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Abstract

We describe a novel method for video outpainting. The
goal of outpainting is to fill in missing regions at the edges
of video frames. Our focus lies on converting portrait (9:16)
to landscape (16:9) video. In contrast, most video comple-
tion research is focused on inpainting: filling a masked sec-
tion within the frame based on the remaining, known pixels.

Our proposed method consists of three main aspects: (1)
We form a background estimation using video object seg-
mentation and video inpainting methods, (2) we use optical
flow to form temporal consistency, and (3) we propose im-
age shifting to improve individual frame completions. Our
method is able to successfully broaden the aspect ratio of a
video. On most videos, we achieve realistic results. Only on
videos with complex camera motion and foreground objects
leaving the frame, the quality is less.

In contrast to other state-of-the-art methods, our method
is able to reconstruct the full frame, including unseen image
parts. Moreover, it is temporally consistent. We evaluate
our method on the DAVIS and YouTube-VOS datasets. The
code is publicly available1.

Keywords: video completion, video outpainting, back-
ground estimation, optical flow, image outpainting

1. Introduction
As the popularity of mobile apps such as TikTok and In-

stagram increases, so does the amount of vertical video con-
tent. When this content is displayed on e.g. a television, the
aspect ratio has to be changed to fit the screen. To do this,
the regions around the video content have to be completed.
Currently, these completions are either left blank, resulting
in black bars around the video (seen in figure 1, top), or
filled in with a blurred repetition of the original video. Our
goal is to create more realistic completions around the given
video content to improve the viewer’s experience without
diverting attention from the original video.

1https://github.com/Video-Outpainting/VideoOutpainting

Figure 1. A frame from the DAVIS dataset [22] completed with
the standard black bars, the video inpainting method of Gao et

al. [7] and our method.

Video inpainting is closely related to video outpainting.
Inpainting refers to the task of completing a marked region
within a frame. When comparing inpainting to outpainting,
the following additional complexities can be observed. First
of all, in image inpainting, the missing region is somewhere
within the given image. This provides omnidirectional in-
formation to an image inpainting network. In image out-
painting, the missing region is at the side or around the im-
age for which there are only known pixels on one side of
the missing region. Secondly, when outpainting an image
from portrait to landscape, the completion is twice as large
as the input, whereas, in image inpainting, the missing re-
gion usually is a relatively small part of the image. Finally,
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due to the two previous points there is also a greater distance
between the input and output pixels.

The contribution of our work is a full video outpainting
method that provides visually pleasing, temporally consis-
tent completions without damaging the original video con-
tent or introducing artifacts to the outpainted regions. The
proposed image shifting technique allows to create realis-
tic results even on larger outpainted regions. We base our
method on an existing flow-based video inpainting method,
from Gao et al. [7], in which optical flow is used to pass on
information between neighboring frames to form temporal
consistency and extend it to outpainting. Firstly, we reduce
temporal artifacts by initially forming a background esti-
mation before completing the frames. Secondly, we shift
image contents to improve individual frame completions.

In the following sections, we will first discuss the related
fields of image completion, video inpainting, and video out-
painting. Next, we describe the datasets we used in sec-
tion 3. In section 4 we describe our method for video out-
painting. First, we look at the shortcomings of video in-
painting when applied to outpainting and, next, we explain
our improvements on image outpainting using image shift-
ing and our video outpainting method. In section 5 we eval-
uate our method using several common image and video
evaluation metrics. Next, we discuss the limitations of our
method in sections 6. Finally, in section 7 we discuss our
results.

2. Related Work

2.1. Image Completion

Image inpainting predates the use of deep learning tech-
niques. Traditional approaches can be divided into two
groups: diffusion-based and patch-based. Diffusion-based
methods fill the gap by smoothly spreading the image con-
tent on the edges over the masked area. [20]. Patch-based
methods [3, 23] fill in missing regions with patches from
source images that maximize patch similarity. Both meth-
ods can complete smaller regions, but fail to realistically
complete larger, more complex parts of an image.

More recent deep learning techniques can more realis-
tically complete the masked regions. These methods are
based around the advent of Generative Adversarial Net-
works (GAN) [8]. Pathak et al. [21] introduce an adver-
sarial loss in addition to reconstruction loss to address that
inpainting is multimodal. Iizuka et al. [10] formed improve-
ments by introducing both global and local discriminators
for deriving the adversarial losses. More recently, Yu et
al. [31] presented a contextual attention mechanism in a
generative inpainting framework, which further improves
the inpainting quality. Nazeri et al. [18] observe that the
structure of an image is represented in the edge map. They
achieve photorealistic results by first completing the edges

before completing the actual pixels. Zhao et al. [33] use
aspects from style transfer research [6, 9] to introduce co-
modulated GANs. Their method can generate realistic re-
sults on larger mask sizes. The method of Yang et al. [30]
is limited to natural panoramas and only produces very low
resolution results.

2.2. Video Inpainting

With moving from image inpainting to video inpainting
comes the challenge of temporal consistency. The result
must be consistent through time. Small variations between
two consecutive frames may be evaluated equally as indi-
vidual images. However, when the frames are replayed as
video, the inconsistencies are noticeable to the human eye.
In addition, the method must continue to work with com-
plex movement of objects, movement of the camera itself,
and variation in the background. Finally, a video provides
more information about the scene than a single image.

Patch-based methods [13, 26] attempt to maintain tem-
poral consistency by using segments of adjacent frames to
form the completions. These methods cannot generate new
image content, and reusing the content of other frames is not
sufficient to complement the frames consistently and realis-
tically.

Chang et al. [4] use 3D-gated convolution to create
temporal consistency. This allows multiple frames to be
used as input for each frame’s completion. Deep learning-
based methods are less effective here compared to image
in/outpainting because of the high memory requirements.
Each frame of the video contains as much information as
the input in image inpainting. The amount of frames that
can be used as input for the completion of a single frame is
limited.

Finally, flow-based methods [7, 11, 28, 36] use optical
flow. The per-pixel motion between frames can be used
to propagate pixel values into the masked regions. The
optical flow can be estimated using flow estimation net-
works [5, 24]. Gao et al. [7] propose to initially complet-
ing the edges within the optical flow. This extra step creates
sharper results near the edges of moving objects. Very re-
cently, Liu et al. [14] proposed a video inpainting method
based on transformers.

2.3. Video Outpainting

There is comparatively less research focused on video
outpainting itself. Earlier work in the video domain is the
technique of Avraham and Schechner [2], who suggested
a foveated method for video extrapolation. The resolution
of their resulting video diminishes as the distance from the
original content increases, which is similar to the behavior
of the human fovea. The method proposed by Aides et al.
[1] improved the visual details and general structure of such
a peripheral scene.
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Figure 2. Failures in the video outpainting method of Lee et
al. [12]: black corners are not inpainted, and foreground object
causing artifacts outside original frame.

Also, some other methods can be applied to video out-
painting. Video stabilization methods [15, 29] are required
to extrapolate a relatively small region outside the frame.
Also, Gao et al. [7] have applied their video inpainting
method to video outpainting, which we discuss in section
4.1.

Other methods in literature cover certain similar aspects
of the problem but do not provide a complete and consis-
tent result. The method from Lee et al. [12] warps and
blends adjacent frames allowing them to complete parts of
the outpainted region based on observed pixels. Any un-
observed region of the scene is ignored. Their technique
can exclusively form realistic completions based on infor-
mation available in other frames. Regions that were never
visible are left blank as illustrated in figure 2. In contrast,
our method hallucinates video content in regions without vi-
sual evidence. This enables us to outpaint video from static
cameras.

The work of Liu et al. [15] and Maggia et al. [17] can
form full completions but creates temporal artifacts in the
regions that were never visible to the camera because it does
not impose temporal consistency like our technique does.

3. Dataset

Part of the completions is done based on an image com-
pletion network. This network must be able to realistically
complete a large variety of images. The image completion
network we use is trained on the Places [34] scene recogni-
tion dataset, which contains over 2.5 million images.

To evaluate our video outpainting method, we use
the Densely Annotation Video Segmentation dataset
(DAVIS) [22] and the YouTube-VOS [27] dataset. The
DAVIS dataset is a high-quality, high-resolution densely an-
notated video segmentation dataset consisting of videos in
two resolutions: 480p and 1080p. There are 50 video se-
quences with 3,455 annotated frames at pixel level. The
YouTube-VOS dataset, similarly to the DAVIS dataset,
is intended for Video Object Segmentation (VOS). The
dataset is a large-scale benchmark that supports multiple

Figure 3. Top, a frame from the DAVIS dataset [22]. Bottom, the
results of the video inpainting method from Lee et al. [13]

applied to video outpainting.

VOS tasks, semi-supervised video object segmentation, and
video object segmentation. The dataset consists of more
than 4,000 high-resolution YouTube videos and totals more
than 340 minutes of video content. For this study, we
only use the frames of the videos (cropped on the left and
right sides) as input, without using the annotated foreground
masks.

4. Video Outpainting
Initially, we look at video inpainting methods to find the

additional difficulties that arise with video outpainting. We
then focus on one method and propose changes specific to
video outpainting to generate more realistic completions.

4.1. Baseline: Inpainting For Video Outpainting

The first methods we tried, Onion-Peel network from Oh
et al. [19] and Copy-and-Paste network from Lee et al. [13],
are deep learning-based video inpainting methods. These
methods use a set of neighboring frames as input for the
completion of each frame. When applied to video outpaint-
ing, these methods produce blurry results without temporal
consistency. Compared to inpainting, there is less surround-
ing information available to fill in the missing region. Also,
the distance between the given image content and the re-
gions to be filled in increases. Additionally, these methods
also iteratively use the previous result for the next comple-
tion, which causes them to become incrementally blurrier.
On top of that, the temporal consistency is not maintained
when the foreground moves out of the frame. The result is
illustrated in figure 3.

Next, for flow-based video inpainting methods, we
looked at the method from Gao et al. [7]. In the regions
where information can be extracted from other frames using
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Figure 4. Video inpainting method from Gao et al. [7] applied to
video outpainting. The center of the image was used as input, the

left and right sides are completed.

the flow information, the network provides temporal con-
sistency. In the remaining regions, this method fills in the
missing pixels based on an image inpainting network. As
mentioned previously, an image inpainting network cannot
complete the image content. Additionally, this method gen-
erates temporal artifacts when a foreground object moves
out of frame as illustrated in figure 4.

From these tests, we draw the following conclusions. For
maintaining temporal consistency, flow-based methods are
the most suitable. These methods can realistically complete
large portions of the missing region based on optical flow.
However, the image inpainting network used for the remain-
ing completions provides a very unrealistic, blurry result.
This is a consequence of the fact that these methods were
not built to cope with the additional difficulties of outpaint-
ing.

4.2. Overview Of Our Method

An outline of our method is illustrated in figure 5. The
input of our video outpainting method is an RGB video.
Based on the desired final resolution, a masked region is
created indicating which pixel values need to be completed.
The extrapolation is done first on the right side of the origi-
nal image content. To obtain the left side of the completion,
the original image content is mirrored, and the method is
repeated. Our method consists of 5 steps:

(1) Flow estimation: Using existing techniques, we de-
termine the backward and forward optical flow. We estimate
the per-pixel motion between adjacent frames and use it in
step 4 to complete parts of the masked regions using tem-
poral propagation. We use optical flow to propagate infor-
mation between frames to form temporal consistency in the
resulting video. More details can be found in section 4.3.

(2) Background estimation: We remove the foreground
from the original video frames and optical flow by combin-
ing VOS and video inpainting methods. More details can

be found in section 4.4.
(3) Flow completion: The optical flow is completed to

the new aspect ratio. By completing the optical flow into
the masked region, we can also propagate the result of any
individual frame completion. More details can be found in
section 4.3.

(4) Video completion: To extrapolate the video frames,
we use the optical flow information and an image com-
pletion network. Based on the optical flow, parts of the
masked regions can already be completed by propagating
pixel values between adjacent frames. Next, the frame with
the largest remaining masked region is selected and com-
pleted using an image completion network, as described in
section 4.5. The result of this completion can then also be
propagated to adjacent frames. This step is repeated until
all frames are fully completed. More details can be found
in section 4.3.

(5) Post-processing: The extrapolated regions are
blurred and combined with the original video frames. More
details can be found in section 4.6.

4.3. Video Completion

As mentioned in section 4.1, we base our method on the
video inpainting method from Gao et al. [7]. We use their
color propagation to form parts of the completion based on
optical flow. To estimate the optical flow, we use the cur-
rent state-of-the-art flow estimation method from Teed et
al. [24].

To complete the optical flow, we minimize the gradient
within the masked region as described by Gao et al. [7].
They can form smooth completion when removing a mov-
ing object entirely or removing part of the background.
However, their method causes temporal artifacts when ap-
plied to video outpainting with moving foreground objects,
as discussed in the following section.

4.4. Background Estimation

When the object is moving on the edge of the frame, a
potentially large portion of the object is not visible. In figure
6 we see half a person running on the edge of the camera’s
view. The completion of the optical flow is not trivial, as
we would have to predict the object’s movement. The flow
completion method from Gao et al. [7] causes a mix of the
foreground and background motion, since there is no com-
pleted outline of the foreground motion. This inaccurate
flow completion causes temporal artifacts and deformation
in the outpainted region, as illustrated in figure 6.

In simple cases, the outline of the foreground motion
could be completed by adding an edge at the side of the
frame. This solution removes the temporal deformation, but
does not solve the temporal artifacts as these are the result
of a mismatch between the extrapolated optical flow and the
actual movement.

690



Figure 5. Overview of our video outpainting method consisting of the following five steps. (1) Flow Prediction: Estimating optical flow
F1 based on input frames I. (2) Background estimation: We segment the foreground M using VOS and remove the foreground using video
inpainting methods. The masked region is completed in the optical flow to form F2 and II. (3) Flow completion: The optical flow is
extrapolated to the new width F3 and the missing region is added to the frames I’M. (4) Video completion: Complete the masked regions of
I’M to form the outpainted result I’O. (5) Post processing: The extrapolated areas are blurred and appended to the original frames I to form
the result IO.

Figure 6. On top the estimated and completed optical flow of a
frame with a moving object on the edge. In the middle and bottom
two consecutive frames illustrate an example of temporal artifacts.
The green line highlights the deformation.

We prevent these temporal artifacts by initially creating
a background estimation. To form this background estima-
tion, we combine the VOS method of Lu et al. [16] and the
video inpainting method of Gao et al. [7].

VOS is a binary labeling problem with the goal of sepa-
rating foreground objects from the background of a video.
It is possible to divide VOS into two categories: one shot
and zero-shot. In one shot VOS, the first ground truth frame
of the foreground mask is available, whereas in zero-shot

VOS no ground truth frame is given. Within the context
of this study, only the input frames are given and thus only
zero-shot VOS is possible. We tried two zero-shot VOS
methods. Zhou et al. [35] use optical flow for their Motion-
Attentive Transition for Zero-Shot Video Object Segmen-
tation (MATnet) method. They achieve the fastest results
assuming the optical flow is provided. We found the results
of Lu et al. [16] to be more accurate. Their method finds
correlation between pairs of frames to form the segmenta-
tion.

We use the VOS method of Lu et al. [16] to detect the
foreground, resulting in a foreground mask. This masked
region is then completed using the video inpainting method.
By removing the foreground entirely, we prevent the tempo-
ral artifacts and deformation described earlier.

The use of background estimation before extrapolating
the video frames allows us to form more realistic results
when there is movement near the end of the frame. This
is common in portrait video due to the limited width of the
frame. Additionally, we maintain the focus on the origi-
nal video content by only extrapolating the background and
not predicting the movement of the foreground outside the
frame.

4.5. Image Completion

We replace the image inpainting network used by Gao
et al. [7] by the large-scale image completion network from
Zhao et al. [33]. This network is more suitable for outpaint-
ing as the masked regions are generally larger, and it can
complete masks of variable shapes.

Currently, the network has to hallucinate what lays out-
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Figure 7. On the left the mask and associated frame, on the right
the shifted images. The masked regions are indicated in black.

side the frame, whereas we want something coherent to the
given image. In this paper, we propose to add information
to the outside of the missing region by shifting the image
content as illustrated in figure 7. This addition allows our
method to create a more realistic result.

We noticed that, when using a circular shift, a stark tran-
sition could be generated in certain cases. Instead, we mir-
ror the right-most known pixels to provide extra information
to the image completion network.

By including this image shifting step, our method yields
more realistic per-frame completions. In section 5 we eval-
uate our method with and without this step.

4.6. Post-Processing

Finally, we include an optional post-processing step. It is
impossible to accurately predict the information outside the
frame. By blurring the completion, there is a clear distinc-
tion between the original, real video content and the gen-
erated completions. This way, we improve the viewing ex-
perience without distracting from the original video or pre-
senting generated footage as original, which might have eth-
ical implications when applied to, for instance, news cov-
erage. Moreover, this is in-line with the earlier proposed
foveated approaches to video outpainting [1, 2], where it is
proven that blurring the outer regions of the video also im-
proves the viewing experience. We do not take this final
blurring into account in during evaluation.

5. Experimental Results
In the previous sections, we described our method for

video outpainting. Throughout the literature, there is cur-
rently still a lack of research focused on video outpainting.
Only Gao et al. [7] apply their video inpainting method to
video outpainting. We compare our method to this video
inpainting method based on the following five evaluation

metrics: 1. Mean squared error (MSE). 2. Peak signal-
to-noise ratio (PSNR) 3. Structural similarity index mea-
sure (SSIM) 4. Learned perceptual image patch similarity
(LPIPS) 5. Fréchet Video distance (FVD). We apply these
metrics to the DAVIS dataset (480p) [22] and the YouTube
VOS dataset [27].

5.1. Portrait To Landscape Conversion

We simulate the conversion from portrait (9:16) to land-
scape (16:9) video by removing a part on the left and right
edges of the videos, as illustrated in figure 8. This way the
center third can be used as input and the original full video
as ground truth. The following sections discuss the results
in more detail. Additionally, we also evaluated our method
on the conversion from landscape to ultrawide (21:9) video
with the same metrics. For illustration purposes, we gen-
erated a video playlist for the four compared methods, plus
the results after the post-processing step mentioned in sec-
tion 4.6. Standard completions entail leaving the comple-
tions blank as illustrated in the middle of figure 8. The re-
sults are publicly available2 and can also be found in the
supplementary material. There are videos for the following
five completion methods:

1. Standard Completions
2. Gao et al. [7]
3. Ours without image shifting
4. Ours with image shifting
5. Ours with both image shifting and post processing

The results are shown in table 1. In the following sections,
we discuss the results of the five above-mentioned evalua-
tion metrics.

MSE and PSNR

The first and simplest evaluation metrics we used
were the Mean Squared Error (MSE) and Peak Signal To
Noise Ratio (PSNR). A lower MSE indicates a smaller
deviation from the original images and thus a better result.

DAVIS dataset [22] MSE↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
Standard 11293,18 7,95 0,330 0,5397 2009,12
Gao et al. [7] 1724,97 16,18 0,560 0,3049 1414,86
Video outpainting (ours) 1654,59 16,82 0,596 0,2635 1244,77
Video outpainting+image shift (ours) 1513.49 17.33 0.600 0.2530 1099,11
YouTube-VOS [27] MSE↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
Standard 11271,97 8,177 0,354 0,470 2220,93
Gao et al. [7] 3008,74 14,37 0,500 0,385 1848,07
Video outpainting (ours) 2702,43 14,46 0,509 0,338 1642,46
Video outpainting+image shift (ours) 2604,17 14,76 0,518 0,320 1374,85

Table 1. Evaluation of our method for vertical to horizontal video
conversion with and without image shifting compared to the video
inpainting method of Gao et al. [7] and the standard completions
on the DAVIS [22] and YouTube-VOS [27] datasets.

2 github.com/Video-Outpainting/VideoOutpainting
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A higher PSNR indicates a better result. Our algorithm
achieves the best results here, but the deviation from the
ideal value is still relatively large. MSE and PSNR are
evaluations that compare pixel values. These pixel-based
metrics evaluate to what extent the two images are identical
to each other. Within the context of this research, it is not
the goal, nor is it possible to recreate the image perfectly.
Image and video outpainting are multimodal problems
where multiple completions can form an equally realistic
result. Therefore, these are not ideal evaluation metrics
since the goal is not to recreate the original image content,
but rather to generate realistic completions.

SSIM

The structural similarity index measure (SSIM) is a
metric that compares two images based on three features:
luminance, contrast, and structure. A value of 1 indicates
the two images are identical.

Feature-based metrics form a more accurate evaluation
of the results. Our result still deviates from the ideal value.
This is because no information is available about what is
visible outside the given video content. Thus, the comple-
ment is formed based on given content while it is possible
that a drastic change occurs just outside the frame, as illus-
trated in figure 8. We can form a realistic completion, but
there can always be a significant difference when these two
images are compared. In figure 8 we see white buildings
just outside the given video content and green forestry in
our completion.

The results of Gao et al. [7] are relatively close to ours.
Based on the optical flow, a large part of the video can be
completed. The lower quality of the remaining completions
may be more visible to the human eye. The improvements
we proposed seem to have a positive but rather small impact
on the three features of the SSIM.

LPIPS

Learned Perceptual Image Patch Similarity (LPIPS) [32]
is a learning-based metric that approximates how people
would evaluate images. Our method achieves the best
results, but in this case the distinction is more significant.
The result of the method of Gao et al. [7] is still high since
part of the completion can be done based on the optical
flow information. The remaining blurry completion and
temporal artifacts seem not to influence this evaluation
metric.

FVD

The previous metrics evaluated the frames individ-
ually as images. The Fréchet Video Distance (FVD) [25]

Figure 8. Top, a single frame from the DAVIS dataset [22]. Mid-
dle, the input segment of the frame for our method. Bottom, the
completed frame.

is a metric specifically aimed at video. A distance of 0
between the two vectors indicates an identical image. Our
method shows a significant improvement for this metric.

5.2. Ultrawide Aspect Ratio

In the previous section, we evaluated our results on por-
trait (9:16) to landscape (16:9) video conversion. This con-
version results in a masked region twice the size of the given
frame. We also evaluated our method on the conversion
of horizontal to ultrawide (21:9) video. The videos in the
dataset are all in landscape format. To simulate this conver-
sion, we remove and re-complete the left- and right-most
1/8 of the width. The results are shown in table 2. Visual
results are publicly available on our webpage3 and can also
be found in the supplementary material. There are videos
for the following five completion methods:

• Standard Completions
• Gao et al. [7]
• Ours without image shifting
• Ours with image shifting
• Ours with both image shifting and post processing
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Method MSE↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
Standaard 11657,35 7,80 0,329 0,546 346,62
Gao et al. [7] 301,33 23,00 0,809 0,074 254,55
Video outpainting (ours) 277,60 23,82 0,852 0,065 224,77
Video outpainting+image shift (ours) 239,18 24,34 0,890 0,062 207,26

Table 2. Evaluation of our method for horizontal to ultra-wide
video conversion with and without image shifting compared to the
video inpainting method of Gao et al. [7] and the standard com-
pletions on the DAVIS [22] dataset.

Extrapolating a smaller masked region provides a better
result. There is less information to complete. Additionally,
foreground objects fill a smaller portion of the frame, which
improves our background estimation. These factors cause
our method to generate significantly more realistic results
for this conversion. Our method achieves the best results
and can form realistic completions on the videos from the
dataset.

6. Limitations
As seen in our results, we chose not to complete the

foreground object(s) into the outpainted area. This delib-
erate choice is to avoid that moving objects near the edge
of frames cause artifacts as illustrated in figure 2. Related
works do not address these artifacts. We chose to focus on
forming more realistic, visually pleasing completions and
address these artifacts by first forming a background esti-
mation instead of trying to predict what may or may not
have happened outside of frame. This way the viewing ex-
perience is enhanced and we do not distract the viewer from
the original video content, we avoid drawing the attention to
erroneous completions outside of the original video frame.

Our method initially forms a background estimation be-
fore forming the completions. This prevents visual artifacts
and maintains the focus on the original video content. But,
this approach has two drawbacks. Firstly, when the video
consists of a close-up foreground object, there is very lit-
tle information available about the background. This causes
the completion to be less realistic.

Secondly, only completing the background causes the
foreground objects to disappear into the completed region
when they extend outside the original image frame. This un-
natural effect is frequently visible in our evaluation dataset,
because the input is a cropped wide video. In real use-cases
of our algorithm, e.g. a vertical video captured by a mobile
phone, this problem is less present because the foreground
object is then most likely kept within the frame by the user.
However, in order to resolve this, one could separately try to
predict the foreground motion outside the frame. We have
chosen not to do this, as it would boil down to generating
fake video evidence, and go beyond a mere visual enhance-
ment of the original video.

3 http://github.com/Video-Outpainting/VideoOutpainting

When the video contains faster or more complex camera
motion, the completions based on optical flow become less
realistic. We notice deformations in the background in those
videos.

7. Conclusion
We described a method for video outpainting. Our

method expands the aspect ratio of a given video by com-
pleting the space at the sides of the given video frames in a
realistic and temporally consistent manner.

Our method forms a background estimation to reduce
temporal artifacts formed in the outpainting stage. We do
this using existing video object segmentation and video in-
painting methods. Temporal consistency is achieved using
optical flow. Regions that cannot be completed based on the
flow information are completed using an image completion
network. We propose to shift some image content to the
edge to create more realistic results.

We evaluate our method on two datasets and several eval-
uation metrics. We determine that pixel-based (MSE and
PSNR) and feature-based (SSIM) methods are less suit-
able to evaluate video outpainting. Learning-based metrics
(LPIPS and FVD) form a more accurate evaluation. Our
method achieves the better results as compared to other state
of the art methods in all of these metrics.
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