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Abstract

Pansharpening, whose aim is to acquire high resolu-
tion multispectral data (HRMS) by the fusion of low res-
olution multispectral data (LRMS) and panchromatic data
(PAN), is a specific mission of spatial-spectral fusion in re-
mote sensing field. In recent years, deep learning meth-
ods have proved the most feasible methods for pansharpen-
ing task. However, these deep learning methods have dif-
ficulty in training in an unsupervised manner and become
useless when it comes to the condition where no training
dataset is available. In this paper, we propose a universal
algorithm called deep image interpolation for pansharpen-
ing task. The main idea is achieving high-quality fusion
results by interpolating two low-quality multispectral im-
ages in a deep neural network. We apply it to two condi-
tions: 1) unsupervised training a network when there are
enough datasets; 2) directly optimizing the fusion result
where no training datasets are available. Simulation and
real-data experiments are conducted on various kinds of
satellite data. Quantitative and qualitative evaluation re-
sults illustrate that the proposed method outperforms tradi-
tional pansharpening methods and even catch up with those
supervised methods to some extent.

1. Introduction

When acquiring remote sensing data from satellites, a
trade-off always exists between spatial and spectral reso-
lution due to the limitation of sensors. In order to relieve
the limitation of sensors and make full use of multi-source
images with different spatial and spectral resolution, lots
of pansharpening methods have been proposed, whose aim
is to obtain high resolution multispectral images (HRMS)
from panchromatic images (PAN), which have one band
with very high spatial resolution, and low resolution mul-
tispectral images (LRMS). Examples of HRMS, LRMS and
PAN are displayed in Fig. 1. According to [21], traditional
pansharpening methods can be divided into three different

(b) LRMS

(c) HRMS

Figure 1. Examples of PAN, LRMS and HRMS.

families: 1) component substitution-based methods (CS-
based methods); 2) multiresolution analysis-based methods
(MRA-based methods); 3) variational model-based meth-
ods (VM-based methods).

CS-based methods are the most classic and fundamen-
tal pansharpening methods. They differ from each other
in terms of projection algorithms, such as the intensity-
hue-saturation (IHS) algorithm [4], the principal component
analysis (PCA) algorithm [!3], the Gram-Schmidt (GS) al-
gorithm [14] and the Adaptive Gram-Schmidt (GSA) algo-
rithm [3]. CS-based methods can precisely preserve the
spatial information from PAN but fail to retain the accu-
rate spectral information. MRA-based methods are an-
other traditional pansharpening methods. Different trans-
formation algorithms lead to different MRA-based meth-
ods. The representative transformation algorithms consist
of the high-pass filter (HPF) [2], the generalized Laplacian
pyramid with modulation transfer function matched filter
(HTE-GLP) [5], the decimated wavelet transform (DWT)
[24] and the smoothing filter-based intensity modulation
(SFIM) [16]. MRA-based methods can better preserve the
spectral fidelity in the pansharpening results but they can-
not guarantee the spatial accuracy. VM-based methods are a
relatively novel kind of pansharpening methods which view
the pansharpening task as an ill-posed inverse optimization
problem. They take advantage of observation model [32]
or sparse representation theory [15] to construct the equa-
tions and solve them by iterative optimization algorithms
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Figure 2. Workflow of the proposed method.

such as alternating direction method of multipliers algo-
rithm (ADMM) [17] or gradient descent algorithm [25].
VM-based methods show their superiority in terms of the
balance between spatial and spectral fidelity. Nevertheless,
it is difficult to determine the optimal parameters in VM-
based methods and the accuracy of fusion results heavily
depends on the accuracy of observation model.

Taking the flaws of the above three kinds of methods into
consideration, recent studies [9, 11,20,22,26,29-31] apply
deep learning methods (DL-based methods) to pansharp-
ening task. Compared with traditional methods, DL-based
methods have great time-efficiency and achieve results with
higher spectral and spatial fidelity. However, two limita-
tions exist in most existing DL-based methods: 1) due to
the inexistence of real HRMS, the network has to be trained
according to Wald’s protocol in a supervised manner, which
means the network cannot utilize the features of original
resolution; 2) DL-based methods do not work when there is
a small amount of training datasets or no training datasets.

To overcome the limitation of DL-based methods, we
propose deep image interpolation, which interpolates two
low-quality multispectral images in the network to obtain
HRMS, solving the two drawbacks of DL-based mentioned
above. One of the low-quality multispectral image should
have high spectral fidelity and another should own high spa-
tial accuracy. The proposed method can be used in the
1) unsupervised network training with enough datasets or
2) unsupervised pansharpening result optimization in deep
network without datasets. The main process is displayed in
Fig. 2. The characteristics and contributions of our work
are summarized as follows:

e We propose a unified deep image interpolation frame-
work for unsupervised pansharpening task. The proposed
framework need not consider the number, size and resolu-
tion of training data, showing the flexibility and transfer-
ability of the proposed method.

e We introduce a combination of two simple optimiza-
tion terms to constrain the spectral fidelity and spatial ac-
curacy of pansharpening results. A simple deep neural net-
work is used to complete the whole process.

e Several simulation and real-data experiments are con-
ducted with data from different satellites. The results of
the proposed method outperform many state-of-the-art pan-
sharpening methods, verifying the effectiveness and accu-
racy of our method.

The whole paper is organized as follow: in Section II,
we introduce some related DL-based pansharpening meth-
ods; in Section III, main process and two strategies of pan-
sharpening by deep image interpolation are presented elab-
orately; in Section VI, we demonstrate pansharpening re-
sults of simulation and real-data experiments and compare
the proposed method with other state-of-the-art methods in
quantitative and qualitative manner; some discussions and
extra experiments are also presented; in Section V, we draw
a conclusion of the whole paper and briefly introduce our
future work.

2. Related Works

DL-methods for supervised pansharpening: Gener-
ally speaking, DL-based pansharpening methods could be
viewed as a variant of DL-based super-resolution [6, 2]
methods and are conducted in a supervised manner. For ex-
ample, [20] took the idea from [6] and firstly introduce con-
volution neural network to the pansharpening task. They
proposed a three-layer network called pansharpening neu-
ral network. State-of-the-art fusion results are obtained
compared with those traditional methods. [3 1] further came
up with a multiscale and multidepth convolutional neural
network, which concatenated feature maps from convolu-
tion layers with different kernel sizes and different depths.
[11] argues that the residual information between PAN and
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HRMS has less information than the residual between PAN
and LRMS so they trained the network with the former as
output and the latter as input, by which shows a great im-
provement compared with other DL-based methods.

DL-based methods have great time-efficiency due to its
forward propagation and acceleration from GPU. They out-
perform those traditional methods in terms of spatial and
spectral fidelity because of their non-linear fitting ability.
However, due to the inexistence of real HRMS, they have to
train the model in a supervised manner according to Wald’s
protocol which obtains training datasets by downsampling
the original data. This behavior may ignore the real image
feature in primary resolution.

DL-based methods for unsupervised pansharpening: Up
to now, some unsupervised DL-based methods [18, 19,33]
for pansharpening are proposed. They operate in an unsu-
pervised manner by answering the following two questions:
1) how to construct the spectral relationship between output
and LRMS; 2) how to construct the spatial relationship be-
tween output and PAN. These methods get the same answer
for the first question: the output is simply downsampled to
the same resolution of LRMS by bicubic algorithm and is
then compared with LRMS. For the second question, they
attempt to linearly add the channels of output and compare
it with PAN. The only difference is the adding ways. For
example, [19] directly computed the average of all chan-
nels in the output. [18] summed the channels with least
square coefficients calculated between down-sampled PAN
and LRMS previously. [33] made use of the spectral re-
sponse function provided previously to sum up the channels
of output. Although fine pansharpening results have been
achieved in these researches, there are still some potential
risks. The first is that the relationship between PAN and
HRMS is not simply linear. Such linear summing up may
lead to spectral distortion in pansharpening results. The sec-
ond is that these unsupervised methods cannot be applied
when there is a small amount of training datasets and only
single pair of PAN and LRMS.

Image optimization in deep neural network without
training samples: Considering the condition where no
training samples are available, some studies make full use
of the strong non-linear fitting ability and inner property
of deep neural network to complete many low-level vision
tasks, such as [8, 23,27, 28]. In [28], authors introduce
deep image prior to many applications such as image recon-
struction, whose experiments show the superiority of their
method. Given a sample of texture, [27] can generate a new
image with the same type of texture by generative adver-
sarial network. [8] proposed neural style transfer, which ex-
tracts the style of one image and injects it to the content of
another image to obtain a style transfer result with a vgg net-
work. Given one sample image, [23] could generate various
outputs, which has similar content of the given image, with

a generative adversarial network and this algorithm also has
great performance in many other applications such as image
harmonization.

Although these methods have not touched on the fusion
tasks such as pansharpening which focus more on the accu-
racy of results, they confirm the possibility that deep neural
network can also be applied in the condition where no train-
ing samples are available. Inspired by these studies, we in-
troduce our deep image interpolation to pansharpening with
single pair of PAN and LRMS.

3. Methodology

We give some notations of data which is used in this
method for the sake of simplification. P € RW>*#*x1 de-
notes the PAN data. W and H are respectively the width
and height of PAN. M € R¥*"X¢ means the LRMS data.
The width, height and the number of channels of LRMS are
indicated respectively by w and h and C. HRMS is denoted
as R € RW*HXC which have the same width and height
as PAN and the same number of channels as LRMS. We
denote the fusion result as F € RW*H*C  Pg denotes a
traditional pansharpening method. |,, denotes the operation
of downsampling by n times and 1,, denotes the operation
of upsampling by n times. We denote out network as G.

3.1. Deep Image Interpolation

All existing unsupervised deep learning methods aim to
establish a linear relationship between the output of net-
work and P to constrain the spatial information of the out-
put. However, the exact relationship between P and R is far
from linear and a spatial constraint based on linear relation-
ship will lead to severe spectral distortion. In the proposed
method, we first diffuse the spatial information from P to all
bands of M by a traditional method to constrain the spatial
information of fusion results. Compared with solely P, tra-
ditional pansharpening results are close to ground truth in
terms of spectral information which makes them have less
effect on the spectral accuracy of network outputs. After-
ward, deep image interpolation serves to acquire pansharp-
ening results by interpolating the results of the traditional
method and M in the image level.

First, we make use of a traditional method PS to ac-
quire a multispectral image Ry € RY *#*C with high spa-
tial fidelity but low spectral accuracy, which is described in
Equation 1:

R, = PS(P,M) (1)

A lot of methods can serve as PS. , such as SFIM [16],
MTF-GLP [5] and BDSD [7]. Here we select the BDSD
method as PS due to its better ability for spatial information
maintenance. Then we upsample the LRMS to the same
resolution of PAN and concatenate it with PAN as the input

611



of the network to obtain the output F:
F=G((P,M) 2

The spatial optimization term is constructed between R
and F for spatial information accuracy, which is displayed
in Equation 3:

1

1
Espatial = m ||R0 - F||1 (3)

The spectral optimization term is constructed with M and F
in order to guarantee the spectral accuracy of pansharpening
result, which is illustrated in Equation 4.

1

- N 1
Espectral - W xHxC ||M Tﬂ F \LnTn”l (4)

The upsampling operation in Equation 4 is added to aug-
ment the spatial information of M and the downsampled F.
The two terms are added by weight and the total optimiza-
tion term is obtained:

£total = Espatial + )\‘Cspectral (5)

The final fusion result is obtained until the optimization
term reach the minimum.

3.2. Network structure

The proposed network structure is shown in Figure 2.
The whole network adopts a simple 7-layer convolution
neural network structure. The first six layers contain a con-
volution operation and a ReLU activation operation. Ac-
cording to previous studies, gradient vanishing may occur
when it comes to a deep network structure with more than
three layers. In order to avoid this gradient vanishing phe-
nomenon, we make use of concatenation operation within
the network, which has been proven effective in dealing
with such problem. The output of the first layer and third
layer are concatenated as input of the fourth layer. The out-
put of the first layer and fifth layer are also concatenated as
input of the sixth layer. The seventh layer has just a simple
convolution operation whose output is our expected fusion
result.

3.3. Strategies for two conditions

The proposed framework can be used to process the fol-
lowing two tasks: 1) unsupervised network training with
large datasets; 2) unsupervised pansharpening result opti-
mization without training samples.

For unsupervised network training with large datasets,
the aim is to obtain the trained network. Then the trained
network can be further applied to acquire pansharpening
results of other images except training datasets. The opti-
mization term is used to obtain this trained network which
is explained in Equation 6.

G* = argmin Lyo1q (P, M, F). (6)

When there is a small amount of training datasets or only
one pair of images for pansharpening, the proposed unsu-
pervised network will not be trained well. Under this con-
dition, we aim to obtain the suitable network output but not
the trained network. So the optimization term is used to
directly optimize the pansharpening result which is men-
tioned in Equation 2.

F* = argmin Lot (P, M, F). @)

For unsupervised network training with large datasets,
the network acquires the knowledge of pansharpening dur-
ing the training process. So it can be retained for further
application. In the unsupervised pansharpening result opti-
mization, the whole process is an overfitting process com-
pared with the unsupervised network training. It cannot be
applied in other data so we abandon the network after opti-
mization but retain the fusion result. For the sake of simpli-
fication, we name the algorithm used in unsupervised net-
work training as DIIA and the algorithm used in unsuper-
vised image optimizing as DIIB.

4. Experiments

In order to testify the effectiveness of the proposed
method, both simulation and real-data experiments are con-
ducted in this section. In Section 4.1, we introduce the
experiment settings including datasets, comparison meth-
ods, evaluation methods and optimization details. Quali-
tative and qualitative evaluation of simulation experiments
are presented in Section 4.2. In section 4.3, results of real-
data experiments are displayed to verify the superiority of
the proposed methods. We show some other relevant exper-
iments in Section 4.4.

4.1. Experiment settings

Datasets: We use two training datasets from two dif-
ferent satellites for DIIA in unsupervised training task.
The first training dataset is Gaofen-2 dataset used in [21],
which makes use of multispectral (LRMS) and panchro-
matic (PAN) data from GanFen-2 satellite. The spatial res-
olutions of LRMS and PAN are respectively 4m and 1m.
LRMS has a total of four bands which are respectively R, G,
B and NIR bands. The second training dataset is QuickBird
dataset used in [20], which uses the LRMS and PAN from
QuickBird satellite. The spatial resolutions of LRMS and
PAN are respectively 2.44m and 0.61m. LRMS of Quick-
Bird satellite has also four bands which are R, G, B, NIR.
Two test datasets from Gaofen-2 and QuickBird are pro-
vided for both DIIA in unsupervised training task and DIIB
for pansharpening results optimization task. They are ob-
tained in different areas from the training datasets. The
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Figure 3. Simulation experiment results of QuickBird data.

Gaofen-2 test dataset contains 20 pairs of LRMS and PAN.
The QuickBird test dataset has 12 pairsof LRMS and PAN.
Two simulation experiments are conducted with Quick-
Bird and Gaofen-2 datasets. We follow the Wald’s proto-
col and downsample the PAN and LRMS in both training
and testing datasets by four times to obtain new PAN and
LRMS. The original LRMS is viewed as ground truth in the
simulation experiment. Specifically, for the unsupervised
training in DIIA, we obtain the training datasets by crop-
ping images into small patches with a size of 80x80 with
a step of 40 pixels. The final QuickBird simulation train-
ing dataset has 15139 patches and the Gaofen simulation
training dataset has 8777 patches. A real experiment is con-
ducted on Gaofen-2 dataset. We make training datasets for
unsupervised training by directly cropping image patches
from original PAN and LRMS. The images of Gaofen-2
data are cropped into 80x80 with a step of 80 and we fi-
nally obtain 35108 patches.
Comparison methods: We choose five conventional but
useful pansharpening methods from different classes as
comparison methods. They are respectively Smoothing
Filter-based Intensity Modulation method (SFIM [16]),
Adaptive Intensity Hue Saturation method (AIHS [3])
which belong to CS-based class, MTF-GLP with High-Pass
Modulation injection method [1], Band-Dependent Spatial
Detail method (BDSD [7]) which pertain to MRA-based
class, and Two-Step Sparse Coding method (TSSC [10])
which is a VM-based method. All the methods mentioned
above are state-of-the-art pansharpening methods in their
classes.
Evaluation methods: Six indexes are used to evaluate
the veracity of pansharpening results. They are spectral

| Method | ERGAS | PSNR | Q | SAM | spCC | SSIM |

MTF [1] 3.088 35.124 | 0.828 | 2.640 | 0.810 | 0.962

BDSD [7] 2.942 35.664 | 0.813 | 3.352 | 0.788 | 0.956

AIHS [3] 2.435 37.095 | 0.826 | 2.578 | 0.832 | 0.967

SFIM [16] 2.815 35.907 | 0.833 | 2.497 | 0.805 | 0.964

TSSC[10] 2.369 37.431 | 0.854 | 2.665 | 0.809 | 0.971

DIIA 1.962 38.993 | 0.895 | 2.179 | 0.857 | 0.981

DIIB 1.620 40.483 | 0.918 | 2.063 | 0.905 | 0.983

Table 1. Quantitative evaluation of QuickBird dataset.

angle mapper (SAM), respectively relative dimensionless
global error in synthesis (ERGAS), peak-signal-to-nose-
ratio (PSNR), similarity structure index (SSIM), Q index
(Q) and spatial correlation coefficient (spCC). The first
three indice are used to evaluate the spectral information of
the fusion results and the last three indexes can judge their
accuracy of spatial information.

Optimization environment and details: We conduct the
whole experiment with Pytorch1.0 under the environment
of Ubuntul6.04. One 2080Ti GPU is utilized to run the
program. We make use of Adam optimizer to optimize the
whole network. Learning rate is set as 0.00001 and the
training epoch is set as 16.

4.2. Simulation experiments

QuickBird results: The first simulation experiment is con-
ducted with QuickBird dataset. The six quantitative evalu-
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Figure 4. Simulation experiment results and residual maps of Gaofen-2 data.

’ Method ‘ ERGAS ‘ PSNR ‘ Q ‘ SAM ‘ spCC ‘ SSIM

MTF [1] 3.599 26.338 | 0.873 | 2.695 | 0.790 | 0.868

BDSD [7] 3.725 25959 | 0.854 | 3.365 | 0.744 | 0.794

AIHS [3] 2.776 28.645 | 0.886 | 2.580 | 0.845 | 0.889

SFIM [16] 3.348 26.955 | 0.875 | 2.626 | 0.778 | 0.858

TSSC[10] 3.188 27.553 | 0.886 | 3.320 | 0.747 | 0.860

DIA 2471 29491 | 0917 | 2.447 | 0.801 | 0.903

DIIB 2.015 31.575 | 0.949 | 2.191 | 0.897 | 0.934

Table 2. Quantitative evaluation of Gaofen-2 dataset.

ation results of 7 methods are listed in Table 1. We mark
the highest score of each index in bold and the second high-
est score with underline. We can find out from the table
that compared with traditional methods, the two proposed
methods, DIIA and DIIB can obtain fusion results with high
spectral and spatial accuracy, outperforming the rest by a
large extent. Another issue worth mentioning from Table.
1 is that results of single data pansharpening by DIIB out-
perform results of unsupervised training by DIIA slightly
although they make use of the same auxiliary data. This
phenomenon illustrates a trade-off of time and accuracy in
deep image interpolation.

We select a representative pansharpening result and dis-
play them in Fig. 3 here for visual evaluation. In this
result, some traditional methods such as SFIM and MTF-
GLP-HRM inject some disruptive spatial information from
LRMS into the fusion result. AIHS cannot even restore
some buildings. BDSD and TSSC perform greatly in recov-
ering this ground object. However, overall result of BDSD
is brighter than the ground truth image and result of TSSC
is darker, which show the weakness of BDSD and TSSC in
restoring spectral information. The proposed two methods
can perfectly restore the building and obtain accurate spec-
tral information overall. Specifically, DIIB slightly outper-

forms DIIA.

Gaofen-2 results: Table 2 lists the six evaluation indexes
of seven methods in gaofen-2 testing dataset. Again we
mark the highest score in each index in bold and the sec-
ond highest with underline. Our deep image interpolation
outperforms the traditional fusion methods by a large ex-
tent again. We select a representative scene and display its
fusion results in Fig. 4. We also display the absolute error
maps between the fusion result of each method and ground
truth. We can find from Figure. 4 that there is much residual
information left in the absolute error maps of BDSD, SFIM,
MTF-GLP-HPM. There is less residual information in ab-
solute error maps of AIHS results and TSSC results. How-
ever, they cannot well recover the spatial information in the
fusion results which is vividly shown in Fig. 4. Our two
interpolation methods, DIIA and DIIB, have less residual
information compared with the above five methods, which
shows the superiority of our deep image interpolation.

4.3. Real-data experiments

We apply the trained network into the real data to testify
the efficacy of the proposed method. One prominent pan-
sharpening result from Gaofen-2 test dataset is selected to
display in Fig. 5. We magnify and display an object which
has strong light reflecting, making it hard to recover. TSSC
and AIHS perform badly in injecting the spatial informa-
tion into fusion results in terms of buildings. SFIM, MTF-
FLP-HPM and BDSD cannot guarantee the spectral fidelity
of vegetation. Our two methods, DIIA and DIIB, can take
both of the spectral fidelity and spatial accuracy into ac-
count, which make it outperform the comparison methods.

4.4. Relevant experiments

Selection of spatial constraint: The ideal auxiliary image
except LRMS should have high spatial accuracy in the pro-
posed methods. BDSD [7] method is no doubt the most
suitable method in our framework. Other popular tradi-
tional methods, such as SFIM [16] and MTF [ 1], sometimes
inject the inaccurate spectral information to the fusion re-
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Figure 5. Real data experiment result of Gaofen-2 data.

(f) TSSC [10] (g) DIIA
Method ERGAS | PSNR Q SAM | spCC | SSIM
MTEF [1] 3.09 3512 | 0.83 | 2.64 0.81 0.96

with MTF 1.60 4042 | 091 | 2.04 0.90 0.99
SFIM [16] 2.81 3591 | 0.83 | 2.50 0.81 0.96
with SFIM 1.62 40.65 | 091 | 1.99 | 0.889 | 0.98
BDSD [7] 2.94 35.66 | 0.81 | 3.35 0.79 0.96
with BDSD 1.62 4048 | 092 | 2.06 0.91 0.98

Table 3. Spatial constaint analysis.

Method | ERGAS | PSNR | Q | saM | spcc | ssim |
PanGAN[19] | 211 | 37.90 | 0.88 | 254 | 0.87 | 098
PNN [20] 198 | 3891 | 088 | 215 | 087 | 098
PanNet[30] | 178 | 39.84 | 0.90 | 1.93 | 0.89 | 0.98
DIIA 196 | 3899 | 090 | 2.18 | 0.86 | 098
DIIB 162 | 4048 | 092 | 206 | 091 | 098

Table 4. Comparison with supervised and unsupervised DL-based
methods.

sults which is vividly shown in Fig. 2, but BDSD [7] does
not. To quantitatively illustrate this idea, we adopt the pro-
posed DIIB and compare some representative methods with
BDSD [7] method in the QuickBird dataset. The evaluation
results are listed in Table 3. These results show the validity
of choosing BDSD method.

Supervised and unsupervised deep learning methods: In
order to further verify the effectiveness of the proposed

method, we compare the two proposed methods in our
framework with two supervised network training methods,
which are PNN [20] and PanNet [30] respectively, and
one state-of-the-art unsupervised training method PanGAN
[19]. The experiment is conducted under the same settings
with the QuickBird dataset. Quantitative evaluation results
of the proposed two unsupervised pansharpening methods
and three comparison methods are listed in Table 4. As ex-
pected, the unsupervised training does not perform as well
as the model created with supervised training. However,
we find that DIIB outperforms all supervised and unsuper-
vised training methods in terms of all indexes in QuickBird
dataset.

In Fig. 6, we present the simulation experiment results
and their absolute error map from ground truth in Fig. 6. In
Fig. 7, we displays the real data experiment results. Results
of PanGAN have sharp spatial information but bad spec-
tral accuracy. Results of PNN and PanNet suffer from both
spectral distortion and spatial inaccuracy. Result of the pro-
posed DIIA shares similar quality with those of PNN and
PanNet. However, the proposed DIIB outperforms all other
methods in terms of spectral and spatial fidelity, again show-
ing the superiority of the proposed framework. We impute
the failure of PanGAN to the inaccurate spatial constraint
constructed linearly between PAN and the output of net-
work. The above results also confirm that the spatial con-
straint used in the proposed method is the main reason why
the proposed unsupervised training, DIIA, can catch up with
the supervised training. As for the phenomenon that su-
pervised network training cannot catch up with DIIB, we
attribute the reason to the network capacity. In DIIB, the
capacity of network is enough for the fusion of only one
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Figure 6. Simulation results and residual maps of supervised and unsupervised training.

(a) PanGAN [I] (b) PNN [20]

(c) PanNet [30]

L7 .

(d) DITA
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Figure 7. Real data results of supervised and unsupervised training.

image. While in PNN and PanNet, the networks have to
consider all images in the training dataset so they cannot
precisely deal with only one image.

5. Conclusions

In this paper, we propose an idea called deep image in-
terpolation based on deep neural network for pansharpen-
ing task. The method obtains high-quality pansharpening
results by interpolating two low-quality data during the op-
timization process of the network. Two optimization terms
made up from LRMS and BDSD result are proposed to
guarantee the spectral and spatial fidelity of fusion result.
Our model can be applied in both unsupervised training
with large datasets and unsupervised pansharpening result
optimization without training process. Many simulation and
real-data experiments are conducted and testify the superi-
ority and convenience of the proposed method. We also
compare the proposed method with the supervised method.
The gap exists but is not a big one. In our future work, the
first improvement we want to make is to find out the bet-
ter and more precise optimization term. Another improve-
ment is the network structure. The network used in this
paper is designed optionally and far from the optimal. We
will try the Network Architecture Search (NAS) technic for

better solution. Furthermore, the proposed method can be
applied into other spatial-spectral data fusion work, such
as panchromatic-hyperspectral data fusion, multispectral-
hyperspectral data fusion, even in other tasks.
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