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Abstract

Recently, a number of CNN based methods have made
great progress in single image super-resolution. However,
these existing architectures commonly build massive num-
ber of network layers, bringing high computational com-
plexity and heavy memory consumption, which is inappro-
priate to be applied on embedded terminals such as mo-
bile platforms. In order to solve this problem, we pro-
pose a hybrid network of CNN and Transformer (HNCT)
for lightweight image super-resolution. In general, HNCT
consists of four parts, which are shallow feature extraction
module, Hybrid Blocks of CNN and Transformer (HBCTs),
dense feature fusion module and up-sampling module, re-
spectively. By combining CNN and Transformer, HBCT ex-
tracts deep features beneficial for super-resolution recon-
struction in consideration of both local and non-local pri-
ors, while being lightweight and flexible enough. Enhanced
spatial attention is introduced in HBCT to further improve
performance. Extensive experimental results show our
HNCT is superior to the state-of-the-art methods in terms of
super-resolution performance and model complexity. More-
over, we won the second best PSNR and the least activation
operations in NTIRE 2022 Efficient SR Challenge. Code is
available at https://github.com/lhjthp/HNCT.

1. Introduction
Single image super-resolution (SR) is a low-level com-

puter vision task to reconstruct a high-resolution (HR) im-
age from a low-resolution (LR) image. SR is an ill-posed
problem due to the fact that an LR image can be degraded
by infinite number of HR images. Since the SR technique
is capable of recovering image texture details, it can be
applied in many applications such as surveillance system,
smart camera and so on.

Recently, a variety of convolutional neural network
(CNN) based methods [5,10,16,22,31,32,34,37] have been
proposed and achieved prominent SR performance. Dong
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Figure 1. PSNR vs. Parameters on Set5 (×4).

et al. first proposed a three-layer network SRCNN [5] to
learn the end-to-end mapping from LR image to HR image.
Then Kim et al. developed deeper network VDSR [13] with
20 layers and obtained better results than SRCNN, indicat-
ing that deeper networks can obtain better SR performance.
EDSR [22] made further demonstration by deepening and
widen the network architecture, and won the champion of
NTIRE 2017 [36]. RDN [45] and RCAN [43] surpassed
EDSR [22] by increasing the network depth to over 100 and
400 layers, respectively.

Although SR has made considerable improvements, the
existing CNN-based models still face some limitations.
With the increasing of network depth, these methods re-
quire exploding computational cost and memory consump-
tion, so that they cannot be deployed on embedded termi-
nals like mobile devices. Moreover, CNN can only deal
with the local region of the image, subjecting to the limited
kernel sizes of convolutional operations, and is not able to
achieve satisfied efficiency on long-range dependency mod-
eling. So, it is important to take account of both local and
non-local information for the enhancement of network per-
formance.
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To this end, new architecture different from CNN like
Transformer [38] provides a self-attention mechanism to
capture global information and exploit the self-similarity
properties of image. LocalViT [19] introduces convolu-
tional neural network (CNN) to bring locality mechanism
into Transformers. In this way, LocalViT is capable of com-
bining local and non-local information to increase model
capacity. Lately, Liang et al. proposed a strong baseline
model SwinIR [21] based on Swin Transformer [25]. In the
main components of SwinIR, several Swin Transformer lay-
ers are utilized for local attention and cross-window inter-
action, while a convolutional layer is also added for feature
enhancement. Through mutual cooperation of Transformer
and CNN, SwinIR outperformed other state-of-the-art SR
methods.

Inspired by SwinIR [21] and LocalViT [19] , we propose
a lightweight SR model namely hybrid network of CNN and
Transformer (HNCT), integrating CNN and transformer to
model local and non-local priors, simultaneously. Specif-
ically, HNCT consists of four parts: shallow feature ex-
traction (SFE) module, Hybrid Blocks of CNN and Trans-
former (HBCTs), dense feature fusion (DFF) module and
up-sampling module. Firstly, shallow features containing
low-frequency information are extracted by only one convo-
lution layer in the shallow feature extraction module. Then,
four HBCTs are used to extract hierarchical features. Each
HBCT contains a Swin Transformer block (STB) with two
Swin Transformer layers inside, a convolutional layer and
two enhanced spatial attention (ESA) modules [24]. After-
wards, these hierarchical features produced by HBCTs are
concatenated and fused to obtain residual features in SFE.
Finally, SR results are generated in the up-sampling mod-
ule. Integrating CNN and transformer, our HNCT is able to
extract more effective features for SR. As shown in Figure
1, HNCT achieves better SR results compared with state-
of-the-art lightweight methods with fewer parameters.

The main contributions of this work can be summarized
as follows:

1. We propose a lightweight hybrid network of CNN and
Transformer (HNCT) for image super-resolution, which
achieves better SR performance with fewer parameters than
other methods.

2. We propose a hybrid block of CNN and Transformer
(HBCT) that exploits local and non-local priors simultane-
ously to extract features beneficial for SR.

2. Related work
Recently, deep learning based methods, especially CNN-

based methods [16, 37], have achieved dramatic improve-
ments in image SR problem. Meanwhile, attention mech-
anism [8, 46], including self-attention mechanism [38],
which is widely used in high-level vision tasks, has been
introduced to further improve the SR performance. In this

section, we briefly review on works related to CNN-based
networks and attention-based networks.

CNN-based networks. Dong et al. first proposed SR-
CNN [5], which learns a end-to-end mapping from LR im-
age to its HR counterpart via a CNN containing only three
convolutional layers. Then, VDSR [13] and DRCN [14]
further improved SR performance by learning larger net-
works with residual learning and recursive learning, re-
spectively. By employing both residual learning and re-
cursive learning strategies, DRRN [30] achieved better per-
formance with fewer parameters. MemNet [35] was pro-
posed to tackle the long-term dependency problem by min-
ing persistent memory. In these methods, the original LR
image is up-scaled to desired size before fed to the network.
In order to increase SR speed, majority of new SR mod-
els took the original LR image as input and increased the
spatial resolution by de-convolution or sub-pixel convolu-
tion [33] at the end of the networks. Different from other SR
methods, LapSRN [15] reconstructed SR image by progres-
sively increasing image resolution and predicting sub-band
residuals of HR images. Inspired by ResNet [7], SRRes-
Net [16] and EDSR [22] proposed SR models by stacking a
flurry of residual blocks to improve SR performance. Spe-
cially, EDSR modified the residual block by removing batch
normalization (BN) layer to achieve performance improve-
ment. Based on EDSR, RDN [45] introduced dense con-
nection [9] to make full use of hierarchical features from all
the preceding layers.

Despite the great performances, most of CNN-based
methods are not practical in real world due to heavy com-
putation complexity. To solve this problem, Ahn et al.
proposed an efficient model CARN-M [1] using a cas-
cading network structure and group convolution operation,
which achieved comparable results to state-of-the-art meth-
ods with fewer computations and parameters. Hui et al.
proposed IDN [12] to gradually extract both long and short-
path features and distill more useful information for SR re-
construction. Based on IDN, IMDN [11] proposed multi-
distillation and contrast-aware channel attention mechanism
and won the AIM 2019 constrained image super-resolution
challenge [41]. Liu et al. proposed RFDN [24], which in-
troduced feature distillation connection and shallow resid-
ual block for fast SR with fewer parameters than IMDN.

Attention-based networks. Inspired by human visual
system which can focus on significant regions automati-
cally, attention mechanism is designed to concentrate the
most informative components of an input signal. Recently,
several works introduced the attention mechanism to SR
task. Zhang et al. presented RCAN [43] to focus on the
most important channels by introducing channel attention
mechanism into simplified residual block. Magid et al. pro-
posed DFSA [26] to predict attention map of features in fre-
quency domain using a matrix multi-spectral channel atten-
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tion mechanism. Liu et al. proposed an enhanced spatial
attention (ESA) module [24] to efficiently exploit local spa-
tial information with fewer parameters. Besides, non-local
attention mechanism aiming at capturing long-distance spa-
tial information is studied. Methods, such as NLRN [23],
RNAN [44], CSNLN [29], ENLCN [39], introduced non-
local attention to achieve performance improvement. Re-
cently, models like [3,17,21] introduced Transformer based
on self-attention to further improve SR performance. Self-
attention mechanism designed to encode distant dependen-
cies and capture global interactions can be treated as a
special case of non-local attention mechanism. Specially,
Liang et al. presented SwinIR [21] based on Swin Trans-
former [25] to achieve excellent performance.

Moreover, multiple attention mechanisms are employed
collaboratively to improve the SR results. Dai et al. pro-
posed SAN [4] to refine features using both non-local at-
tention and second-order channel attention. Niu et al. pre-
sented HAN [30] to not only learn the channel and spatial
interdependencies of features in each layer by using chan-
nel attention and spatial attention, but also introduce a layer
attention to explore correlations among hierarchical layers.

3. METHOD
3.1. Network Structure

As shown in Figure 2, the proposed HNCT consists
four parts: shallow feature extraction (SFE), hybrid blocks
of CNN and Transformer (HBCTs), dense feature fusion
(DFF) and up-sampling module.

Given an input LR image ILR, we first extract shallow
features

F0 = HSF (ILR) = W0 ∗ ILR, (1)

where HSF denotes the one-convolution-layer SFE with
weight W0, and symbol ∗ denotes convolution operation.
For simplicity, the bias term of convolutional layer is omit-
ted. F0 is then used for deep feature extraction with several
HBCTs. Supposing the number of HBCTs is D, the output
of the d-th HBCT Fd (1 ≤ d ≤ D) can be formulated as

Fd = fd
HBCT (f

d−1
HBCT · · · ((f1

HBCT (F0)))), (2)

where fd
HBCT denotes the function of d-th HBCT and Fd

represents the output of d-th HBCT. HBCT is proposed to
extract higher-level features from input features. More de-
tails of HBCT will be given in Section 3.2.

All the outputs of these HBCTs are concatenated and
sent to DFF which includes two stacked convolutional lay-
ers to fuse all hierarchical features, and global residual
learning strategy is added to ease learning difficulty. DFF
uses features from all preceding HBCT layers and the out-
put can be expressed as

FDFF = W1 ∗ (W2 ∗ [F1, F2, · · · , FD]) + F0, (3)

where [F1, F2, · · · , FD] is the concatenation of features
generated by all HBCTs. W1 and W2 are the weights of
3 × 3 convolutional layer and 1 × 1 convolutional one, re-
spectively. The 1 × 1 convolutional layer is introduced for
feature fusion and the following 3 × 3 convolutional layer
is used for further feature extraction.

Finally, in up-sampling module comprised of a 3 × 3
convolutional layer and a pixel shuffle layer, the SR image
ISR is reconstructed as follows

ISR = FUP (W3 ∗ FDFF ), (4)

where W3 is the weight of the convolution layer and FUP

denotes the pixel shuffling operation.
The loss function of our HNCT can be formulated as

L(θ) =
1

N

N∑
n=1

∥IiSR − IiHR∥1, (5)

where θ denotes the parameters of HNCT, ∥∥1 is the l1
norm, N is the number of image patch for training, IiSR

and IiHR are the i-th reconstructed SR images and the cor-
responding ground-truth HR image, repectively.

3.2. Hybrid Block of CNN and Transformer
(HBCT)

In this Section, we introduce our proposed Hybrid Block
of CNN and Transformer (HBCT). HBCT is composed of
a Swin Transformer Block(STB), one 3 × 3 convolutional
layer and two Enhanced Spatial Attention (ESA) modules.
STB is proposed because it can greatly improve the repre-
sentation ability of the model. ESA is characterized by light
weight and high efficiency. STB and ESA will be discussed
in details in Section 3.3 and Section 3.4. The structure of
HBCT is shown in Figure 2. According to Equation (2),
the feature maps of (d− 1)-th HBCT Fd−1 are directly fed
to the d-th HBCT. Given the input feature Fd−1, the d-th
HBCT first selects important features from input with an
ESA module and then extracts intermediate features by a
Swin Transformer Block (STB). Afterwards, a 3×3 convo-
lutional layer is added to ensure the translational equivari-
ance of our network. Finally, another ESA module is also
introduced to obtain features that are more focused on the
regions of interest. The function of the d-th HBCT can be
described as

Fd = fd
HBCT (Fd−1)

= HESA(W4 ∗HSTB(HESA(Fd−1))),
(6)

where HSTB denotes the function of STB, W4 is the weight
of the convolution layer, and HESA denotes the function of
ESA.
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(a) Hybrid Block of CNN and Transformer(HBCT) 

(b) Swin Transformer Layer (STL) 
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(c) Enhanced Spatial Attention (ESA)
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Figure 2. The architecture of the proposed HNCT for lightweight image super-resolution. (a) The module of Hybrid Blocks of CNN and
Transformer (HBCTs), (b) structure of Swin Transformer Layer (STL), (c) enhanced spatial attention module (ESA), first proposed in
RFANet [24].

3.3. Swin Transformer Block (STB)

Swin Transformer layer (STL) adopts the architecture of
the original Transformer layer based on standard multi-head
self-attention [38]. Moreover, Swin Transformer introduces
local attention and shifted window mechanism. As shown in
Figure 2(b), given an input with the size of h×w× c, Swin
Transformer first reshapes the input into a hw

M2 × M2 × c

feature by window partitioning, where hw
M2 is the total num-

ber of windows with the size of M × M . Then, for each
window, Swin Transformer calculates self-attention for h
times in parallel, where h is the number of self-attention
head. Given a local window feature F swt

in ∈ RM2×c, the
query, key and value matrices Q, K and V ∈ RM2×d are
computed as

Q = F swt
in WQ,K = F swt

in WK , V = F swt
in WV , (7)

where d = c
h , WQ, WK and WV are shared learnable

projection matrices across different windows. The atten-
tion matrix Attn(Q,K, V ) is calculated through the self-
attention mechanism in the local window.

Attn(Q,K, V ) = SoftMax(
QKT

√
d

+ b)V, (8)

where b is the learnable relative positional encoding. The
results of multi-head self-attention (MSA) are concatenated
to keep embedding dimension unchanged. After the atten-
tion function, there is a two-layer MLP with GELU activa-
tion in between. Layer Norm (LN) layer is added before
MSA and MLP, and residual connection is used. The whole
function of Transformer can be described as{

F swt
inter = HMSA(HLN (F swt

in )) + F swt
in ,

F swt
out = HMLP (HLN (Finter)) + F swt

inter,
(9)

where HLN denotes LN function, FMSA represents multi-
head self-attention operation and FMLP denotes MLP func-
tion. However, there is no information interaction between
windows with fixed window partition. Swin Transformer
[25] uses regular and shift window partition alternately to
realize the efficient information transmission and interac-
tion of different windows.

By exploiting cross-window information, Swin Trans-
former has shown great promising performance in computer
vision tasks. Because the length of shift step is half of the
window size, even number of successive Swin Transformer
layers are usually used to keep the positions of obtained
features consistent with that of the corresponding LR im-
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age patches in image space. In our HNCT, a STB contains
two STLs to balance between SR performance and network
complexity.

3.4. Enhanced Spatial Attention (ESA)

We used an enhanced spatial attention (ESA) model pro-
posed in [24], which is more powerful than ordinary SA
module [46]. The structure of ESA module is depicted in
Figure 2(c). Given an input F esa

in , ESA firstly extracts com-
pact features F esa

1 as follows,

F esa
1 = W esa

1 ∗ F esa
in , (10)

where W esa
1 is the weight of 1× 1 convolutional layer used

to reduce embedding dimension, Then ESA further extracts
features F esa

2 as follows,

F esa
2 = Hup(Hg(Hpool(W

esa
2 ∗ F esa

1 ))), (11)

where W esa
2 is the weight of 3×3 convolution with stride of

2, Hpool is a max-pooling operation, Hg is the function of
the group composed of three 3 × 3 convolution layers, and
Hup is up-sampling function realized by bilinear interpo-
lation. The spatial dimensions are reduced by both strided
convolutional layer and max pooling layer, and then recov-
ered by the up-sampling layer. Finally, the output of ESA
module F esa

out can be computed as

F esa
out = Hsigmoid(W

esa
3 ∗ (F esa

1 + F esa
2 ))× F esa

in , (12)

where W esa
3 is the weight of 1× 1 convolutional layer used

to recover the embedding dimension, Hsigmoid is the sig-
moid function, and symbol × denotes point-wise multipli-
cation operation.

The ESA mechanism works at the beginning and the end
of HBCT, making the features more focused on the regions
of interest. When these highlighted features are aggregated
together, we can get more representative features, which are
more beneficial for image SR reconstruction.

3.5. Discussions

Difference to RFDN. RFDN [24] proposes feature dis-
tillation connection (FDC), which is functionally equiva-
lent to channel splitting operation. Based on FDC, RFDN
uses multiple feature connections to learn more distinc-
tive feature representations. A shallow residual block is
also proposed as the main building block of RFDN, so
that RFDN benefits from residual learning while maintain-
ing lightweight. Unlike RFDN, HNCT assembles Trans-
former and CNN. Thanks to Transformer’s ability of mod-
eling long-distance dependence and CNN’s ability of local
feature extraction, our HNCT can improve SR performance
greatly.

Difference to SwinIR. SwinIR [21] proposes a strong
baseline model for image restoration based on Swin Trans-
former. The main component of SwinIR is constructed by

Table 1. Investigations of HBCT on the Manga109 benchmark
datasets with ×4 super-resolution.

Model Block Structure PSNR/SSIM
HNCT ESA+STB+Conv+ESA 30.70/0.9112

Model 1
ESA+Conv+ReLU+Conv

+ReLU+Conv+ESA 30.13/0.9034

Model 2 ESA+STB+Conv 30.65/0.9104
Model 3 STB+Conv+ESA 30.60/0.9104
Model 4 STB+Conv 30.56/0.9093
Model 5 ESA+STB+Conv+SA 30.64/0.9106
Model 6 SA+STB+Conv+ESA 30.65/0.9107
Model 7 SA+STB+Conv+SA 30.56/0.9099

stacking several residual Swin Transformer blocks. Dif-
ferent from SwinIR, HNCT adopts dense connection to
fully integrate hierarchical features generated by preceding
HBCTs. Moreover, ESA module is deployed to highlight
more representative features, boosting the SR performance
further.

4. Experiments
4.1. Experimental Setup

We train our HNCT using 800 training images from
DIV2K [36] dataset. Data augmentation is performed by
rotating 90°, 180°, 270° and flipping horizontally. For
testing, we use five benchmark datasets: Set5 [2], Set14
[40], BSD100 [27], Urban100 [10] and Manga109 [28].
Peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) are employed to measure the quality of SR images.

For each training mini-batch, 16 patches of size 64×64
are cropped randomly from LR images as input. Adam
optimizer is used to trained our HNCT by setting β1=0.9,
β2=0.999, and ϵ=1e-8. There are 1200 training epochs in
total. The learning rate is initialized to 5e-4, reduced by
half every 200 epochs, and fixed after 1000 epochs. Win-
dow size, embedding dimension and attention head number
in STL are set to 8, 50 and 5, respectively. To trade-off the
size and performance of the model, our HNCT contains four
HBCTs, each of which includes two STLs.

4.2. Ablation study

We conduct several ablation experiments to evaluate the
effectiveness of our proposed HBCT, on Manga109 bench-
mark dataset. The results are listed in Table 1, where Conv
denotes a 3×3 convolution layer and SA is ordinary spa-
tial attention module introduced in [46]. First, Model 1
is a CNN based network constructed by replacing STB in
HBCT with two convolutional layers, and adding a ReLU
layer between every two successive convolutional layers.
The SR results of model 1 show that HNCT is superior to
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Table 2. Average PSNR/SSIM for scale factor 2, 3 and 4 on datasets Set5, Set14, BSD100, Urban100, and Manga109. The best and second
best results are highlighted in red and blue respectively.

Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [5] 8K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN [6] 13K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR[19] [13] 666K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
DRCN[32] [14] 1774K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
DRRN [30] 298K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
MemNet [35] ×2 678K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
IDN [12] 553K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
SRMDNF [42] 1511K 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761
CARN [1] 1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
LAPAR-A [18] 548k 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
IMDN [11] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
RFDN [24] 534K 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
HNCT (Ours) 356K 38.08/0.9608 33.65/0.9182 32.22/0.9001 32.22/0.9294 38.87/0.9774
Bicubic - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [5] 8K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [6] 13K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR[19] [13] 666K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN[32] [14] 1774K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343
DRRN [30] 298K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
MemNet [35] ×3 678K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IDN [12] 553K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
SRMDNF [42] 1528K 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403
CARN [1] 1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
LAPAR-A [18] 544k 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/.09441
IMDN [11] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
RFDN [24] 541K 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
HNCT (Ours) 363K 34.47/0.9275 30.44/0.8439 29.15/0.8067 28.28/0.8557 33.81/0.9459
Bicubic - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [5] 8K 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [6] 13K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR[19] [13] 666K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
DRCN[32] [14] 1774K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854
DRRN [30] 298K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
MemNet [35] ×4 678K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
IDN [12] 553K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
SRMDNF [42] 1552K 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024
CARN [1] 1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
LAPAR-A [18] 659K 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
IMDN [11] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
RFDN [24] 550K 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
HNCT (Ours) 372K 32.31/0.8957 28.71/0.7834 27.63/0.7381 26.20/0.7896 30.70/0.9112

CNN based network due to combination of CNN and Trans-
former. Then, models 2-4 are constructed by removing one
or both ESA modules in HNCT, respectively. Their per-
formances drop slightly, demonstrating that spatial atten-

tion can improve SR performance of HNCT. Finally, built
by replacing one or both ESA modules with SA module,
models 5-7 perform worse than HNCT, indicating that ESA
is more powerful to highlight significant features than SA.
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Figure 3. Visual comparisons of HNCT with other SR methods on BSD100, Urban100 and Manga109 ×4 datasets.

Thanks to ESA and combination of CNN and Transformer,
our HNCT outperforms other models listed in Table 1.

4.3. Complexity Analysis

The compared of PSNRs of ×4 SR on Set5 and param-
eter numbers of different models is described in Figure1.
The compared models include VDSR [13], DRCN [14],

LAPAR-A [18], DRRN [30], MemNet [35], IDN [12], SR-
MDNF [42], CARN [1], IMDN [11], RFDN [24] and our
HNCT. As we know, the parameter number is one of the
significant factors in a lightweight model. As shown in
Figure 1, our HNCT achieves the best performance with
fewer parameter number compared with other methods ex-
cept DRRN. HNCT obtains much better performance than
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Table 3. NTIRE 2022 Efficient SR Challenge results. Noting that only six methods are included.

Team Name Network PSNR (dB) Runtime (ms) Params (K) FLOPS (G) Acts (M) Mem (M)
ByteESR RLFN 28.72 26.76 317 19.7 80.05 377.91
NJU Jet FMEN 28.69 27.67 341 22.28 72.09 204.6
NEESR PlainRFDN 28.71 29.58 272 16.86 79.59 575.99
Just Try LWFANet 28.81 251.45 832 135.3 392.43 2387.93

ncepu explorers MDAN 28.79 324.5 390 23.73 994.25 771.54
mju mnu HNCT1 28.79 339.61 345 78.81 46.76 1310.72

DRRN with slightly larger parameter number. It is proved
that HNCT is an efficient lightweight SR method in Figure
1.

4.4. Comparison with State-Of-The-Arts

We compare our HNCT with other lightweight SR meth-
ods, including SRCNN [5], FSRCNN [6], VDSR [13],
DRCN [14], DRRN [30], MemNet [35], IDN [12], SR-
MDNF [42], CARN [1], LAPAR-A [18], IMDN [11] and
RFDN [24]. Table 2 shows quantitative results of five
benchmark datasets. We can find that the proposed HNCT
achieve the best performance under both ×3 and ×4 on all
datasets, except on Set14 and Manga109 under ×2, due to
the fact that these competitors are efficient enough to re-
construct the images with only 2 scales of down-sampling.
Parameter comparison is also listed in Table 2. It is clearly
shown that although RFDN has closer results with the pro-
posed HNCT method, it has approximate 50% (180K) the
parameters larger than that of our model under all cases.
SRCNN and FSRCNN have the least parameters, but their
performance are far behind that of the proposed HNCT.
Hence, profit from ESA, CNN and Transformer, our pro-
posed HNCT substantially obtains the best results with least
parameters.

Figure 3 shows three visual comparisons between HNCT
and the other lightweight competitors on ×4. The orig-
inal images “253027”, “img062” and “ARMS” are se-
lected from BSD100, Urban100 and Manga109, respec-
tively. From the enlarged views, we can observe that the
stripes and lines reconstructed by HNCT are more closer to
the ground truth than the competitors. Especially in the re-
construction of img062, more accurate rectangles are recon-
structed. This visual comparison can further demonstrate
the effectiveness of our proposed HNCT.

4.5. NTIRE 2022 Efficient SR Challenge

This work is proposed initially for participating in the
NTIRE 2022 Efficient SR Challenge [20]. The challenge
aims to devise a network that reduces one or several aspects
such as runtime, parameters, FLOPS, activations and depth,

1The original name of the proposed HNCT model in NTIRE 2022 Ef-
ficient SR Challenge is CCSTN.

while at least maintaining PSNR of 29.00dB on DIV2K val-
idation dataset. According to the competing rules, RLFN,
FMEN and PlainRFDN are the top three winner methods
because they have the least runtime. For simplicity, Table 3
lists these three methods and the other top three methods of
PSNR. The proposed HNCT has the least activation num-
ber and achieves better PSNR than the top winners, RLFN,
FMEN and PlainRFDN with comparable parameter num-
ber. Compared with LWFANet and MDAN that obtain the
top two PSNR, HNCT only has 345K parameters, while
other two methods have 390K and 832K parameters, re-
spectively.

5. Conclusion

In this paper, we propose a hybrid network of CNN and
Transformer (HNCT) for lightweight image SR. By inte-
grating CNN and Transformer, HNCT can exploit both lo-
cal and non-local priors and extract deep features more ben-
eficial for image SR. Furthermore, enhanced spatial atten-
tion (ESA) is employed to further improve SR results. Ex-
tensive experiments demonstrate that our HNCT is supe-
rior to the compared lightweight SR methods, achieving
the best performances with the least parameters. However,
HNCT runs much slower than CNN-based methods due to
heavy computation complexity of Transformer. In future,
we will focus on improving the inference speed of HNCT.
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