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Abstract

Generative models for image restoration, enhancement,
and generation have significantly improved the quality of
the generated images. Surprisingly, these models produce
more pleasant images to the human eye than other methods,
yet, they may get a lower perceptual quality score using tra-
ditional perceptual quality metrics such as PSNR or SSIM.
Therefore, it is necessary to develop a quantitative metric to
reflect the performance of new algorithms, which should be
well-aligned with the person’s mean opinion score (MOS).

Learning-based approaches for perceptual image qual-
ity assessment (IQA) usually require both the distorted and
reference image for measuring the perceptual quality ac-
curately. However, commonly only the distorted or gener-
ated image is available. In this work, we explore the perfor-
mance of transformer-based full-reference IQA models. We
also propose a method for IQA based on semi-supervised
knowledge distillation from full-reference teacher models
into blind student models using noisy pseudo-labeled data.

Our approaches achieved competitive results on the
NTIRE 2022 Perceptual Image Quality Assessment Chal-
lenge: our full-reference model was ranked 4th, and our
blind noisy student was ranked 3rd among 70 participants,
each in their respective track. https://github.com/
burchim/IQA-Conformer-BNS.

1. Introduction
Image quality assessment (IQA) aims at using com-

putational models to measure the perceptual quality of
images, which are degraded during acquisition, generation,
compression or post-processing operations [47, 65]. Since
one of the goals of the image processing is to improve
the quality of the content to an acceptable level for the
human viewers, IQA, as a “evaluation technique”, plays
a critical role in most image processing tasks such as
image super-resolution, denoising, compression and en-
hancement [3, 4, 19, 21, 64]. Although it is easy for human
beings to distinguish perceptually better images, it has been
proved to be difficult for algorithms [19, 42–44].

Recently, Generative Models [15, 17, 37] have shown
promising results for image enhancement and generation,
producing realistic results to the human eye. For instance,
perceptual image processing algorithms based on Genera-
tive Adversarial Networks (GANs) [8, 17, 32, 57] have pro-
duced images with more realistic textures.

However, these generated images show completely dif-
ferent characteristics and artifacts from traditional distor-
tions (i.e. Gaussian Noise, Blur), for this reason, it has
been noticed that the contradiction between the quantitative
evaluation results and the real perceptual quality is increas-
ing [4, 5, 19]. Therefore, these methods have posed a great
challenge for IQA methods to evaluate their visual quality.
New IQA methods need to be proposed accordingly to eval-
uate new image processing algorithms, as this will also af-
fect the development of such methods [4, 5, 18, 19, 21].

In this context, in order to generate acceptable images we
have to accurately measure their perceptual quality, which
can be performed via subjective and objective quality as-
sessment [9, 16, 29, 58]. The subjective quality assessment
is the most accurate method to measure the perceived qual-
ity, which is usually represented by mean opinion scores
(MOS) from collected human subjective ratings. However,
it is time-consuming and expensive.

Deep Convolutional Neural Networks (CNNs) can ex-
tract complex features from the images, and thus, they can
provide a powerful IQA metric if there is enough data to
train them. Moreover, these represent differentiable func-
tions, allowing to plug them into adversarial training frame-
works and optimize for quality directly [6, 13, 19, 44, 70].

In general, we find two different IQA approaches: (i)
Full-Reference (FR) [1,10,21,43,47] where an image with-
out distortions is available besides the distorted image. (ii)
No-Reference (NR) (also known as Blind) [6, 6, 27, 38, 39]
where only the distorted or generated image is available.
Typically, Full-Reference approaches achieve better perfor-
mance, however, Blind IQA (BIQA) represents the most re-
alistic scenario and these approaches are more useful be-
cause of their feasibility. In Section 2 we present the state-
of-the-art of each case.
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Reference (a) PSNR 29.22 (b) PSNR 34.65 (c) PSNR 29.43 (d) PSNR 31.66
SSIM 0.37 SSIM 0.82 SSIM 0.62 SSIM 0.90

MOS 1222.33 MOS 1318.83 MOS 1390.17 MOS 1608.99

Figure 1. Training samples from the PIPAL [19, 21]. As we can see, ranking the images by their perceptual quality depends on the metric,
and there great discrepancies [4,5,18]. IQA models must learn to predict quantitative outputs as much correlated as possible with the MOS
human ratings. We appreciate a huge perceptual quality difference between (b) and (d), however, neither PSNR nor SSIM reflect this.

The NTIRE 2022 Perceptual Image Quality Assess-
ment Challenge [20] seeks for novel solutions for Full-
Reference and No-Reference IQA. In comparison with pre-
vious IQA benchmarks [42, 44], the training and testing
datasets in this challenge include the outputs of GAN-based
algorithms and the corresponding subjective scores, which
provide more diversity and challenging scenarios. In this
work we provide the following key contributions:

• In Section 3 we introduce our conformer-based 4th
place solution for Full-Reference IQA, as an alter-
native to transformer-based approaches like IQT [10]
(winner of last year challenge).

• In Section 4 we present our 3rd place solution for No-
Reference IQA: Exploration of semi-supervised noisy
student learning to distill knowledge from FR models
into blind noisy student models.

• Comparison with the NTIRE 2021 IQA Challenge [21]
methods and extensive ablation studies.

2. Related Work
Image Quality Assessment. CNNs have shown their ef-
fectiveness in a wide range of computer vision and image
processing tasks, such as super-resolution, denoising and
deblurring [41, 54, 64]. Generative models [15, 17, 37], and
in particular, GAN-based [17, 32] approaches produce typ-
ically more pleasant results to human eyes than the CNNs
that do not use adversarial loss. The goal of the developing
IQA methods is to accurately predict the perceived qual-
ity (by human viewers) of the generated images. However,
traditional IQA methods struggle to evaluate these new ap-
proaches, and there are contradictions between the percep-
tual quantitative results and the qualitative results. We can
classify IQA methods depending on:

• Input data: (i) Full-Reference (FR) [1, 10, 21, 43, 47]

where a reference image without distortions is avail-
able besides the distorted image. (ii) No-Reference
(NR) [6, 6, 27, 38, 39] where only the distorted or gen-
erated image is available.

• Training: (i) Traditional methods do not require train-
ing. (ii) Learnable methods (typically CNN-based).

Full-Reference IQA The FR methods focus more on vi-
sual similarity or dissimilarity between two images (typ-
ically the original or reference image, and the generated
one). The most representative IQA FR metrics are the
PSNR, which is related to the MSE between both images,
and the SSIM proposed by Wang et al. [60]. These tradi-
tional methods have the advantage of convenience for opti-
mization; however, they poorly predict humans perceived
visual quality, especially for evaluating fine textures and
details in the images [33]. Since that, various FR metrics
have been developed to take into account various aspects of
human quality perception, e.g., information-theoretic crite-
rion [46] or structural similarity [61, 68].

Note that the ultimate goal of image enhancement net-
works is to generate visually pleasant images for humans
and have a high MOS, which is not always strictly corre-
lated to these traditional metrics. Recently, learned CNN-
based IQA methods have been actively studied and provide
the most promising state-of-the-art results [6,14,21,27,44,
70]. Zhang et al. proposed a learned perceptual image patch
similarity (LPIPS) metric [70], which shows that trained
deep features that are optimized by the l2 distance between
distorted and reference images are effective for IQA com-
pared to the conventional IQA methods.

Among the most competitive approaches in the NTIRE
2021 IQA Challenge [21] we can find: ASNA [45] pro-
posed a CNN equipped with spatial and channel-wise atten-
tion mechanisms, and Siamese-like network architecture.
IQMA [23] proposed a bilateral-branch multi-scale image
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quality estimation network, using Feature Pyramid Network
(FPN)-like architecture to extract multi-scale features and
predict the the quality score of the image at multiple scales.

Cheon et al. introduced an image quality transformer
IQT [10] that successfully applies a transformer architec-
ture to a perceptual full-reference IQA task. This method
combines a CNN backbone as a feature extractor, with a
Transformer [56] encoder-decoder to compare a reference
and distorted images, and predict the quality score.

Blind IQA The No-Reference (NR) or Blind meth-
ods [28,34] are useful because of its feasibility, they can be
plugged-in in adversarial training frameworks and be used
for optimizing perceptual quality directly. However, the ab-
sence of a reference image makes it challenging to predict
image quality accurately compared to the FR methods.

Bosse et al. [6] studies the performance of deep neural
networks for no-reference and full-reference image quality
assessment. Mittal et al. [39] explores blind IQA in the spa-
tial domain. Zhang et al. [71] proposes a model and a train-
ing approach to deal with realistic and synthetic distortions
and improve the generalization capabilities.

The NTIRE 2022 IQA Challenge introduced this year a
track for Blind image quality assessment (BIQA).

Evaluation IQA methods should present the following
two desired characteristics: (i) high Pearson linear corre-
lation coefficient (PLCC) between the scores produced by
the proposed method and the ground-truth MOS, which
indicates the linear relationship between them, (ii) high
Spearman rank order correlation coefficient (SRCC), which
shows the monotonicity of relationship between the pro-
posed method and the ground-truth MOS. Both metrics sep-
arately, and the sum of both as a ”Main Score”, serve as
evaluation metric to compare the performance of IQA meth-
ods [19, 21, 47]. The Kendall Rank-order Correlation Coef-
ficient (KRCC) is also used to estimate the monotonicity
and consistency of the quality prediction [18].

Datasets TID2013 [42], LIVE [47] and PIPAL [18, 19]
provide images with their corresponding reference images
and MOS to train models in a supervised manner. We
compare these datasets in Table 1. The NTIRE 2022 IQA
Challenge [20] uses the PIPAL [19] dataset, which takes
a step forward in benchmarking perceptual IQA by in-
corporating the perceptual quality of images obtained by
perceptual-oriented algorithms (i.e. GANs), missing in pre-
vious datasets. The PIPAL [19] as our training set, contains
200 reference images, 23k distorted images and their re-
spective human judgements. To ensure that the models can
generalize properly, the challenge has an extended dataset
of PIPAL for validation and testing. This dataset contains

3300 distorted images (1650 for training and testing respec-
tively) for 50 reference images, and all of them are the out-
puts of perceptual-oriented algorithms. It collects 753k hu-
man judgements to assign subjective scores for the extended
images, ensuring the objectivity of the testing data. Partic-
ipants do not have access to the ground-truth for validation
or test, results are submitted using a public website.

Database # Ref. # Dist. Dist. Type # Dist. Type # Rating

LIVE [47] 29 779 trad. 5 25k
TID2013 [42] 25 3k trad. 25 524k
PIPAL [19] 250 29k trad.+alg. 40 1.13m

Table 1. Comparison of IQA datasets for performance evaluation.
The NTIRE Challenge Dataset, PIPAL [19] presents the highest
and more various number of distorsions and human ratings.

3. IQA Conformer Network
We propose an alternative architecture to IQT [10] by

replacing the Transformer encoder-decoder [56] by a Con-
former architecture [7, 22], which uses convolution and at-
tention operations to model local and global dependencies.

We use a Inception-ResNet-v2 [52] network pre-trained
on ImageNet to extract feature maps from the reference
and distorted image. The network weights are kept
frozen and a Conformer [22] encoder-decoder is trained to
regress MOS using the MSE loss. As done by Cheon et
al. [10], we concatenate the feature maps from the fol-
lowing blocks: mixed5b, block35 2, block35 4,
block35 6, block35 8 and block35 10. We do
this for the reference and distorted images generating fref
and fdist, respectively. In order to obtain difference infor-
mation between reference and distorted images, a difference
feature map, fdiff = fref − fdist is also used.

Concatenated feature maps are then projected using a
point-wise convolution but not flattened to preserve spatial
information. We used a single Conformer block [22] for
both encoder and decoder. The model hyper-parameters are
set as follows: L = 1, D = 128, H = 4, Dfeat = 512,
and Dhead = 128. The input image size of the backbone
model is set to (192 × 192 × 3) which generates feature
maps of size 21 x 21. IQA Conformer has 2,831,841 total
parameters, we illustrate the pipeline in Figure 2. Note that
we only use the first feature maps from the CNN, not the
whole network, therefore the number of parameters is sub-
stantially smaller. In Table 4 we compare our method with
the state-of-the-art on the NTIRE 2021 and 2022 IQA Chal-
lenges [20, 21]. For a fair comparison, all the models were
trained using the same PIPAL training dataset [19, 21]. We
use RADN [48] and ASNA [2] public available pre-trained
weights and code. Our proposed solution allows to reach
better PLCC and SRCC at inference than IQT [10] under
the same setup (see Table 4). Note that to the best of our
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knowledge, there is no public code or models for repro-
ducing IQT [10] results, therefore we report results of our
best implementation following the original paper. We also
compare our results with other top performing teams at the
NTIRE 2022 IQA FR Challenge [20] in Table 2, where our
IQA Conformer was ranked 4th. We show qualitative sam-
ples and analysis in Figures 3 and 8.

Team Main Score ↑ PLCC SRCC

THU1919Group 1.651 0.828 0.822
Netease OPDAI 1.642 0.827 0.815
KS 1.640 0.823 0.817
Ours 1.541 0.775 0.766
Yahaha! 1.538 0.772 0.765
debut kele 1.501 0.763 0.737
Pico Zen 1.450 0.738 0.713
Team Horizon 1.403 0.703 0.701

Table 2. Performance comparison of the top teams on the testing
dataset of the NTIRE 2022 Full-Reference IQA Challenge.

Implementation details The model was trained using
only the NTIRE 2022 PIPAL training dataset [19]. Adam
optimizer by setting β1 = 0.9, β2 = 0.999. We set mini-
batch size as 16. The learning rate was set to 10−4 and the
model trained for 30 epochs (43479 gradient steps). Last 10
epoch checkpoints were averaged using SWA [30].

Inference During inference, we use enhanced predic-
tion [55] (a.k.a Test-Time Augmentations). The prediction
for an input image is enhanced by averaging the predictions
on a set of transformed images derived from it. We use 10
crops (2 flips of 4 image corners + center crop) for reference
and distorted images.

Ensembles and fusion strategies As shown in Table 4
an ensemble of our model, RADN [48] and ASNA [2], im-
proves notably the performance (+0.4 boost in main score).

3.1. Cross Database Evaluations

IQA methods tend to overfitting, they commonly strug-
gle to generalize to data distributions different from the one
they were trained with. To validate the generalization ca-
pabilities of our approach, we use our FR IQA Conformer
trained on PIPAL [19] and we conduct the cross-dataset
evaluation on two other benchmarks: TID2013 [42] and
LIVE [47] (using the full datasets). As shown in Table 3,
our model generalizes better than NTIRE 2021 [21] top
methods: ASNA [45], RADN [49] and IQT [10]. It also
achieves competitive results in comparison with other learnt
methods like PieAPP [44], WaDIQaM [6] or LPIPS [70],

Distorted

CNN 
(Fixed) 

 

CNN 
(Fixed) 

 

Decoder

Reference

192 x 192 x 3

192 x 192 x 3
Feature extraction
and Concatenation 

h x w x 320 x 6

h x w x 320 x 6

-

MLP Head MOS

1 x 256

Encoder

f dist

f ref 

f diff

Conformer

Figure 2. FR IQA Conformer setup inspired by IQT [10].

which are trained on the specific datasets. Figure 6 shows a
qualitative analysis of the predictions for LIVE [47].

Method LIVE [47] TID2013 [42]
SRCC KRCC SRCC KRCC

PSNR [26] 0.873 0.680 0.687 0.496
SSIM [60] 0.948 0.796 0.727 0.545
MS-SSIM [61] 0.951 0.805 0.786 0.605
VIF [47] 0.964 0.828 0.677 0.518
NLPD [31] 0.937 0.778 0.800 0.625
GMSD [63] 0.960 0.827 0.804 0.634

WaDIQaM [6] 0.947 0.791 0.831 0.631
PieAPP [44] 0.919 0.750 0.876 0.683
LPIPS [70] 0.932 0.765 0.670 0.497
DISTS [14] 0.954 0.811 0.830 0.639
SWDN [18] - - 0.819 0.634
ASNA [45] 0.92 - 0.73 -
RADN [49] 0.905 - 0.747 -
IQT-C [10] 0.917 0.737 0.804 0.607

Ours 0.921 0.752 0.82 0.630

Table 3. Performance comparison on LIVE [47] and
TID2013 [42]. Some results are borrowed from [13, 18]. We sep-
arate traditional and learnt methods, and we highlight in blue the
NTIRE 2021 [21] methods trained on PIPAL [19].

3.2. Ablation Study

In Table 4 we compare the performance of Trans-
former [10, 56] and Conformer [22] models, both using
the same backbone (Inception-ResNet-v2 [52]) and training
setup. We also explore the effect of different backbone ar-
chitectures for feature extraction like ConvNext [36] (SOTA
in image classification) and VGG [50] (common backbone
in IQA). We find Inception-ResNet-v2 [52] features to be
the best representation.These approaches are very sensitive
to the backbone selection, and more specifically, to the fea-
ture block selection (as introduced by EGB [24]).

943



Method Validation 2021 Testing 2021 Validation 2022 Testing 2022
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

PSNR [26] 0.292 0.255 0.277 0.249 0.269 0.234 0.277 0.249
SSIM [60] 0.398 0.340 0.394 0.361 0.377 0.319 0.391 0.361
VSI [67] 0.516 0.450 0.517 0.458 0.493 0.411 0.517 0.458
NQM [11] 0.416 0.346 0.395 0.364 0.364 0.302 0.395 0.364
UQI [59] 0.548 0.486 0.450 0.420 0.505 0.461 0.450 0.420
GSM [35] 0.469 0.418 0.465 0.409 0.450 0.379 0.465 0.409
RFSIM [69] 0.304 0.266 0.328 0.304 0.285 0.254 0.328 0.304
SRSIM [66] 0.654 0.566 0.636 0.573 0.626 0.529 0.636 0.573
LPIPS-VGG [70] 0.647 0.591 0.633 0.595 0.611 0.551 0.633 0.595
DISTS [14] 0.686 0.674 0.687 0.655 0.634 0.608 0.687 0.655
EGB [24] 0.775 0.776 0.677 0.700 0.746 0.723 0.700 0.677
ASNA [2] 0.820 0.830 0.750 0.710 0.796 0.765 0.752 0.719
RADN [48] 0.866 0.865 0.771 0.777 0.789 0.777 0.753 0.757
IQT (2021 Winner) [10] 0.876 0.865 0.790 0.799 0.840 0.820 0.799 0.790

Ours IQA Transformer 0.790 0.765 0.757 0.751
Ours IQA Conformer A 0.804 0.790 0.775 0.766
Ours IQA Conformer B 0.740 0.740 0.730 0.730
Ours IQA Conformer C 0.790 0.770 0.754 0.740
Ensemble 0.787 0.793

Table 4. Performance comparison of IQA methods on the PIPAL NTIRE 2021 and 2022 Full-Reference benchmark [19–21]. We highlight
in blue the top performing methods on the NTIRE 2021 IQ Challenge [21]. The different IQA Conformer versions correspond to different
backbones: (A) Inception-ResNet-v2 [52], (B) ConvNext [36], (C) VGG19 [50]. The ensemble method is: Ours + RADN [48] + ASNA [2].
Ours IQA ”Transformer” is our own implementation of IQT [10], since, to the best of our knowledge, there is not public code available.

Reference PSNR 27.972 - SSIM 0.735 PSNR 28.512 - SSIM 0.302 PSNR 31.496 - SSIM 0.861
Ours MOS 1368.53 Ours MOS 1353.89 Ours MOS 1564.38

Reference PSNR 27.968 - SSIM 0.867 PSNR 32.316 - SSIM 0.815 PSNR 27.836 - SSIM 0.842
Ours MOS 1283.033 Ours MOS 1525.727 Ours MOS 1534.356

Figure 3. Example images from the test set of the NTIRE 2022 challenge. For each distorted image we provide predicted scores of
PSNR, SSIM and MOS from our model. As we can see, ranking the images by their quality depends on the metric, and there great
discrepancies [4, 5, 18, 19]. However, our model is the most correlated quantitative metric to the real human MOS ratings.
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Figure 4. Full-Reference Teacher and Blind Noisy Student. Unlabeled samples are annotated using pseudo-labels inferred using the teacher.

4. Blind Noisy Student
A simple CNN backbone Φ takes as input a distorted

image x and aims to minimize the MOS y (see Figure 5)
using the following loss function from [2], where Φ(x) = ŷ.

L = MSE(y, ŷ) + (1− Pearson(y, ŷ)) (1)

Initial setup We train EfficientNet B0 [53] (pre-trained
on ImageNet) to perform this task. Using a 90/10 valida-
tion split (i.e. validating on roughly 1000 images locally),
we achieved 1.02 on the development phase using a sin-
gle model. We use as augmentations in all our experiments
the following pipeline: random horizontal and vertical flips,
random rotations of 90/180/270 degrees, and finally take a
random crop of size 224 x 224. We find the main perfor-
mance limitation to be overfitting due to the small dataset:
23200 images, yet only 200 reference images [19]. We se-
lect EffNet B0 [53] as backbone as it is stat-of-the-art in
Image classification and has only 4 million parameters.

Noisy student a semi-supervised learning approach that
extends the idea of self-training and distillation, and
has achieved state-of-the-art results on Image Classifica-
tion [62]. We distinguish a Full-Reference teacher model,
and a blind student model trained only with distorted im-
ages. This method allows to increase the amount of train-
ing distorted images, and to transfer ”dark” knowledge [62]
from FR models and ensembles, into simple NR models.

The process is as follows:

1. Train the FR teacher using the training dataset [19,21]
consisting on 23k reference-distorted pairs.

2. Teacher infers on unlabeled reference-distorted pairs,
and annotate the images. These MOS annotations are
noisy, we refer to them as pseudo-labels.

3. Add the pseudo-labeled distorted images to the origi-
nal training set: approximately 2k new images.

4. Train a student model for NR IQA, which takes as
input only the distorted images using the extended
dataset (original + pseudo-labels) and extra augmen-
tations to the initial setup: (i) CutOut [12] as further
regularization to ensure the model learns useful fea-
tures without looking to the entire image. (ii) Small
perturbations on the Saturation, Brightness and Con-
trast. We show some examples in Figure 7.

We illustrate this process in Figure 4. Using this ap-
proach we can distill knowledge from the FR models into
the NR models. We show the benefits of this approach and
augmentations in Table 5. We obtain the unlabeled samples
from two different ways: (i) using the unlabeled data pro-
vided at the challenge and PIPAL [19, 21], (ii) augmenting
the reference images using traditional methods and GAN-
based methods like SRGAN [32, 57] to upscale the images
and resize back to the original resolution. We do not use
other datasets for training.
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Therefore, our single model EffNet B0 [53] has only 4
million parameters, in comparison with other well-known
architectures used for this task such as VGG [51] (15 mil-
lion parameters) or ResNet 50 [25] (24 million parameters).
In our experiments, deep models tend to overfitting quickly
and did not perform great. In Table 6 we show our perfor-
mance in comparison with other top teams.

Method # Extra Augs. Score PLCC SRCC

EffNet B0 [53] No No 0.84 0.42 0.42
EffNet B0 [53] No Yes 1.02 0.51 0.51
EffNet B0 [53] 1.6k Yes 1.42 0.73 0.70
VGG 19 [51] 1.6k Yes 1.25 0.63 0.61
ResNet50 [25] 1.6k Yes 1.37 0.70 0.67
EffNet B0 [53] 2k Yes 1.48 0.75 0.73
EffNet B0 [53] + TTA 2k Yes 1.49 0.76 0.73

Table 5. Ablation study of our NR models. We indicate the num-
ber of extra pseudo-labeled samples added to the original training
dataset, the use of ”extra” augmentations, and the scores for each
model in the NTIRE 2022 IQA Challenge test set. TTA [55] indi-
cates test-time-augmentations (i.e. average of 4 random crops).

Team Main Score ↑ PLCC SRCC

THU IIGROUP 1.444 0.740 0.704
DTIQA 1.437 0.737 0.700
Ours 1.422 0.725 0.697
KS 1.407 0.726 0.681
NetEase OPDAI 1.390 0.720 0.671
Minsu Kwon 1.183 0.607 0.576
NTU607QCO-IQA 1.112 0.585 0.527

Table 6. Performance comparison of the top teams on the testing
dataset of the NTIRE 2022 No-Reference IQA Challenge Main
score is calculated as the sum of PLCC and SRCC.

Figure 5. PIPAL [19] training MOS standardized distribution with
µ = 1448.96 and σ = 121.53.

Figure 6. Ground-truth DMOS LIVE [47] against the predicted
MOS. Our predictions have |SRCC| = 0.92, which indicates
they are very correlated with the real qualitative ratings.

Implementation details We train each NR model to con-
vergence, approximately 20 epochs. We use Adam opti-
mizer with default parameters and learning rate 0.0001. We
set batch size to 32. The learning rate is reduced by fac-
tor 0.5 on plateaus. The loss function is presented in Equa-
tion 1. We use a Tesla P100 GPU to run all our experiments.
This model allows to predict the quality of the test set (1650
images) in just 8s (143ms/step) on a single GPU.

Figure 7. Example of ”Extra” augmentations [12] for the noisy
student training. We show standardized MOS above each image.
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Method Validation 2022 Testing 2022
Main Score ↑ PLCC SRCC Main Score ↑ PLCC SRCC

Brisque [39] 0.075 0.059 0.015 0.184 0.097 0.087
NIQE [40] 0.120 0.115 0.005 0.142 0.112 0.030
PI [4] 0.213 0.133 0.079 0.276 0.153 0.123
Ma [38] 0.261 0.131 0.129 0.398 0.224 0.174
PSNR [26] 0.533 0.284 0.250 0.572 0.303 0.269
SSIM [60] 0.718 0.386 0.332 0.785 0.407 0.377
FSIM [68] 1.048 0.575 0.473 1.138 0.610 0.528
LPIPS-AlexNet [70] 1.197 0.616 0.581 1.176 0.592 0.584

Ours 1.410 0.710 0.700 1.490 0.752 0.733

Table 7. Performance comparison of IQA methods on the PIPAL NTIRE 2022 No-Reference benchmark [19,20]. Our method outperforms
traditional and learnt methods by large margin. See also Table 6, where we compare our method with other outstanding approaches.

PIPAL [19] Full-Reference PIPAL [19] No-Reference

Figure 8. Predicted MOS scores against Elo MOS subjective scores on the validation set of PIPAL [19] NTIRE 2022 IQA Challenge [20].

This inference time of approximately 0.22ms per im-
age for a NR single model represents a beneficial approach
for adversarial networks [17], where this model can be
plugged-in as discriminator or differentiable loss function
for direct perceptual quality optimization.

5. Conclusion
In this paper, we propose a method for IQA knowledge

distillation from Full-Reference (FR) teacher models into
Referenceless student models. First, we explore different
IQA Full-Reference models, including transformer-based
approaches. Next, we apply a semi-supervised noisy stu-
dent approach: we annotate unlabeled reference-distorted
image pairs using the FR model, we expand the original
training set of distorted images using such pseudo-labeled

data, and we finally train a Blind noisy student model.

Our methods achieved competitive performance on the
latest PIPAL dataset, which contains new algorithm-based
distorted images, and our predictions are well correlated
with subjective human mean opinion scores of the images.
Our methods achieved the 4th and 3rd place at the NTIRE
2022 Perceptual Image Quality Assessment Challenge for
Full-reference and No-Reference respectively. Moreover,
our approach can successfully generalize to other datasets
like TID2013 or LIVE. As future work, we will study our
performance using massively augmented datasets via semi-
supervised noisy pseudo-labels.

Acknowledgments This work was supported by the Hum-
boldt Foundation. We thank the organizers of the NTIRE
2022 Perceptual IQA Challenge for their support.

947



References
[1] Sewoong Ahn, Yeji Choi, and Kwangjin Yoon. Deep

learning-based distortion sensitivity prediction for full-
reference image quality assessment. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, 2021. 1, 2

[2] Seyed Mehdi Ayyoubzadeh and Ali Royat. (asna) an
attention-based siamese-difference neural network with sur-
rogate ranking loss function for perceptual image quality as-
sessment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 388–397,
2021. 3, 4, 5, 6

[3] Goutam Bhat, Martin Danelljan, Radu Timofte, et al. NTIRE
2021 challenge on burst super-resolution: Methods and re-
sults. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2021. 1

[4] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-
Manor. The 2018 PIRM challenge on perceptual image
super-resolution. In Eur. Conf. Comput. Vis. Worksh., pages
1–22, 2018. 1, 2, 5, 8

[5] Yochai Blau and Tomer Michaeli. The perception-distortion
tradeoff. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6228–6237,
2018. 1, 2, 5

[6] Sebastian Bosse, Dominique Maniry, Klaus-Robert Müller,
Thomas Wiegand, and Wojciech Samek. Deep neural
networks for no-reference and full-reference image qual-
ity assessment. IEEE Transactions on image processing,
27(1):206–219, 2017. 1, 2, 3, 4

[7] Maxime Burchi and Valentin Vielzeuf. Efficient conformer:
Progressive downsampling and grouped attention for auto-
matic speech recognition. arXiv preprint arXiv:2109.01163,
2021. 3

[8] M. Cheon, J.-H. Kim, J.-H. Choi, and J.-S. Lee. Generative
adversarial network-based image super-resolution using per-
ceptual content losses. In Eur. Conf. Comput. Vis. Worksh.,
pages 1–12, 2018. 1

[9] M. Cheon and J.-S. Lee. Subjective and objective quality
assessment of compressed 4k uhd videos for immersive ex-
perience. IEEE TCSVT, 28(7):1467–1480, 2017. 1

[10] Manri Cheon, Sung-Jun Yoon, Byungyeon Kang, and Jun-
woo Lee. Perceptual image quality assessment with trans-
formers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 433–442,
2021. 1, 2, 3, 4, 5

[11] Niranjan Damera-Venkata, Thomas D Kite, Wilson S
Geisler, Brian L Evans, and Alan C Bovik. Image quality as-
sessment based on a degradation model. IEEE transactions
on image processing, 9(4):636–650, 2000. 5

[12] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 6, 7

[13] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli. Image
quality assessment: Unifying structure and texture similar-
ity. IEEE TPAMI, 2020. 1, 4

[14] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli. Compari-
son of full-reference image quality models for optimization

of image processing systems. International Journal of Com-
puter Vision, 129(4):1258–1281, 2021. 2, 4, 5

[15] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12873–12883, 2021. 1, 2

[16] Y. Fang, H. Zhu, Y. Zeng, K. Ma, and Z. Wang. Perceptual
quality assessment of smartphone photography. In CVPR,
pages 3677–3686, 2020. 1

[17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NeurIPS, page 2672–2680, 2014.
1, 2, 8

[18] J. Gu, H. Cai, H. Chen, X. Ye, J. Ren, and C. Dong.
Image quality assessment for perceptual image restoration:
A new dataset, benchmark and metric. arXiv preprint
arXiv:2011.15002, 2020. 1, 2, 3, 4, 5

[19] Jinjin Gu, Haoming Cai, Haoyu Chen, Xiaoxing Ye,
Jimmy S Ren, and Chao Dong. Pipal: a large-scale image
quality assessment dataset for perceptual image restoration.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2020. 1, 2, 3, 4, 5, 6, 7, 8

[20] Jinjin Gu, Haoming Cai, Chao Dong, Jimmy Ren, Radu Tim-
ofte, et al. NTIRE 2022 challenge on perceptual image qual-
ity assessment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, 2022. 2, 3, 4, 5, 8

[21] Jinjin Gu, Haoming Cai, Chao Dong, Jimmy S. Ren, Yu
Qiao, Shuhang Gu, Radu Timofte, et al. NTIRE 2021 chal-
lenge on perceptual image quality assessment. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, 2021. 1, 2, 3, 4, 5, 6

[22] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, et al. Conformer: Convolution-
augmented transformer for speech recognition. arXiv
preprint arXiv:2005.08100, 2020. 3, 4

[23] Haiyang Guo, Yi Bin, Yuqing Hou, Qing Zhang, and
Hengliang Luo. Iqma network: Image quality multi-scale
assessment network. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2021. 2

[24] Dounia HAMMOU, Sid Ahmed FEZZA, and Wassim Hami-
douche. Egb: Image quality assessment based on ensemble
of gradient boosting. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2021. 4, 5

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7

[26] Alain Hore and Djemel Ziou. Image quality metrics: PSNR
vs. SSIM. In 2010 20th International Conference on Pattern
Recognition. IEEE, Aug. 2010. 4, 5, 8

[27] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe. Koniq-10k: An
ecologically valid database for deep learning of blind image
quality assessment. IEEE TIP, 29:4041–4056, 2020. 1, 2

[28] Weilong Hou, Xinbo Gao, Dacheng Tao, and Xuelong
Li. Blind image quality assessment via deep learning.

948



IEEE transactions on neural networks and learning systems,
26(6):1275–1286, 2014. 3

[29] B. Hu, L. Li, J. Wu, and J. Qian. Subjective and objec-
tive quality assessment for image restoration: A critical sur-
vey. Signal Processing: Image Communication, 85:115839,
2020. 1

[30] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018. 4
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