calculated the CLIP
score over 250 random samples of the top-left im-
age in 7, using the same mask and prompt 4. The
CLIP score measures the cosine similarity between the

4The prompt used is ”A man looks at a painting of Malta
behind the windows of a gallery”

text prompt and the output image [18], a higher text
prompt means the content created resembles better the
passed prompt. While the Coefficient of Variation of
the CLIP score is only 3.62%, in visual terms, this vari-
ation translates into very significantly distinctive con-
tent. Additional outputs are shown on the supplemen-
tary material.

4.4. Analysis on Different Paintings

This section shows the performance of the models
under alternative settings other than the eight straight
images obtained from Print Gallery 5. The main con-
clusion is that each of the analyzed models has been de-
veloped and trained for a specific use-case and there is
no model that outperforms the others across the board,
when it comes to qualitative assessment.

The Fig. 8 shows a painting with clear color patterns
where LaMa’s performance is the strongest as expected
for a Fourier-based model. In fact, the only difference
with the original image is the detail of the reconstruc-
tion of the eyes. GLIDE shows good results however,
LaMa’s output is at 2048x2048 while GLIDE is only
able to provide a quality of 256x256 6.

Figure 8. M.C. Escher’s Bird-Fish painting. 1938. Com-
parison of performance of the three models over a regular
painting. The masked region is the entire square area delim-
ited in red. Image reproduced under WikiMedia Commons.

The image on Fig. 9 shows the limitations of GANS-
based models on digital restoration. In particular Co-
ModGANs is trying to blend the masked region with
the neighboring colors, missing the context, as is a fea-
ture of the localized convolution of GANs. While LaMa

5Additional examples and a longer analysis is presented on
the Supplementary Material section.

6GLIDE’s prompt used is simply ”pattern” and the Guidance
scale is five. A low guidance scale helps the model to favor the
image’s semantics over the text prompt
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succeeds on the face part, it fails on the lower part
of the image. GLIDE’s outputs varies with the Guid-
ance Scale parameter, however, none of the outputs is
able to recognize the feature of a human face as its
distributed version has been restricted to not produce
humans 7.

Figure 9. Sample outputs from different models on the Ecce
Homo fresco by Elias Garcia Martinez. GLIDE’s outputs
are presented for Guidance Scales of two, three and six.
Image reproduced under WikiMedia Commons.

4.5. Quantitative Metrics

We used three different metrics to provide a quanti-
tative comparison of the models’ outputs as shown in
Tab. 2. The selected metrics are commonly used in the
field of no-reference image quality assessment, where
the quality of an image is determined without using
any target image for comparison. In our case, each im-
age was evaluated as a stand-alone output. The model
Koniq produces a score by comparing the input im-
age against the largest dataset of image quality up to
date [12]. The model BRISQUE reports a score using
a Support Vector Regression trained on an annotated
image dataset with known distortions [1]; such dataset
is, however, biased towards landscape pictures. Lastly,
we used the DOM [15] model which gives a score based
on the sharpness of gray images.

To obtain a diverse sample of images, we tested
the models across the eight straight images in Fig. 2,
which contain large regions of inpainting and outpaint-
ing challenges. We created 50 different random masks
on each model and used the same mask across models.
The use of 50 masks is justified by an ANOVA test
presented on the Appendix in Sec. 8.

7GLIDE prompt used is ”a man staring like Jesus with shirt
red and black stripes”.

From analysing table Tab. 2 we can see that in all
cases GLIDE shows a superior performance, except for
the DOM score, which shows GLIDE almost matching
with CoModGANs on sharpness 8. The good perfor-
mance of GLIDE on the Koniq and BRISQUE scores
are in line with the recent literature showing that, in
general, diffusion models beat GANs on image synthe-
sis [7]. This result can be explained by several factors.
First the upsampling module present on GLIDE’s acts
similarly to a denoising feature creating a uniform den-
sity of pixels across an image.

Conclusion 5. GLIDE presents superior perfor-
mance on blurriness and deformation while not on im-
age sharpness. However its performance is dependent
upon the parameter tuning.

Method Koniq ↑ Brisque ↓ Dom ↑
CoModGANs 36.12 43.37 1.05
LaMa 38.76 42.38 1.10
GLIDE 41.61 7.94 1.04

Table 2. Average values for each metric. A higher Koniq
score is better, a lower Brisque score is better and a higher
DOM (edge sharpness) score is better.

5. Print Gallery Inpainting Result
Below in Sec. 5 we present the result of Print Gallery

completed by performing three steps. First we applied
Eq. (2) obtaining the eight straight images in Fig. 2,
second we completed the missing region of each using
GLIDE 9, and lastly we combined the eight straight
images as in Eq. (1) to obtain back Print Gallery.

Fig. 11 displays a zoom-in of the center. It is no-
ticeable some mismatch between the boundaries of the
warped straight images, this is due to the difference
in Escher’s original lithography and the parametrized
mappings applied in Eq. (2) and Eq. (1). To correct for
this, a future direction is presented on section Sec. 7.
Note how the inpainted region is very small and ro-
tated for any inpainting model to be used out of the
box (i.e. without any fine tuning or passing to the Eu-
clidean plane)10. Additionally, as a consequence of the
one-to-many mapping in Eq. (2) the center presents
an homothecy of Print Gallery itself, rotated by 157
degrees.

8GLIDE was run with a Guidance Score of 5 and Upsample
Temperature of 0.997. The Supplemental material shows further
analysis of GLIDE on the relationship between its parameters
and the DOM score

9The parameters used and additional details of the completion
process can be found on the supplementary material

10The supplementary material shows an alternative comple-
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Figure 10. Comparison between original Print Gallery and
our completion using GLIDE

Figure 11. Detail of the completed center using GLIDE.
In the center-bottom it shows the repetition of the original
rotated by 157 degrees.

6. Conclusions
We have provided a quantitative and qualitative

analysis of three of the current state-of-the-art mod-
els for inpainting on large masks. By using a par-
ticularly challenging setting, comprised of a mixture
of inpainting and outpainting modalities over differ-
ent images, we have obtained test-case results for each
model’s strengths and weaknesses. GLIDE appears to
be superior to LaMa and CoModGANs on outpainting
tasks and it is benefited from an upsampling module
obtaining photorealistic quality. Additionally, GLIDE
provides the user with alternative completions for a
given mask and prompt, which can be beneficial on
artistic settings and allows one to calibrate the out-
put result without the costly fine-tuning required by
the other two methods. However, GLIDE’s output di-
versity can also lead to unrealistic outputs and thus,
requires human discretion to select the best fit. We
have shown how . According to expectations, LaMa
was shown to be superior in pattern-replication tasks,

tions made by hand by professional artists

and it has the best resolution output across all models.
As for CoModGANs, similar to the family of Style-
GANs models, it shows best performance on big masks
over human faces and landscapes, since it was specifi-
cally trained on them, while GLIDE’s dataset filtered
out human images.

7. Future Work
As mentioned in Section 3.1, the formulas in Eq. (2)

and Eq. (1) have been used to translate the original
Print Gallery lithography into eight straight images.
This is, however, an imperfect process due to the nat-
ural differences between a hand-made process and any
attempt to parametrize it with closed-form formulas.
To address this difference, we propose to project Es-
cher’s Print Gallery onto the conformal map space, for
example using Thin Plate Splines (TPS) [8].

8. Appendix
To test for the statistical significance of the 50 means

on table Tab. 2, we performed a one-way ANOVA test
summarized below on Tab. 3. We can conclude that the
average values presented on table are statistically dif-
ferent across all metrics, notwithstanding DOM which
presents similar results for CoModGANs and GLIDE.

Method Fvalue Fcrit RH0
Koniq 9.23 3.05 yes
Brisque 255.6 3.05 yes
DOM 74.17 3.05 yes

Table 3. Results of the ANOVA test performed over the
mean results of the image quality metrics
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