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Abstract

The existing non-blind deblurring methods are mostly

susceptible to noise in the given blurring kernel, which

is usually estimated from the observed image. This will

produce undesirable ringing artifacts around the recovered

edges when the given kernel is not accurate enough. Be-

sides, the noise and outliers in the observed images may

also severely degrade the performance of the deblurring

methods. Considering these factors, we designed a robust

non-blind deblurring method taking all these noises into ac-

count. In this paper, we propose a kernel error term to rec-

tify the given kernel in the midst of the deconvolution pro-

cess. A residual error term is also introduced to deal with

the outliers caused by noise or saturation. A deep learn-

ing denoiser prior is adopted to reserve the fine textures in

the recovered image. The experiments show clearly that the

proposed method achieves remarkable progress in both the

visual quality and the numerical results of the recovered im-

ages compared to the state-of-the-art deblurring methods.

1. Introduction

Single image deblurring aims to recover a sharp image x
from a single observed blurry image y. The degradation of

the blurry image from the clear one is usually modeled as

y = k ∗ x+ n, (1)

where k is the blurring kernel, ∗ denotes the convolu-

tion operator and n is some additive white Gaussian noise

(AWGN). In most cases, the observed information from a

blurry image is only the blurry image itself. Hence, recov-

ery of the clear image from the blurry one is decomposed

into two steps: the kernel estimation (blind deblurring) and

the deconvolution of the blurry image with the estimated

kernel (non-blind deblurring). In this paper, we aim to ex-

plore a robust non-blind deblurring method where the kernel

is estimated by the existing blind deblurring methods.
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As estimating the blurring kernel is a highly ill-posed

problem, variational models which consist of a fidelity term

and regularization term are one of the most investigated

methods for both non-blind and blind deblurring. Many

models have been successfully proposed with the focus on

designing the image priors, which may favor sharper im-

ages. However, these manually-designed priors are usually

based on statistical features of the natural images whereas

these features are not suitable for all image type. Hence,

some undesirable artifacts would be easily produced for the

latent images or kernels which are not exactly consistent

with the proposed prior. For this reason, variational mod-

els are refined to adopt the priors driven by a large number

of natural images, which can be retrieved by the dictionary

learning or deep learning techniques [13, 21, 49, 52]. With

the data-driven regularizations, the models usually produce

better results on a wider range of images compared to those

manually-designed regularizations. With the great success

of the deep convolutional neural networks (CNNs) in the

imaging tasks [5,11,20,48], researchers have also attempted

to put forward end-to-end networks for deblurring from a

single image bypassing the need of estimating the blurring

kernel beforehand, simplifying the traditional two-step pro-

cedures. Despite its potential efficiency in the practical ap-

plications of deblurring, deconvolution with arbitrary ker-

nels by a single network is of great challenge, which also

depends heavily on the training data [32, 38]. Therefore,

various excellent networks have been proposed with the aim

to increase the deconvolution ability of the proposed net-

work as well as its generalization to different kinds of ker-

nels [3, 16, 29, 31, 42, 46]. However, the generalization of

existing networks to different kernel types is still limited

and the performance of deep CNNs on blind image deblur-

ring still falls behind conventional optimization-based ap-

proaches on handling an arbitrary blurring kernel [38]. A

blurry image whose kernel is not included in the training

data tends to retain the blurring effect in its deblurred re-

sult of the network. Therefore, works with deep neural net-

works also resort to tackle the non-blind deblurring prob-

lem with the aim to produce a sharper image with fewer
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artifacts [10,15,30,49] and reached the state-of-the-art per-

formance compared to the traditional methods.

As we notice, both of the above-mentioned variational

models and the learning-based methods are vulnerable to

the problematic factors existing in original blurry images,

which turns out to be visually unpleasant solutions. The

major problems in this case arise from outliers, which re-

fer to the blurry pixels whose values are inconsistent with

the linear degradation model (1). A bunch of methods

were designed to relieve the ringing artifacts from the out-

liers [4, 23, 34, 35]. However, these methods overlook the

artifacts coming from the noise in the estimated kernel.

Though a bunch of works were proposed to get a more ac-

curate kernel, [9, 24, 36, 47] the kernel errors are inevitable

in the derived kernels. For this reason, some works have

also shed light on the non-blind deblurring methods which

take the kernel error into consideration [12,30]. The authors

in [12] treated the images convolved by the error existing

in the kernels and constrained it by the sparsity in the pro-

posed model. The latest learning-based work [30] proposed

a non-blind deblurring model which takes the kernel error

into consideration and designed a network to mimic the op-

timization iterations of the proposed model. The trained

model of [30] reached state-of-the-art performance, but re-

mained sensitive to the noise contained in the blurry image.

As shown above, while there have been amounts of

works to reduce the artifacts by different ways to improve

the visual quality of the deblurred results, few can consider

different origins of the ringing artifacts in a single deblur-

ring scheme and thus lead to the limitations of these meth-

ods in different cases. In this paper, we aim to design a

more robust non-blind deblurring method to restore the im-

ages from a single blurry image with the estimated kernel.

The contributions are summarized in the following points:

• Two error terms, named the kernel error term and the

residual error term, are introduced to avoid the appear-

ance of the ringing artifacts. The kernel error term is

adopted to approximate the error in the given kernel re-

turned by the blind deblurring methods while the resid-

ual error term is introduced to approach the outliers in

the blurry images. The two terms are both constrained

by the sparse property based on the observation that

these errors are usually presented sparsely but incur

severe artifacts in this ill-posed restoration problem.

• To get finer textures in the recovered image, an en-

hanced texture-reserved denoiser prior is trained and

applied in the alternative optimization scheme which

is based on the half-quadratic splitting methods.

• The experiments show that the proposed model gets

fewer ringing artifacts with different kernel estimation

methods and shows more robustness to the outliers in

the blurry images. The proposed model proves to reach

both numerical and visual improvement on the bench-

mark datasets as well as real-world images.

2. Preliminary

In this section, we give a brief review on the Plug-and-

Play framework as well as the existing denoiser priors,

which are closely related to the proposed deblurring model.

2.1. Denoiser prior

The denoiser prior has been widely applied in the

well-known Plug-and-Play framework for image restoration

problems in the past decade [7,39,44,49,51]. The core idea

of this scheme is to incorporate an implicit denoiser prior

term in the variational model and decouple this term into

a denoising subproblem by the splitting technique, which

can be solved by off-the-shelf denoisers. Specifically, the

general form of restoration model with the denoiser prior is

given as follows:

min
u

1

2
∥Ax− y∥22 + λΦ(x), (2)

where A is the degradation linear operator and Φ(·) is the

implicit denoiser prior which indicates a lower value for a

more natural and sharper image. To solve the problem (2),

the splitting technique will firstly transform it into an equiv-

alent two-variable problem by introducing a new variable z:

min
x,z

1

2
∥Ax− y∥22 + λΦ(z) +

µ

2
∥z − x∥2, (3)

where µ will increase as the iteration goes up. Then the

solution to the problem (2) can be approached by iterating

the following two steps:

xk+1 = argmin
x

1

2
∥Ax− y∥22 +

µ

2
∥zk − x∥2, (4)

zk+1 = argmin
z

λΦ(z) +
µ

2
∥z − xk+1∥2. (5)

For Equation (5) where the implicit prior Φ(·) indicates the

good property of the images such as sharpness, the solution

z can be interpreted as the denoised result of the given xk+1.

For this reason, the implicit term Φ(·) is hence called by the

denoiser prior and the solution can be derived by the exist-

ing denoising methods such as BM3D [7] and EPLL [52].

However, with these traditional denoisers, the cost of cal-

culation and the artifacts may be enlarged with the iter-

ations increasing. Therefore, [49] initially introduced the

learning-based denoiser as the optimization method, which

has higher efficiency and better denoising performance.

As we notice, while the step (5) removes the noise and

artifacts, it also has a close relation to the textures reserved

in xk+1. Therefore, one of the contributions of paper is to

explore this implicit denoiser prior to recover more textures.
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2.2. Multi-level Wavelet-CNN denoiser

The learning-based denoising methods have gained

much progress in the last decade. In [48], the author pro-

posed a residual network which is more efficient in training

and has good performance in denoising. To get a balance of

the efficiency and performance of the denoiser, the author

in [49] adopted the dilated filters to increase the receptive

field of their proposed 7 layers network and trained it for a

set of different noise levels. Later in [25], a denoising model

named Multi-level Wavelet-CNN (MWCNN) was proposed

and attracted much attention. This MWCNN model was

motivated by multi-level wavelet packet transform (WPT)

[2, 8] and integrated with the CNN block. From WPT to

MWCNN, it was designed by adding the CNN block af-

ter each level of discrete wavelet transform (DWT). In this

MWCNN model, a U-Net architecture [40] consisting of a

contracting subnetwork and an expanding subnetwork was

applied. Different from the traditional CNN, the classical

pooling operation in the contracting subnetwork was re-

placed by an invertible discrete wavelet transform (DWT).

Correspondingly, the inverse discrete transform (IWT) was

used in the upsampling stage. The inversion of the down-

sampling in the MWCNN proved to be effective in keeping

the detailed textures in the expanding subnetwork. Consid-

ering its advantages in reserving the textures, we explored

this denoising scheme as our denoiser prior in our deblur-

ring model.

3. Proposed Approach

In this section, we will firstly introduce the details of our

denoiser prior in Section 3.1, which will be applied in the

proposed deblurring model introduced in Section 3.2. In

Section 3.3, the numerical scheme as well as the framework

of the proposed method will be illustrated.

3.1. Texture-preserving prior

In the first step, we trained our denoisers to obtain op-

timal solution in Equation (5). Motivated by the idea

to keep more details in the recovered images, the ad-

vanced MWCNN architecture is applied as our denoiser

prior which has proven to reserve more textures in the de-

noisig task than other networks such as DnCNN [48] and

FFDNet [50]. Compared with the pooling operation and

dilated filtering in the other networks, the inversible DWT

and IWT in MWCNN can avoid the underlying drawbacks

such as gridding effects. For the wavelet transform, we use

the default Haar wavelet in MWCNN. We denote the net-

work parameters by Θ and the output of the network by

Fnσ
(y; Θ). Then the loss function of the MWCNN network

(a) Ground Truth (b) Blurry image

(c) IRCNN with exact kernel (d) IRCNN with estimated kernel

Figure 1. The deblurring results of [49] with exact kernel and

estimated kernel respectively. (a) Ground truth, (b) blurry image

with 2% noise, (c) deblurred result with exact kernel, (d) deblurred

result with estimated kernel by [36].

(a) Ground truth (b) Exact kernel

(c) Blurry image (d) Blurry image with outliers

(e) IRCNN of (c) with kernel (b) (f) IRCNN of (d) with kernel (b)

Figure 2. Sensitivity of the deblurring method to outliers in the

blurry image. (a) ground truth, (b) exact kernel, (c) blurry image,

(d) image (c) with outliers, (e) and (f) deblurred results of blurry

image (c) and (d) using [49] with the kernel (b) respectively.

is given as the following:

L(Θ) =
1

2N

N
∑

i=1

∥Fnσ
(yi; Θ)− xi∥

2

F ,
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where xi is the ground-truth image, yi is the i-th corre-

sponding noisy input image by adding Gaussian noise nσ

with standard variance σ, i.e., yi = xi + nσ . To recover

the image from the multi-noise-level images as [49], a se-

ries of MWCNN denoisers with σ from high to low need

to be trained in advance to solve Equation (5) in different

iteration. As the proposed MWCNN-based denoisers show

superiority in reserving the textures in the deblurred results,

we refer to them as texture-preserving denoisers in the fol-

lowing presented deblurring model.

3.2. Non-blind deblurring model with kernel errors

To facilitate the better recovery of deblurring, we con-

sider two sources of the ringing artifacts and avoid them by

introducing two terms named by the kernel error and the

residual error respectively. The proposed model, is given in

the following equation:

min
x,t,s

1

2
∥(k+t)∗x−y−s∥

2

2
+λΦ(x)+

α

2
∥t∥

2

2
+β∥s∥

1
(6)

where k is the given estimated kernel returned by the blind

deblurrig method, t and s denote the kernel error and resid-

ual error terms respectively.

The kernel error term t is used to rectify the error in the

given estimated kernel. As Fig. 1 shows, the kernel in (d)

which is estimated from the blurry image (b) contains the

noise compared to the exact kernel in (c). As we can see,

the deblurred result by IRCNN [49] with the estimated ker-

nel has ringing artifacts around the edges compared to the

one recovered by the exact kernel. Therefore, the proposed

term t is used to rectify this error by approaching the dif-

ference between the estimated kernel and the exact kernel.

To illustrate the role of the residual error term, we synthe-

size two blurry images with and without outliers in Fig. 2

(c) and (d) respectively. We can see the separated outliers

in (d) incur the ringing artifacts around their locations in the

deblurred results due to their deviation from the linearity of

the model (1). Therefore, the residual error term s in the

proposed model is applied to make up the values of the out-

liers in y and make the compensated blurry image y + s a

linear convolution as following

y + s = (k + t) ∗ x. (7)

Substituting the blurry image as y + s, can therefore avoid

the ringing artifacts arisen from the non-linear values in y.

Considering the sparsity of the two difference terms and

the calculation efficiency, we constrain t and s by the l2 and

l1-norms respectively, so that the fast fourier transformation

and thresholding can be applied as given in Equation (16)

and (17) respectively. With the two parameters α and β,

the two error terms in the proposed model can be flexibly

adjusted for the specific situations of the blurry images.

(a) IRCNN (b) xtexture

(c) xresidual (d) xkernel

(e) xresidual with noisy kernel (f) xkernel with noisy error

Figure 3. (a)-(d): the deblurred results of Fig.1 (b) with estimated

kernel in Fig. 1 (d). (e) and (f): the deblurred results of Fig.1 (b)

with synthetic noisy kernel.

3.3. Iterative solver with texture-preserving prior

To solve the proposed model (6), we need to split the

form-free regularization from the other terms. We use the

Plug-and-Play technique and adopt the half quadratic split-

ting (HQS) method. By introducing an extra variable z, the

original model can be transformed as:

min
x,t,s

J(x, t, s) =
1

2
∥(k + t) ∗ x− y − s∥

2

2
+ λΦ(z)

+
α

2
∥t∥

2

2
+ β ∥s∥

1
, subject to z = x. (8)

By introducing an additional quadratic penalty term, HQS

transforms Equation (8) into the unconstrained function as:

Lµ(x, t, s, z) =
1

2
∥(k + t) ∗ x− y − s∥

2

2
+ λΦ(z)

+
α

2
∥t∥

2

2
+ β ∥s∥

1
+

µ

2
∥z − x∥

2

2
, (9)

where µ is a penalty parameter which varies in a non-

descending order. The solution to the model (6) is then ap-

proached by iteratively solving the four variables x, t, s, z
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presented in the function (9) as following:

min
x

∥

∥(k+tk) ∗ x− y − sk
∥

∥

2

2
+µk

∥

∥zk−x
∥

∥

2

2
, (10)

min
z

1

2(
√

λ/µk)2

∥

∥z − xk+1
∥

∥+Φ(z), (11)

min
t

1

2

∥

∥(k + t) ∗ xk+1 − y −sk
∥

∥

2
+

α

2
∥t∥

2

2
, (12)

min
s

1

2

∥

∥(k + tk+1)∗xk+1 − y − s
∥

∥

2
+ β ∥s∥

1
. (13)

To solve the x-subproblem (10) where the data fitting

term is associated with a quadratic regularized least-squares

term, we update the image x efficiently by using the fast

Fourier transform (FFT) in the frequency domain:

xk+1 = F−1

(

F(k + tk)F(y + sk) + µkF(zk)

|F(k + tk)|
2
+ µk

)

, (14)

where · is the complex conjugate operator, F(·) and

F−1(·) denote Fourier transform and its inverse transform.

For Equation (11) where the implicit prior Φ(z) prefers

the clear images, the solution can be interpreted as the de-

noised result for the image xk+1 with the denoising level

defined by the parameter
√

λ/µk. Following the Plug-and-

Play scheme, the existing denoisers can be applied as the

optimization to solve this equation. Following [49], we de-

note the solver for (11) in the following form:

zk+1 = Denoiser(xk+1,
√

λ/µk), (15)

where the larger value of
√

λ/µk implies the image xk+1

requires a denoiser of higher noise level to get the solution

zk+1. Considering the great advancement in the denoising

methods, we trained our Gaussian denoisers based on the

MWCNN model. Since it has proven to be effective in re-

covering the sharp structures from the noisy images, we re-

ferred to the implicit prior Φ(·) in the proposed model as

the texture reserving prior.

Next, to solve the kernel error tk+1 in Equation (12), we

also derive the solution by FFT. The closed-form solution is

tk+1 = F−1

(

F(xk+1)F(y + sk − k ∗ xk+1)

|F(xk+1)|2 + α

)

. (16)

Finally, the subproblem (13) containing the l1-norm can

be solved by the soft shrinkage operator. The solution of

sk+1 is given component-wisely as

sk+1

i = sgn(vi) ∗max(|vi| − β, 0), (17)

where vi = [(k + tk+1) ∗ xk+1 − y]i.

(a) IRCNN (b) xtexture

(c) xkernel (d) xresidual

Figure 4. The deblurred results of (a) IRCNN (b) the proposed

method only considering the texture reserving prior (c) the pro-

posed model only considering only the kernel error term and (d)

the proposed model considering only the residual error term.

Table 1. Average PSNR(dB)/SSIM values on 4 images from

Levin’s dataset. Note that the value on each image is an average re-

sult of 8 test blurry images synthesized by 8 different kernels. The

models are compared using the estimated kernels returned by [36].

Levin et al. Image 1 Image 2 Image 3 Image 4 Average

[49] 29.70/0.8761 31.50/0.8913 33.14/0.9263 28.69/0.8554 30.76/0.8873

xtexture 31.87/0.9208 33.62/0.9448 34.50/0.9433 29.85/0.8790 32.46/0.9220

Proposed model (6) 34.46/0.9362 35.13/0.9489 37.54/0.9651 32.90/0.9201 35.01/0.9426

4. Experiments

In this section, we first illustrate the experimental details

(Sec. 4.1.) and the effectiveness of each proposed modules

(Sec. 4.2.), after which we present the comparison of the

proposed model to other state-of-the-art deblurring methods

in both synthetic images (Sec. 4.3.) and real-world images

(Sec. 4.4.). To achieve valuable insights from the compar-

ison, the chosen methods include both variational models

and learning based methods.

Table 2. Average PSNR(dB)/SSIM of the non-blind deblurring

results on Levin’s dataset [18] with noise σ = 1% using different

estimated blurring kernels by [6], [19], [36], [43] and [24].

Kernel
Non-Blind Methods

[12] [14] [52] [33] [49] [26] [22] Ours

[6] 27.81/0.83 28.12/0.82 29.00/0.86 28.52/0.84 28.12/0.83 28.15/0.81 28.32/0.82 29.86/0.87

[19] 27.96/0.84 28.17/0.83 29.06/0.87 28.57/0.85 28.51/0.84 28.29/0.83 28.41/0.83 29.54/0.87

[36] 29.20/0.86 29.84/0.86 31.68/0.91 30.53/0.88 30.63/0.89 30.49/0.87 30.32/0.87 31.98/0.91

[43] 28.86/0.85 29.30/0.85 30.71/0.89 29.79/0.86 29.73/0.86 29.82/0.85 29.71/0.85 31.05/0.89

[24] 29.10/0.86 29.67/0.86 31.49/0.91 30.28/0.88 30.22/0.88 30.60/0.89 29.15/0.82 31.68/0.91

4.1. Training details and parameter setting

The denoisers for the subproblem (11) are trained with

the MWCNN network. The training data consists of 200

images from Berkeley Segmentation Dataset (BSD) [28],

800 images from DIV2K [1], and 4744 images from Wa-
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Table 3. Average PSNR(dB)/SSIM of the comparison on Levin’s

dataset with the the estimated blurring kernels returned by [36]

under different noise levels.

σ [14] [33] [49] [26] [22] Ours

noise-free 31.06/0.90 32.22/0.92 30.76/0.89 33.22/0.94 32.98/0.93 35.01/0.94

0.59% 30.21/0.89 31.29/0.91 30.27/0.88 30.33/0.88 31.40/0.88 32.59/0.92

1% 30.08/0.84 30.53/0.88 30.42/0.86 30.49/0.87 30.32/0.87 31.98/0.91

2% 28.56/0.80 27.80/0.76 30.06/0.88 29.09/0.84 27.79/0.78 30.66/0.89

terloo Exploration Database (WED) [27] and are further

cropped into patches of size 240×240. We set the batch size

as 24 and 24 × 9000 small patches are used in each epoch

of the training process. We trained the MWCNN model to

learn a mapping from synthesized images with a specific

level of Gaussian noise to the clean images. Following the

settings in MWCNN models, the Adam solver is used dur-

ing the training with parameters α = 0.010, β1 = 0.900,

β2 = 0.999 and ϵ = 10−8. The learning rate is decreased

from 10−4 to 10−5. Data augmentation of rotation and flip

are used in mini-batch learning. Since a series of models

with different noise levels from 2 to 50 with step size 2 are

needed, each model is trained by 10 epochs for early stop.

The models are trained in Matlab R2018b under Ubuntu

18.04 with an NVIDIA GeForce GTX1080Ti. The overall

training procedure is illustrated in Fig. 5. Albeit this train-

ing procedures for the denoisers bring about the extra time

and memory consumption in the preparation stage, they are

fixed in the deblurring algorithm. Compared to the end-to-

end neural networks, this plug-and-play deblurring method

keeps the interpretability and flexibility to different images.

In the non-blind deblurring scheme, we use the pre-

trained texture reserving denoisers to optimize (15). For

the selection of the denoiser in each iteration, we basically

adopt the strategy of multi-noise-levels formulated in [49].

In the proposed deblurring model, there are four paramters,

i.e., µk, λ, α and β. Among them,
√

λ/µk controls the

noise level ση of the texture reserving denoiser and changes

for every iteration. From (11), we set
√

λ/µk decayed lin-

early and exponentially from noise level ση = 50 to a value

ση in the interval [2, 10]. During our experiments, empir-

ical evidence showed that the proposed numerical scheme

with the texture reserving denoisers reached the solution

with a pleasant visual quality by 15 iterations. Therefore,

we fix the number of iterations as 15, which is less than 30

iterations used by IRCNN [49]. Since the introduced error

terms in the proposed method are solved efficiently with the

closed-from solutions, we say the proposed method brings

about the improvement without the loss of efficiency. The

parameters α and β flexibly adjust the role of the kernel er-

ror term and the residual error term. While the kernel is not

well estimated, the value of α should be lessened. While

there are noise and outliers in the blurry images, the value

of β should be lessened. The sensitivity to different val-

ues of α and β are given in Fig. 6. Generally, they can be

Figure 5. Flowchart of the training and testing procedure.

chosen from a small range to deal with different case, i.e.,

α ∈ {1, 10, 102, 103} and β ∈ {0.01, 0.1}.

(a) Sensitivity of α (b) Sensitivity of β

Figure 6. Average PSNR(dB) values on Levin’s dataset with dif-

ferent α and β.

4.2. Ablation study

In this section, an ablation study is firstly presented to

verify the effectiveness of proposed kernel error term and

residual error term as well as the proposed texture reserving

prior introduced in the proposed model by comparing the

following three models:

xtexture = argmin
x

1

2
∥k ∗ x− y∥

2

2
+ λΦ(x),

xkerneld = argmin
x,t

1

2
∥(k + t) ∗ x−y∥

2

2
+λΦ(x)+

α

2
∥t∥

2

2
,

xresidual = argmin
x,s

1

2
∥k ∗ x−y − s∥

2

2
+λΦ(x)+β ∥s∥

1
,

where xtexture is the result of the proposed model only con-

sidering the texture-preserving prior, xkernel is the result of

the proposed model only with the kernel error term while

xresidual denotes the one only with residual error term.

In Fig. 1 (b), we synthesize a blurred image with a

moderate noise level (σ = 2%) and obatin a noisy ker-

nel as illustrated in Fig. 1 (d). The results of IRCNN and

xtexture,kernel,residual are illustrated in Fig. 3 (b), (c) and

(d). As one can see, the solution xtexture is better than the

one of IRCNN [49], which indicates the texture reserving

prior is better than the denoiser proposed in IRCNN. How-

ever, the result of xtexture still reserves the ringing artifacts

while xkernel further corrects the artifacts and improve the

deblurred quality by considering the noise in the given ker-

nel. Additionally, we synthesize a noisy kernel by adding

Gaussian noise to the exact kernel to justify the effective-

ness of the kernel error term. The result of xtexture and

xkernel with the noisy kernel error are given in (e) and (f)

respectively.
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Table 4. Average PSNR(dB)/SSIM of the comparison on Sun’s

dataset with estimated blurring kernels returned by [45] and Lai’s

dataset with estimated blurring kernels returned by [37]

Dataset [14] [33] [49] [12] [26] [22] Ours

Sun 29.00/0.82 29.76/0.84 29.56/0.84 27.85/0.76 30.01/0.85 29.20/0.80 30.41/0.85

Lai 18.73/0.50 19.50/0.59 19.11/0.59 19.22/0.55 19.31/0.56 19.20/0.57 19.87/0.60

For the proposed residual error term, we deblur the

blurry image with saturated pixels shown in Fig. 2 (d) with

the estimated kernel returned by [36]. The results are shown

in Fig. 4. Clearly, the solution xresidual recovered the loca-

tion of the outliers in the deblurred result while the solution

xkernel still suffers from the noise and ringing artifacts.

From the above examples, we can see the necessity of the

two proposed error terms as well as the texture reserving

prior for alleviating ringing artifacts arisen from different

causes. By tuning parameters, the proposed method can be

flexibly adjusted according to the situation of the degraded

image. We further compare the proposed texture reserv-

ing result xtexture with the one of IRCNN on the Levin’s

dataset. The numercal results are reported in Tab. 1. One

can see, the texture reserving prior enhances the traditional

IRCNN model by a wide margin and the proposed model

reaches the best results with the introduction of the two er-

ror terms. Hence, the proposed model is both flexible and

effective.

4.3. Synthetic Dataset

In this section, a thorough evaluation will first be given

in the benchmark of Levin et al. [18], which contains 32

grayscale blurry images. Secondly, we evaluate the meth-

ods on the larger dataset of Sun et al. [43], which has 640

blurry images generated from 80 clear images and the same

8 blur kernels. Furthermore, we test the proposed method

on a more challenging Lai et al.’s dataset [17], which con-

tains 4 large ground truth kernels and 25 color images of dif-

ferent types. We synthesize the blurry images by applying

valid convolution with a specific level of noise added to it.

The edge tapper boundary extension in [41] is also adopted.

As for the numerical metrics, we adopt the method in [19]

by aligning the deblurred images with the sharp images and

cutting off the boundary pixels before calculating the peak

signal-to-noise ratio (PSNR) and the structural similarity in-

dex measure (SSIM), which are also adopted in the mea-

surements by other studies on deblurring.

4.3.1 Levin et al.’s dataset

To verify the robustness of the proposed method to the es-

timated kernels, we test the non-blind deblurring methods

with given kernels returned by 5 estimation methods, [6],

[19], [36], [43] and [24]. With kernels of each method, our

proposed method is compared with other competitive non-

blind deblurring methods including [12], [14], [52], [33],

[49], [22], [26] respectively. Note that, for the compared

methods, we run their public codes and models on the test

sets with the parameters that authors suggest. Tab. 2 shows

the average PSNR and SSIM values of different methods in

terms of 5 different kernel estimation methods on the Levin

et al.’s dataset with 1% noise. It can be seen that the pro-

posed model outperforms all the competing methods by 0.4-

2dB in PSNR, which implies the proposed model is robust

and effective with different kernel estimations. The visual

comparison listed in the first row of Fig. 7 shows the pro-

posed method reserves more details than any other methods.

To illustrate the robustness of our model to different

noise cases, Tab. 3 presents the comparisons with other

methods in [14], [33], [49], [26], [22] on Levin’s dataset

with different levels of noise. In Tab. 3, our proposed model

achieves the best performance compared to other methods

in all cases. It definitively demonstrates that the proposed

method is more robust to the noisy blurry images.

4.3.2 Sun et al.’s dataset and Lai et al.’s dataset

For additional comparison, we evaluate our model on Sun

et al.’s and Lai et al.’s datasets added with 1% noise, with

the numerical results listed in Tab. 4. In Sun et al.’s dataset,

the average PSNR of our model outperforms the competing

methods by about 0.4-2.5dB. It is worth mentioning that our

numerical measurements are also about 0.4 dB higher than

the latest end-to-end learning method [26]. Indeed, the ex-

amples listed in Fig. 7 also prove that the visual quality of

the recovered images is better than those of model-based

and end-to-end non-blind network methods. For the im-

ages in Lai et al.’s dataset, it is challenging for all methods

to get fine results, since the kernel is large and more ar-

eas get influenced from the boundary. Still, the proposed

method surpasses all the methods and is competitive to the

learning-based method [26]. As seen from Fig. 7, for im-

ages recovered successfully by all methods, the result of the

proposed model has the most textures with few ringing arti-

facts while Li’s methods, though having the fewest ringing

artifacts, still reserves the blur in the results.

4.4. Real-world image

In this section, we focus on the visual comparison of the

deblurred results of the blurry images from the real world

due to the lack of ground truth. Two examples are reported

in Fig. 8. For the first example with complex textures,

ours recovers the images with most realistic colors without

smoothing crucial textures such as the fine lines and charac-

ters while other methods recover the sharp edges with ring-

ings damaging the surrounding colors. For the characters in

the second example, which are easily influenced by the ker-

nel inaccuracy, ours recovers them with least ringings which

proves it can reduce the error in the estimated kernel.
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26.29/0.8104 33.39/0.9333 33.40/0.9340 33.59/0.9206 32.95/0.9156 35.31/0.9541 Ground truth

32.96/0.9183
24.63/0.6949

36.62/0.9633 35.24/0.9296 28.69/0.8504 34.00/0.8410 38.57/0.9674 Ground truth

13.39/0.3148

Blurred image

19.95/0.5896

Zhang [49]

19.86/0.5447

Pan [33]

20.53/0.7348

Liu [26]

19.05/0.5995

Li [22]

20.79/0.6074

Proposed model

Ground truth

00.00/0.00

Figure 7. The 1st columns are the blurry images with 1% noise from Levin’s dataset (1st row) with the kernels by [36], Sun’s dataset (2nd

row) with kernels by [45] and Lai’s dataset (3rd row) with the kernels returned by [17]. From the 2rd to the last columns, there are the

results of [49], [33], [26], [22], ours and the ground truth images for comparison. The images are best compared by zooming in.

Zhang [49] Pan [33] Liu [26] Li [22] Proposed model Blurred image

Figure 8. The comparison of the deblurred results of blurry images from the real dataset in Lai’s dataset with the kernel estimated by [24].

5. Conclusion

The task of non-blind image deblurring is to recover a

clear image from a blurred image with a certain estimated

kernel. In many situations, this kernel is inaccurate. In order

to handle this issue, we propose to rectify the known kernel

during deconvolution, allowing kernel error. Moreover, a

residual error term was used to deal with the non-linearity

caused by outlier and noise. Furthermore, a deep learning

denoiser was applied to keep the fine textures in the recov-

ered image, which can be readily improved. Extensive re-

sults show that the proposed model is robust in dealing with

a wide range of images and kernels and bring about the im-

provements in both quantitative metrics and visual quality.
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