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Abstract

Face restoration aims to recover high-quality (HQ) face
images from low-quality (LQ) ones with various unknown
degradations. Unpaired face restoration approaches fo-
cus on the adaptation to unseen degradations, which is a
more challenging setting. Recently, generative facial priors
of StyleGAN are used to improve the restoration capability
of paired face restoration methods. For unpaired methods,
however, using face priors is a challenge due to the lack of
paired supervision. To address this issue, we take advantage
of the editing capabilities of StyleGAN’s latent code and
propose a novel learnable cross-quality shift. The proposed
learnable cross-quality shift not only introduces the gener-
ative facial priors into the unpaired framework, but also
enables the straight-forward addition/subtraction in the la-
tent feature space to achieve quality conversion. Further-
more, we design a two-branch framework with the proposed
cross-quality shift to deal with unpaired data and improve
the fidelity of restoration. With the unpaired framework, our
method can be fine-tuned on images with unseen degrada-
tion. Experimental results show that (i) compared to state-
of-the-art methods, our method improves performances un-
der moderate and severe degradation situations; and (ii)
both the proposed learnable cross-quality shift and the two-
branch framework benefit the restoration performance.

1. Introduction
Face restoration aims to restore LQ images with different

degradations, such as low resolution [4,15], noise [25], and
blur [20]. It has many applications, such as video surveil-
lance [6] and face recognition [16]. Face restoration usually
includes two approaches: paired or unpaired, according to
whether it needs the associated pairs of HQ and LQ images
or not.

In most paired face restoration studies [11, 15, 25], the
training dataset is created by using a specific degradation
operation (e.g., bicubic, Gaussian noise, Gaussian blur,
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Figure 1. Low and high-quality facial images are mapped to a la-
tent space of StyleGAN and naturally grouped into two subspaces.
With a trainable cross-quality shift ∆, the restoration from an LQ
facial image to its corresponding HQ version is converted to a sim-
ple addition operation in the latent space and the degradation from
an HQ facial image to its corresponding LQ version is equivalent
to a subtraction operation in the same latent space.

JPEG compression) on high-quality images. Recent meth-
ods [3, 11, 23] randomly use various degradation combi-
nations on high-quality images to generate training pairs.
However, these methods are still unable to handle vari-
ous degradations beyond the training set because they need
paired data for training.

The unpaired approaches [2,14] do not need paired data,
which enables them to adapt to unseen degradation. For ex-
ample, Bulat et al. [2] design two GANs to learn low-quality
and high-quality images respectively. Lu et al. [14] use a
KL divergence loss to regularize the distribution of degra-
dation features. However, these methods ignore using facial
priors for face restoration tasks, which limits the restora-
tion capability for severely degraded images. How to utilize
face priors in unpaired frameworks remains a challenge. In-
spired by the finding that images are clustered according to
their degradation in feature space [13], we consider that the
essence of facial restoration is to find a transformation from
the subspace of the low quality to the subspace of the high
quality. Therefore, we propose a learnable cross-quality
shift in the latent space of StyleGAN, which introduces the
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Figure 2. Overview of the proposed architecture. The data flow of HQ sample h (LQ sample l) is the upper (lower) branch. Three encoders
Ehq , Elq and Edeg for HQ and LQ images encode two input images and estimate the degradation to the shared latent space of a pre-trained
StyleGAN. The learned cross-quality shift ∆i is used to transfer representations from one quality level to the other. Two GAN losses
distinguish l̂h from LQ images, and ĥl from HQ images. Other losses have not been shown in this figure.

generative facial priors into the unpaired framework.
As shown in Fig. 1, we can transform the LQ/HQ im-

age into a corresponding HQ/LQ image through straight-
forward addition/subtraction in the latent space by learn-
ing a cross-quality shift. Thus, the restoration task can be
solved by mapping the shifted latent codes back to images.
Compared to the previous unpaired methods, the proposed
learnable cross-quality shift not only introduces the genera-
tive facial priors into the unpaired framework, but also ex-
plicitly estimates the degradation in the latent space, which
allows a user to tweak the shifting scale to adjust the restora-
tion level of the restored image, alleviating the blur or over-
sharp problem.

To cope with unpaired data, a two-branch framework is
designed. As shown in Fig. 2, the upper branch takes HQ
images and the lower branch takes LQ images. The two-
branch framework allows us to add constraints between h
and its reconstructed image ĥ, l and its reconstructed image
l̂, which improves the fidelity of the restoration.

Extensive experiments are conducted to evaluate the per-
formance of our proposed method. In CelebAHQ, com-
pared to previous face restoration methods, our method im-
proves by 2.0 % and 3.3 % in terms of the metric of LPIPS
on downsampled with noise, or blur+noise, respectively.

The main contributions are summarized as follows:
• We propose a novel concept, learnable cross-quality

shift, a unique translation operator that enables the con-
version between two different quality levels in the latent
space of StyleGAN. The proposed learnable cross-quality
shift not only leverages the generative facial priors, but also
allows a user to tweak the shifting scale to adjust the restora-
tion level of the restored image.

• Based on the proposed learnable cross-quality shift,
a two-branch framework is designed to deal with unpaired
data and improve the fidelity of restoration.

• Extensive experiments are conducted to validate that
the proposed unpaired face restoration method achieves
higher perceptual quality on moderate and severe degrada-
tion images.

2. Related Works

2.1. Face Restoration

Relying on strong facial prior knowledge, face restora-
tion methods achieve better performance than common im-
age restoration methods. These facial priors include facial
landmarks [4,9], face parsing maps [3,4,19] and facial com-
ponent heatmaps [26].
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To synthesize the training data that approximate the
real LQ images in the wild, some face restoration meth-
ods [3, 11, 23] randomly use various degradation combina-
tions on high-quality images to generate training pairs. PS-
FRGAN [3] progressively restores the input image through
semantic-aware style transformation. GFPGAN [23] lever-
ages generative facial prior provided by a pre-trained GAN.
However, these methods still rely on supervision training,
which means they cannot handle degradations not seen dur-
ing training.

To deal with images with unseen degradation, unpaired
face restoration methods are proposed. Bulat et al. [2] pro-
pose learning the degradation before face restoration from
unpaired data. They design a high-to-low GAN to learn the
real degradation processes from unpaired LQ and HQ im-
ages and a low-to-high GAN for face restoration. Lu et al.
[14] disentangle the content and degradation features from
low-quality images by using a KL divergence loss. These
methods ignore using facial priors for face restoration tasks,
which limits their restoration capability, especially when in-
put images are degraded severely. In this work, we refer
to the latent space editing methods and propose the cross-
quality shift in the latent space of StyleGAN, which intro-
duces the generative facial priors into the unpaired frame-
work.

2.2. Latent Code Editing

The generator of an unconditional GAN learns the map-
ping G : Z → X . When z1, z2 ∈ Z are close in the Z
space, the corresponding images x1, x2 ∈ X are visually
similar [24]. Latent code editing methods map an image
x back to its latent representation z and then edit z as the
vector arithmetic z′ = z + sn, where s means the scale
and n is the edit direction. Finally, the latent code z′ is
mapped to the image x′, which has the desired style differ-
ent from x. For instance, InterFaceGAN [18] employs some
off-the-shelf classifiers to learn a hyperplane in the latent
space serving as the separation boundary, which enables it
to modify face attributes. Abdal et al. [1] learn a semantic
mapping between the space Z and the space W of Style-
GAN. In the face restoration task, PULSE [17] iteratively
optimizes the latent code of StyleGAN and gets an HQ out-
put in a self-supervised way. However, the optimization
function of PULSE may be improper to images with other
degradations than Bicubic. Unlike previous methods, the
proposed method works in an unpaired framework, which
makes it able to adapt to unseen degradation.

3. Methodology
Let Dpair = {(IiLQ, I

i
HQ)}Li=1 be a training dataset for

paired face restoration, where each pair of the low-quality
facial image IiLQ and the high-quality facial image IiHQ is
well associated. The task of traditional paired face restora-

tion is to train a conditional generating function Rpair :
Rm×n → RM×N based on the paired dataset Dpair, so that
the restored image

IR = Rpair (ILQ) ∈ RM×N (1)

can well approximate the ground-truth high-quality image
IHQ. However, a model trained by the paired dataset Dpair

can usually only cope with low-quality images of the type
in the dataset. Unpaired face restoration is proposed to ad-
dress this issue. Let Dunpair = {(IiLQ, I

πi

HQ)}Li=1 be a train-
ing dataset for unpaired face restoration, where the permu-
tation π indicates that each pair of the low-quality facial
image IiLQ and the high-quality facial image Iπi

HQ does not
have any content correspondence. The goal of unpaired
face restoration is to train a conditional generating functions
Runpair : Rm×n → RM×N based on the unpaired dataset
Dunpair, so that the restored image

IR = Runpair (ILQ) ∈ RM×N (2)

has the same facial content with ILQ and has almost the
same quality level as any high-quality image Iπi

HQ. Un-
paired face restoration is much more challenging than
paired face restoration because there is no ground-truth
high-quality image for supervision. How to utilize facial
priors is thus important in unpaired face restoration tasks.

3.1. Learnable Cross-Quality Shift

We now present the proposed learnable cross-quality
shift, which introduces the generative facial priors into the
unpaired framework and models the degradation between
the low and high qualities in the latent space of Style-
GAN. Hypothetically, we consider that the essence of fa-
cial restoration is to find a transformation from the sub-
space of the low quality to the subspace of the high quality.
In this work, we assume that with the powerful representa-
tion learning ability of deep neural networks, the intuition
is similar to the one in Word2vec:

MAN −WOMAN = KING−QUEEN. (3)

In other words, we could make an analogy that MAN
and KING are from the LQ subspace; and WOMAN and
QUEEN are from HQ space. Then, the degradation pro-
cess from HQ quality level to a specific LQ quality level
can be considered similar and close. Following this spirit,
given the unpaired latent code wh in the HQ representation
domain WH and wl in the LQ representation domain WL,
they can be shifted to the opposite domain via almost the
same shift ∆:

∆ = whl
− wl ≈ wh − wlh , (4)

where whl
is the HQ version of wl and wlh is the LQ version

of wh. We call ∆ in (4) the learnable cross-quality shift.
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Figure 3. In the latent space, representations of the low quality
form a subspace and representations of the high quality form an-
other. With the learnable cross-quality shift ∆, low-quality rep-
resentations can be transformed to the high-quality subspace and
vice versa, which achieves restoration and degradation.

Fig. 3 shows how degradation and restoration work with the
proposed learnable cross-quality shift ∆.

During the training phase, such a shift is trainable and
we could get it via the following formulation:

whl
= wl +∆ ∈ WH , wlh = wh −∆ ∈ WL. (5)

With two discriminators to enforce whl
and wlh to stay in

HQ and LQ representation domains respectively, ∆ can be
learned in an unpaired framework.

During the inference phase, the cross-quality shift is ap-
plied to the representation of input image l:

whl
= wl +∆. (6)

Note that the value of ∆ changes for different degrada-
tions. With the unpaired framework, ∆ can be adjusted for
an unseen degradation.

The proposed learnable cross-quality shift ∆ in this work
is similar to the edit direction in latent code editing methods.
Given a ∆, which can be learned by the proposed frame-
work, the editing direction n is available for control over
restoration level in the latent space of StyleGAN:

n =
∆

∥∆∥2
. (7)

Then the latent code w can be edited as vector arithmetic
with the editing direction n:

w′ = w + αn, (8)

where α means the scale. The edited code w′ is mapped
back to the image space with the StyleGAN for the final re-
sult. In this way, the proposed learnable cross-quality shift
∆ allows a user to tweak the shifting scale to adjust the
restoration level of the restored image.

3.2. Two-branch Framework

Based on the proposed learnable cross-quality shift, a
two-branch framework is designed to deal with unpaired
data and add more constraints for fidelity.

A StyleGAN pre-trained on FFHQ [8] with 256×256
outputs is used for all our experiments. Different from other
GANs, StyleGAN has two latent spaces: Z and W . We
choose to map the face representation into W , as it is a
more disentangled latent space than Z [18], thus more suit-
able for the learnable cross-quality shift. The latent codes
w ∈ W have 14 channels, corresponding to the output size
256×256 of StyleGAN, each channel is a 512-dimensional
vector. For the encoders Ehq , Elq and Edeg , we use a
ResNet-34 backbone and modify its output dimensionality
to 14 × 512, which means the dimensionality of the learn-
able cross-quality shift ∆ is also 14× 512.

Given unpaired training sample h in the HQ image do-
main and l in the LQ image domain, the Ehq and Elq extract
latent codes from h and l separately:

wh = Ehq(h), wl = Elq(l), (9)

where wh (wl) is the representation of h (l) in latent space
W of StyleGAN. The learnable cross-quality shift ∆1 is ex-
tracted from l by the Edeg:

∆1 = Edeg(l). (10)

wh (wl) is converted into its LQ (HQ) version with the
cross-quality shift ∆1:

l̂h = G(wh −∆1), ĥl = G(wl +∆1), (11)

where G is a pre-trained StyleGAN. l̂h (ĥl) is the gener-
ated LQ (HQ) image corresponding to h (l). Then, ∆2 is
extracted from l̂h by the Edeg:

∆2 = Edeg(l̂h). (12)

l̂h and ĥl are fed into Elq and Ehq again to generate cycle
results ĥ and l̂:

ĥ = G(Elq(l̂h) + ∆2), l̂ = G(Ehq(ĥl)−∆2). (13)

Cycle results are used for adding constraints to ensure the
fidelity. To keep wh (wl) as the representation of h (l), we
map it back to the image hrec (lrec) through G, which makes
adding constraint on them possible:

hrec = G(wh), lrec = G(wl). (14)

Compared with previous methods [14], the learnable
cross-quality shift ∆i is estimated in the latent space of
StyleGAN, which means that the degradation estimation
takes advantage of the powerful representation learning and
decoupling capabilities of the latent space W . The learn-
able cross-quality shift ∆i also enables a user to tweak the
shifting scale to adjust the restoration level (See Fig. 6 in
the section of Experiment Results).
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3.3. Objective Function

Note that there is no ground-truth image as supervision,
model objectives need to be designed carefully. The overall
loss function includes the downscaled identity loss and the
cycle-consistency loss for fidelity, as well as the adversarial
loss and the perceptual loss for high quality.
Downscaled identity loss: Intuitively, when we downscale
the input LQ image and the restored HQ images to the same
resolution level, two downscaled images should be simi-
lar. To better preserve the facial identity, we use the iden-
tity constraints on the downscaled images. Specifically, a
dedicated identity loss measuring the cosine similarity be-
tween the downscaled input LQ image and downscaled out-
put restoration image. For the input LQ image l and the
generated HQ image ĥl corresponding to it, we introduce
the downscaled identity loss:

Ldown(l, ĥl) = 1− ⟨R(l ↓), R(ĥl ↓)⟩, (15)

where R is a pre-trained ArcFace [5] network for face
recognition, ↓ is the downsample function.
Cycle-consistency loss: The cycle-consistency loss is em-
ployed on both domains for preserving the content of input
images:

Lcc = ∥h− ĥ∥1 + ∥l − l̂∥1. (16)

Adversarial losses: To make the generated images look
more realistic, the adversarial loss is applied on both do-
mains:

Ladv = − log(Dlq(G(wh−∆1)))−log(Dhq(G(wl+∆1))).
(17)

Perceptual losses: A perceptual loss is applied between the
reconstructed HQ image ĥ and the corresponding original
HQ image h:

Lperc = ∥ϕ(h)− ϕ(ĥ)∥1, (18)

where ϕ(·) is the features of the pre-trained CNN. In our
experiments, conv5,4 layer of pre-trained VGG19 network
[22] is employed to extract features from images.
Overall objective: The overall objective function for our
network is:

L = λccLcc+λadvLadv+λpercLperc+λdownLdown, (19)

where λcc, λadv, λperc and λdown are the weights.

4. Experimental Results
4.1. Experimental Setup

Dataset: We use FFHQ dataset [8] as HQ dataset,
which consists of 70,000 high-quality images at a size of
1024×1024. We use the first 7500 images for training and
the last 1000 images for testing. We use CelebAHQ dataset

[7] to generate the corresponding LQ images as LQ dataset,
which has no identity intersection with FFHQ. We use im-
ages with numbers from 7500 to 15000 for training and the
last 1000 images for testing. Before training and testing,
images in CelebAHQ are cropped and aligned in the same
manner as FFHQ. This step results in 7211 images left for
training and 967 images left for testing.
Degradation models: To fully demonstrate the generaliza-
tion of our proposed method on different degraded images,
three degradation models are used for simulating LQ im-
ages. They can be formulated as follows [3, 11, 12, 23]:

ILQ = [(IHQ ⊛ kσ) ↓r +nδ]JPEGq
, (20)

where ⊛ represents the convolution operation between the
HQ image IHQ and a blur kernel kσ . ↓r is the downsam-
pling operation with a scale factor r. n denotes the addi-
tive white Gaussian noise (AWGN) with a noise level δ.
(·)JPEGq indicates the JPEG compression operation with
quality factor q. The degradation models are designed to
simulate three different degradation levels: mild, moderate,
and severe. Images are first resized to 256×256 in all three
degradation models. The first one is to downsample with
scaling factor 8 by Bicubic, and then compress by JPEG
with quality factor q ∈ {90 : 95} (denote as BicC for short),
which is to simulate mild level degradation. The second one
is to downsample with scaling factor 8 by Bicubic, and then
add Gaussian noise with covariance δ ∈ {20 : 25} (denote
as BicN for short) for simulating moderate level degrada-
tion. The third one is to Gaussian blur with kernel standard
deviation σ ∈ {5 : 7}, downsample with scaling factor 8
by Bilinear, and then add Gaussian noise with covariance
δ ∈ {10 : 15} (denote as BBilN for short), which is to
simulate severe level degradation. Note that this work can
adapt to unseen degradations beyond these three degrada-
tion models since it is an unpaired method.
Training and testing details: We use Adam optimizer [10]
to train our networks. We choose β1 = 0.5, β2 = 0.999,
and set the learning rate of the generator and discriminator
to 0.0001 and 0.0004 respectively. For hyper-parameters,
we experimentally set: λcc = 1, λadv = 0.1, λperc = 0.05,
and λdown = 0.1. The training batch size is set to 4.
All models were implemented by PyTorch and trained on
a Tesla V100 GPU. Since projecting an image into latent
space is a hard task, we pre-train the Elq and Ehq with Lrep:

Lrep = ∥l −G(Elq(l))∥1 + ∥h−G(Ehq(h))∥1. (21)

We fix parameters of Elq, Ehq to train the Edeg in the first
10k iterations, then we train the whole framework except
for the pre-trained generator G in the next 50k iterations.
When testing, Ehq is not required. Given a test LQ image
l, the LQ encoder Elq extracts its representation wl and the
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Figure 4. Visual evaluation under three different kinds and levels degradation, including bicubic plus compression, bicubic plus noise, and
blur plus bilinear and noise. Our method produces the best visual results across these degradations.

degradation encoder Edeg estimates its degradation, which
gets the cross-quaity shift. Then the learned shift is applied
to wl and the pre-trained generator G will generate the re-
stored image hl with (11).

4.2. Comparison with SOTA Methods

We compare our method with some state-of-the-art face
restoration methods. For paired methods, we include PS-
FRGAN [3] and GFPGAN [23]. The latter also includes a
pre-trained StyleGAN in its framework. For unpaired meth-
ods, Bulat et al. [2] and Lu et al. [14] are included. For
other unsupervised methods, ZSSR [21] and PULSE [17]
are included. We adopt official codes except for Bulat et
al. and Lu et al., for which we use a re-implementation.
We use the official pre-trained model of paired methods for
two reasons: 1) They are designed for blind face restora-
tion; 2) They cannot be trained on unpaired data with un-

seen degradation. We fine-tune the unpaired methods on
our face training set for fair comparisons.

Only the face region is cropped for the evaluation. We
employ pixel-wise metrics (SSIM) and the perceptual met-
ric (LPIPS [27]) for restored images with the Ground-Truth
(GT). Similar to GFPGAN, the identity similarity in the Ar-
cFace [5] feature embedding is also measured. We calculate
the inner product (IP) of the output vectors of the restored
image and its GT, where bigger values indicate closer iden-
tity to the GT. Since PSNR and SSIM are known not to
correlate very well with perceptual quality [27], we just list
SSIM scores in the paper.

Tab. 1 summarizes quantitative results on three types of
degraded data. 1) Our method achieves the lowest LPIPS
on moderate and severe degraded data, indicating that our
results are perceptually close to the GT. 2) Besides the per-
ceptual performance, our method also retains a better iden-

672



Methods Bicubic+Compression (mild) Bicubic+Noise (moderate) Blur+Bilinear+Noise (severe)
SSIM↑ LPIPS↓ IP.↑ SSIM↑ LPIPS↓ IP.↑ SSIM↑ LPIPS↓ IP.↑

Paired PSFRGAN 0.680 0.127 0.703 0.598 0.153 0.655 0.581 0.152 0.646
GFPGAN 0.671 0.137 0.712 0.474 0.251 0.616 0.523 0.184 0.644

Unsupervised ZSSR 0.679 0.505 0.573 0.533 0.611 0.511 0.564 0.623 0.484
PULSE 0.625 0.166 0.660 0.618 0.166 0.658 0.598 0.180 0.635

Unpaired
Bulat et al. 0.583 0.363 0.549 0.481 0.342 0.504 0.563 0.372 0.492

Lu et al. 0.623 0.181 0.616 0.676 0.228 0.558 0.531 0.251 0.541
Ours 0.684 0.139 0.711 0.643 0.150 0.668 0.614 0.147 0.679

Table 1. Quantitative comparison on three types of degraded data. The proposed metric, IP., represents the inner product of the feature
vectors of the restored image and its GT, higher is better. On mild degraded data, the proposed method produces slightly worse results than
paired methods. And on moderate and severe degraded data, the proposed method produces the best results in LPIPS.

Methods SSIM↑ LPIPS↓ IP.↑
baseline 0.633 0.181 0.626
+ upper 0.623 0.177 0.641
+ upper + ∆i 0.614 0.163 0.660
+ upper + ∆i + Ldown 0.643 0.150 0.668

Table 2. Ablation study. For SSIM, higher is better; for LPIPS,
lower is better; for IP., higher is better. Both adding upper branch
and adding learnable cross-quality shift ∆i benefit the restoration
results in LPIPS and IP.. Adding downscaled identity loss Ldown

further improves the performance.

tity on two types of degraded data, indicated by the highest
inner product of the feature vectors. 3) On mild degraded
data, our method produces slightly worse results than paired
methods. This is because the mild degraded data is sim-
ilar to the training data of the paired methods. The GT
images in the training data of the paired methods promote
their good performance. However, when paired methods are
faced with data that differs greatly from the training data
(moderate and severe degraded data), their results are un-
satisfactory.

Fig. 4 shows the qualitative comparisons. 1) Thanks to
the powerful generative facial prior provided by the pre-
trained StyleGAN, our method recovers high perceptual
quality details in the eyes, teeth, etc. 2) Paired methods
(PSFRGAN and GFPGAN) are unable to handle degrada-
tions beyond their training setting, as shown in the second
and third columns of Fig. 4. 3) Although PULSE can also
generate high perceptual quality results with the facial prior
provided by the pre-trained StyleGAN, it can not retain the
face identity, as shown in the fourth column of Fig. 4. 4)
Previous unpaired methods (Lu et al.) fail to generate high
perceptual quality results, which may be due to their lack
of help from facial priors, as shown in the fifth column of
Fig. 4. As shown in the sixth column of Fig. 4, our method
can produce results with realness and fidelity on different
types of degraded images.
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Figure 5. Ablation study. Adding upper branch, adding the cross-
quality shift ∆ and adding downscaled identity loss Ldown can
benefit the qualitative performance. With the combination of them,
our proposed method achieves the best performance.

4.3. Ablation Study

We perform an ablation study to analyze the effective-
ness of each component or loss in the proposed framework.
Both quantitative and qualitative results on BicN are re-
ported for the four variants of our framework: 1) Baseline:
only using the lower branch of the proposed architecture
without the upper branch or the learnable cross-quality shift
∆i or downscaled identity loss Ldown; 2) adding the upper
branch; 3) adding the learnable cross-quality shift ∆i; 4)
adding downscaled identity loss Ldown.

We present the SSIM, LPIPS, and IP. for each variant in
Tab. 2. Tab. 2 demonstrates that adding the upper branch,
the learnable cross-quality shift ∆, and the Ldown can ben-
efit the restoration results. With the combination of them,
our method can achieve the best performance. As shown in
Fig. 5, we can observe that adding the upper branch makes
it possible to add the cycle-consistency loss, which helps
with the fidelity of the results. Adding the learnable cross-
quality shift ∆ enables wl and wh to stay in the LQ do-
main and the HQ domain respectively, which also benefits
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Figure 6. Visual evaluation under restoration level editing. Our method finds a better editing direction for adjusting the restoration level in
the latent space. When manually set scale α changes, the results would be more blurry or sharper.

the performance. Adding Ldown promotes the preservation
of the facial identity, which further improves the fidelity of
the results.

4.4. Control over Restoration Level

Here we compare with a popular unsupervised latent
code editing method and display the ability to control the
restoration level of the results.

InterFaceGAN [18] is a recent popular latent code edit-
ing method. Different from face restoration methods, Inter-
FaceGAN learns the editing direction n in the latent space,
which means that it requires a manually set scale α to de-
cide the restoration level and generate the final result. In-
terFaceGAN predicts the same restoration direction for all
images, while our method predicts a different restoration
direction for each image. Note that our method can auto-
matically learn the cross-quality shift ∆ (product of α and
n in EQ. (8)). The editing directions of the two methods are
used for a fair comparison. For InterFaceGAN, we man-
ually set five scale α. For our method, we manually set
four scale α and use a α that is automatically learned by the
learnable cross-quality shift ∆. Note that InterFaceGAN is
not a face restoration method, so it is reasonable to change
other attributes while adjusting the restoration level.

As shown in Fig. 6, with the increase of α, the results
become sharper. Both methods enable a user to adjust the
restoration level of the restored image, which alleviates the
problem of blurry or over-sharp results. Our method finds a
better editing direction for adjusting the restoration level in
the latent space. InterFaceGAN turns images into a paint-
ing style during the adjustment of restoration level, which
may be because improving image quality and changing im-
age style are entangled. Our method is designed for image

restoration, so the downscaled identity loss is beneficial for
finding a restoration direction.

5. Conclusion
In this paper, we propose an unpaired method based on

the learnable cross-quality shift. The proposed learnable
cross-quality shift not only introduces the generative facial
priors into the unpaired framework, but also explicitly mod-
els the degradation across two quality levels. The cross-
quality shift also allows a user to tweak the shifting scale to
adjust the restoration level of the restored image. Based on
the learnable cross-quality shift, a two-branch framework is
designed for unpaired data, which enables our method to
be fine-tuned on images with unseen degradation. Exper-
imental results show improved performance on moderate
and severe degradation images compared with state-of-the-
art methods.
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