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Abstract

This work addresses two major issues of end-to-end
learned image compression (LIC) based on deep neural
networks: variable-rate learning where separate networks
are required to generate compressed images with varying
qualities, and the train-test mismatch between differentiable
approximate quantization and true hard quantization. We
introduce an online meta-learning (OML) setting for LIC,
which combines ideas from meta learning and online learn-
ing in the conditional variational auto-encoder (CVAE)
framework. By treating the conditional variables as meta
parameters and treating the generated conditional features
as meta priors, the desired reconstruction can be controlled
by the meta parameters to accommodate compression with
variable qualities. The online learning framework is used to
update the meta parameters so that the conditional recon-
struction is adaptively tuned for the current image. Through
the OML mechanism, the meta parameters can be effec-
tively updated through SGD. The conditional reconstruction
is directly based on the quantized latent representation in
the decoder network, and therefore helps to bridge the gap
between the training estimation and true quantized latent
distribution. Experiments demonstrate that our OML ap-
proach can be flexibly applied to different state-of-the-art
LIC methods to achieve additional performance improve-
ments with little computation and transmission overhead.

1. Introduction

Lossy image compression has been a decades-long re-
search topic [25, 29, 30, 33], which converts images into
as few bits as possible for efficient transmission and stor-
age and then reconstructs the images from the transmitted
bitstream. Motivated by the success of deep neural net-
works (DNNs) in a variety of computer vision tasks, end-
to-end learned image compression (LIC) has been actively
explored in recent years [4, 5, 8, 18-20].

Great success has been achieved by DNN-based LIC.
However, two major open issues still require further study:
1) the difference between the differentiable entropy model

for rate estimation in training and the true distribution of
the quantized latent representation at test time, and 2) the
variable rate problem where multiple model instances are
needed to meet compression requirements of different rate-
distortion (RD) tradeoffs. Specifically, the DNN-based LIC
is usually formulated as a joint RD optimization problem
using a variational auto-encoder (VAE) architecture. The
encoder/decoder network is trained to minimize the empir-
ical RD loss of training images using a soft differentiable
approximate quantization. For a test image, the true dis-
tribution of its hard quantized latent representation can be
quite different from the estimated one. That is, in addition
to the common generalization issue of all learning meth-
ods caused by the difference between training and test data,
LIC models face another gap caused by the difference be-
tween the training entropy estimation for soft approxima-
tion and the true distribution of the hard quantized latent.
To minimize this gap, since the pioneer work of [4], sev-
eral methods have been developed to improve the entropy
model for accurate rate estimation, such as the scaled hy-
perprior [5], the conditional adaptive context [19], the joint
autoregressive and hyperprior, the context-adaptive joint au-
toregressive and hyperprior [ 18], and the discretized GMM
with attention [8]. However, the mismatch originates from
the deterministic quantization error that is not truly random,
which remains as a major source of the suboptimal RD per-
formance for LIC [1, 14].

On the other hand, for RD optimization, a hyperparam-
eter A controls the tradeoff between the compression rate
and reconstruction quality. Once trained for one trade-
off )\, the model usually can not perform well for an-
other tradeoff A\. Therefore, one model instance usu-
ally needs to be trained for each tradeoff A\ for variable-
rate LIC, which can be very expensive and inefficient.
Some methods have been developed to tackle this vari-
able rate issue, such as using specially designed general-
ized octave convolution/transposed-convolution and train-
ing loss in the encoder/decoder networks [2], using a model-
agnostic multi-task prune-and-grow strategy to share pa-
rameters among the encoder/decoder networks of multi-
ple compression rates [17], or using a conditional varia-
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tional auto-encoder (CVAE) to reconstruct images of dif-
ferent compression rates based on the rate control Lagrange
multiplier as conditional variables [9, 36].

In this paper, we address both above issues by formu-
lating the DNN-based LIC problem into an online meta-
learning (OML) setting. The online learning mechanism is
used to bridge the gap between the training soft approximate
quantization and the true hard quantization at test time. The
meta-learning mechanism is used to control reconstruction
with different RD tradeoffs.

From the perspective of machine learning, on the en-
coder side, LIC is a task with ground-truth target in the test
stage. This makes LIC well suited for online deep learn-
ing (ODL), which can alleviate the problem caused by the
mismatch of training entropy model and hard quantization
at test time. However, we are reluctant to modify the model
parameters based on any individual test image, which can be
highly unstable with poor generalization [26]. In this work,
instead of modifying the DNN model parameters, we use
the OML framework to directly update the meta parameters
for each test image through SGD. Such meta parameters en-
ables effective adaptation in decoder for better reconstruc-
tion tuned to each particular image.

Specifically, we develop our OML based on the CVAE
architecture. We treat the conditional variables as meta
parameters, treat the network module of generating condi-
tional features as the meta prediction network, and treat the
generated conditional features as meta priors. The condi-
tional features modulate with the intermediate features of
the decoder layers to compute meta-conditional features. In
this formulation, the meta parameters control the desired
reconstruction quality so that one model instance can ac-
commodate reconstruction of different RD tradeoffs. Direct
SGD is used to effectively update the meta parameters so
that the decoder can adapt its reconstruction according to
the current test image.

Our contributions can be summarized as follows:

* We formulate the LIC problem into an OML setting
to address both the variable-rate learning issue and the
gap between the training soft approximate quantization
and the true hard quantization at test time.

* Different from general OML for life-long model learn-
ing [12,23], we online update the conditional meta pa-
rameters instead of model parameters, for the sake of
both system stability and transmission efficiency. The
updated meta parameters control the conditional re-
construction based on quantized latent representation
directly, which tunes the reconstructed image accord-
ing to the current need.

* The proposed OML-based LIC framework is based on
the CVAE architecture and can be applied to various
underlying VAE models. By learning the mapping
function between the tradeoff meta parameters and the

latent and reconstruction, our method provides the po-
tential capability of arbitrary-rate LIC, which can be
very challenging otherwise.

We evaluate our algorithm over the JPEG-AI benchmark
dataset provided in the MMSP 2020 challenge [16]. Ex-
perimental results demonstrate the effectiveness of the pro-
posed method in improving the state-of-the-art underlying
LIC models [&].

2. Related Work
2.1. Learned image compression

Many recent LIC methods take the VAE architecture,
where image compression is formulated into the joint RD
optimization using variational inference [4]. Since additive
uniform noise is used during training to approximate the
test-time quantization, most studies focused on improving
the entropy model to reduce the mismatch between the es-
timated distribution and the true distribution of quantized
latent representation [5, 8, 13, 19,20]. However, such a mis-
match originates from the deterministic quantization error
that is not truly random, the gap between the soft quantiza-
tion approximation and the true hard quantization can not
be eliminated.

Some methods have been proposed to alleviate this is-
sue. For example, the soft-to-hard simulation [I1] and
soft-then-hard quantization [14] take a two-stage “mixed-
quantization” training strategy to compensate the mismatch
by tuning the softly trained decoder towards true hard quan-
tization. Our OML is complimentary to these methods.

2.2. Variable-rate LIC

When trained end-to-end, the encoder/decoder network
is optimized for a specific RD tradeoff, which will not work
well for other tradeoffs. As a result, variable-rate LIC is
typically hard, since one network is trained per compression
rate. To achieve variable-rate flexibility similar to modern
codecs, both RNN and VAE-based solutions have been pro-
posed to improve the model design or training strategies.

The convolutional/deconvolutional LSTM was used in
[21,32] for incremental reconstruction. The RNN-based ar-
chitecture requires progressive encoding/decoding, and the
many iterations needed for high-quality reconstruction can
be hard to use in practice.

Under the VAE framework, to pursue high RD per-
formance for variable-rate compression, the work of [2]
designed the generalized octave convolution/transposed-
convolution in the residual blocks of the encoder/decoder
network. However, it is not for general model structures.
To pursue general applicability, a model-agnostic multi-task
learning strategy was proposed [17] to share parameters
among encoders/decoders of multiple compression rates.
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However, the success relies on appropriate sharing struc-
tures and sharing ratios, as well as skillful prune-and-grow
training. In [9, 36], the CVAE architecture was used to con-
trol compression rates, where the Lagrange multiplier for
rate control was given as conditional variables to the net-
work. Conditional inference was performed through gener-
ating conditional features that were concatenated with com-
mon features [9] or modulated with common features [36].

Our OML is based on the CVAE architecture, in pur-
suit of a balance between general applicability and RD per-
formance, since CVAE can accommodate a range of VAE-
based LIC model structures. In addition, CVAE can be
interpreted as a meta-learning model structure, as will be
shown in Section 3. SGD can be used to effectively update
the meta parameters for our online learning.

2.3. Online Learning

Online learning aims to improve generalization of ma-
chine learning models, i.e., to alleviate the problem caused
by different training and test data distributions. The prob-
lem of LIC is well suited for online learning, since the target
is to encode and recover the input image itself, and the en-
coder has the ground-truth input at test time. In this paper,
we use online learning to bridge not only the common gap
between the training and test data distributions, but also the
gap between the training soft approximate quantization and
true hard quantization.

Most online learning methods focus on online updat-
ing the learned models [7, 10], and their performance with
DNNs for online deep learnig (ODL) is quite limited [26].
This is because the highly complex DNN models need to be
trained with batch-based methods using mini-batches and
multiple passes over the training data. Updating model pa-
rameters on the per-sample basis can be highly unstable.

Here we take a different strategy for ODL. Instead of on-
line updating the encoder/decoder networks, we directly al-
ter the meta parameters that control the reconstruction pro-
cess based on quantized latent representation. Direct SGD
is effectively used to update the meta parameters accord-
ing to the desired target loss, so that the reconstruction is
tailored for the current data adaptively.

2.4. Meta Learning

Meta-learning aims to learn from the experience of a set
of machine learning tasks so that learning of a new task
can be fast. In the context of LIC, if we treat compression
with each target RD tradeoff as a task, by observing training
tasks of multiple compression rates, meta learning enables
fast generalization to a new test compression rate, which is
analogous to variable-rate LIC.

Assume that tasks are drawn from a task distribution, and
a set of training tasks with their corresponding datasets are
observed. Then a meta-learning algorithm tries to learn a

task-general prior over the model parameters, and such prior
knowledge can be applied to a new task to speedup its learn-
ing. Among various meta-learning methods [3, 1 1,21,27],
the gradient-based model-agnostic meta-learning (MAML)
[3, 11] has been successfully used in various applications,
e.g., reinforcement learning [22], image super-resolution
[28], HDR image reconstruction [24], etc.

For the scenario of continual learning, where the task
distribution is not fixed but changing overtime, the on-
line meta-learning (OML) framework has been developed
[12,23], where the MAML meta-training with direct SGD
is performed online during a task sequence to update the
parameters of the task model.

Motivated by the OML mechanism, we perform SGD to
change the conditional meta parameters that control the re-
construction process in decoder. Compared with updating
model parameters, another benefit besides stability is that
only a few updated conditional meta parameters need to be
transmitted to the decoder, in comparison to the large num-
ber of model updates.

2.5. Substitutional LIC

Another work highly related to to ours is the substitu-
tional LIC method proposed in [34]. The original input im-
age is replaced by a substutional image that outperforms the
original one for a new target, e.g., a new target metric or a
new target compression tradeoff. Similar to our method, di-
rect SGD is used to iteratively update the substitute image
from the original input, without modifying the underlying
encoder/decoder networks. Different from [34], where up-
dates are conducted in the input image domain as a pre-
processing module using training entropy estimation, we
present meta online adaptation in the latent domain based
on reconstruction from true quantized latent representation,
to alleviate the problem of mismatch between the soft ap-
proximate quantization and true hard quantization, under
the framework of variable-rate CVAE.

Another benefit of online adaptation over true quantized
latent is that we avoid multiple iterative passes of con-
text computation. For example, the autoregressive context
model has good RD performance but is slow in computa-
tion, due to the sequential scan order. To alleviate this issue,
some recent methods have been developed to enable paral-
lelization, e.g., though two-pass checkboard context calcu-
lation [15]. Here we can avoid multiple passes of context
computation by conducting online adaptation in the decoder
reconstruction network.

3. Online Meta-LIC

A typical LIC architecture consists of an encoder fg(z),
a decoder go(z), and a quantizer ¢(-), where x is an input
image and z =¢q(fo(x)) is a quantized latent representation
from the quantizer. Lossless arithmetic coding is generally
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used to further generate a compressed bitstream from the
quantized representation z for transmission.

Since the deterministic quantization is non-differentiable
with regard to network parameter ®, ©, the additive uniform
noise is generally used to optimize an approximated differ-
entiable RD loss comprising of:

Ro = Ep(z)pe (=|2) [~ 1082 po (2)]
Da.o = Epa)pe o) [z — 90(2)I13]
where p(z) is the probability density function of all natural
images. Since the continuous density pqg (2) is intractable to
compute, a differentiable tractable density go(z) is used to
approximate pg (z), and the RD optimization turns to:

gliél Ep(%)pcp(Z\ﬂ:) P\Hx - 9@(2”‘% — log, ‘I@(Z)] ) (L

where X is a hyperparameter that controls the optimiza-
tion of the network parameters to trade off between recon-
struction quality against compression rate. Therefore, for
each target value of )\, a set of parameters ®, © needs to
be trained for the corresponding optimization of Eqn.(1),
which is highly inefficient in practice.

3.1. Variable-rate LIC

Using the CVAE architecture, the variable-rate LIC con-
ducts VAE image compression conditioned on the compres-
sion rates controlled by X . The following RD formulation
is generally used:

o,

where A € A, and A is a set of Lagrange multiplier val-
ues. In [9], A contains a pre-defined finite set of values,
and a one hot vector of length |A| is generated as the input
condition. In our OML setting, we need to assign arbitrary
continuous values to A. Therefore, we use the conditional
feature modulation framework similar to [36], where A can
take any arbitrary value.

Specifically, the CVAE inference is implemented via a
feature modulation operation illustrated in Figure 1:

vE =5 (AYE, (3)

where Y;* and Y;* are the 2D feature maps of the i-th input
channel of the k-th layer before and after modulation, re-
spectively. s¥(\¥) is the channel-wise scaling factor, which
depends on A\*. \F is the quality-control tradeoff condition
for the k-th layer, and A\! = A2 = ... = X given the target
tradeoff \ of the current task. s¥(\*) can be computed as:

¥ = softplus(mP (\*|TF))

where m”(\¥|WF) is a nonlinear function that maps the
tradeoff A\* to the scaling factor of the i-th channel and
softplus(x) = log(1+¢%), and ¥¥ contains the model pa-
rameters of m?¥.

micf)l Ep(w)pq)(zu,)\) P‘Hiﬂ —ge(z, >‘)H§ — log, QG(Z|>‘)] )]

Figure 1. Conditional feature modulation

3.2. Variable-rate meta-LIC

Assume that the tasks of LIC with different As are drawn
from a task distribution, 7. At meta-training time, we ob-
serve M tasks with A1,..., Aps. At test time, we have a
new task with an arbitrary \;. By learning from the train-
ing tasks, meta-learning-based LIC aims to optimize the RD
loss for \;, without regular large-scale training for A;. Let
U = {0k} include all the parameters for the conditional
modulation. Let L(D;, A;, ¥) represent the average loss on
the dataset D; for RD tradeoff A\ ;. The MAML method [11]
learns an initial set of parameters W based on all the training
tasks, by solving the optimization problem:

M ~
U* = argming » CL(Dj A, W = aAL; (T, X)), (4)
J:

where AL (¥, A;) is the inner gradient computed based on
a small mini-batch of D;, and « is the step size. Then at
meta-test time, L(D;, ¥, \;) can be minimized by perform-
ing a few steps of gradient descent from ¥ using new task
data D;. In the context of online LIC, the current task is to
compress the test image x, and we have D; =2 and | D;|=1.

The meta-LIC actually tries to learn an implicit mapping
between the meta parameters As and the latent and recon-
structed images. When properly trained, such mapping pro-
vides the capability of LIC over arbitrary compression rates.

3.3. Online variable-rate meta-LIC

Now we want to use the online learning framework to
bridge the gap between the training soft approximate en-
tropy estimation and the actual distribution of the quantized
latent representation. However, updating the model param-
eters U based on a single test datum can be highly unstable.
Besides, the model updates need to be transferred to the de-
coder for reconstruction, which can be quite expensive.

In this work, for online meta-LIC, at meta-test time,
instead of updating model parameters ¥, we minimize
L(Dy, A, ¥) by performing gradient descent over the trade-
off conditional factor \;:

Ay = At — YAL(Dy, Ar, ©) (5)

That is, the direct SGD is used to find a better tradeoff con-
dition \* = {\F"} than the original ), so that a better RD
loss L(Dy, Aj, ¥) can be obtained. Note that different from
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the original variable-rate LIC where ), is the same across all
modulated layers, the online meta LIC usully has a differ-
ent \¥" for each k-th conditional modulated layer learned
through online SGD.

The intuitive rationale behind this approach is that
through meta training, the relationship between the con-
ditional hyperparameters A and the loss L(D, A, ¥) has
been established by the CVAE decoder network. Therefore,
when we fix input data D; and network ¥, we can finetune
A to reduce L(Dy, A\, U) tailored for the current input D;.

4. Implementation Details

Figure 2 describes the model architecture of our ap-
proach. The online meta learning aims to update the con-
ditional parameters that control the reconstruction based on
the quantized latent representation z in Eqn. (2) directly.
Therefore, it is unnecessary to enforce a variable-rate archi-
tecture for the encoder. In other words, for a base LIC en-
coder/decoder network, we only need to add the conditional
modulation networks to modulate the intermediate features
after the decoding blocks, with or without making changes
to the encoders, as described in Figure 2a.

As discussed in Section 2.5, another benefit of perform-
ing online adaptation in the reconstruction network is the
computation, where the online SGD avoids multiple passes
of expensive context calculation.

This framework also gives the end users the flexibility
to change the reconstructed image based on their different
requirements. For instance, an encoder can send a univer-
sal quantized latent representation z to user, together with
a set of conditional tradeoff parameters {\; }, each A} opti-
mized for a target RD loss \;D+R, e.g., with different dis-
tortion metrics, different tradeoff values etc. The end user
can choose the optimal reconstruction according to specific
needs on the decoder side.

In detail, the conditional feature modulator network
takes a similar structure to [36], as described in Figure 2b.
The conditional tradeoff parameter A\* for the k-th modula-
tor is passed through two fully connected layers to generate
a vector of length N*, where N* is the number of feature
channels for the intermediate feature to modulate.

The conditional feature modulator can be flexibly ap-
plied to various underlying LIC decoders. In this work,
we use the Minnen2018 method [20] and the Cheng2020
method [8] as examples, which are generally used as state-
of-the-art baseline LIC methods in the LIC community [ 6].
Their decoding block structures are given in Figures 2c and
2d, respectively. The last decoding block usually comprises
of a basic (convolution or residual) block followed by an up-
sampling layer (e.g., deconvolution or pixel shuffle layer).

Figure 3 shows the process of online adaptation on the
encoder side. Specifically, given an input image x to com-
press, the encoder first computes the quantized latent rep-

resentation z based on the target tradeoff \;. The quan-
tized latent z is further encoded through lossless entropy
coding and sent to the decoder. At the same time, through
the CVAE decoder with conditional inputs A}, ..., A5, the
reconstructed image & can be recovered, and the distortion
D(z, ) can be computed by the target distortion metric
(e.g., PSNR or MSSSIM [35]). Initially we set A\} = \? =
=N — )\,

Since we do not change the quantized latent or the en-
coded bitstream of the quantized latent, the actual compres-
sion bpp (bits per pixel) remains the same during our OML
process. Gradients can be computed based on the distortion
loss D(x, ), which can be backpropagated to update the
conditional tradeoff parameters A}, ..., \X. After n on-
line iterations, the best performing updates A", ... AK *
are sent to the decoder, which gives a better reconstructed
image 2 with less distortion than the original \} = \? =
L= AK

5. Experiments

We conduct experiments using the JPEG-AI benchmark
dataset provided by the MMSP 2020 challenge [16]. Our
implementation is based on the CompressAl PyTorch pack-
age for LIC [6]. The JPEG-AI dataset comprises of 5264,
350, and 40 training, validation, and test images, respec-
tively, with resolutions ranging from 256x256 to 8K. This
is one of the latest and largest benchmark datasets for LIC
research and standardization activities. We use both the
Minnen2018 method [20] and the Cheng2020 method [8] as
the base encoder/decoder networks, where the conditional
modulator networks are added into the corresponding de-
coder as described in Figure 2a.

For the Minnen2018 method, CompressAl provides 8
pre-trained models corresponding to 8 compression quality
levels with Ay, ..., Ag as below:

A1 = 0.0018; Ao = 0.0035; A3 = 0,0067; Ay = 0.0130;
A5 = 0.0250; \g = 0.0483; A7 = 0.0932; \s = 0.1800

For the Cheng2020 method, CompressAl has 6 pre-trained
models corresponding to the first 6 compression quality lev-
els corresponding to Ay, . . ., Ag. All pre-trained models aim
to optimize PSNR, where distortion in the RD loss is mea-
sured by MSE. For Cheng2020, quality A1, A2, A3 have the
same model architecture, and quality A4, A5, A¢ have an-
other same model architecture with more feature channels.
Similarly for Minnen2018, quality A1, A2, A3, A4 have the
same model architecture, and quality A5, \g, A7, Ag have an-
other same model architecture with more feature channels.

5.1. Variable-rate base model

The pre-trained models from CompressAl are used as
base models, where the pre-trained encoders are directly
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Figure 2. Architecture of the proposed variable-rate meta-LIC method. The conditional feature modulators are applied to the decoder to
perform channel-wise modulation over intermediate decoding features after the decoding blocks.
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Figure 3. Online meta-update of conditional tradeoff parameters through SGD.

used without any modification. The CVAE framework de-
scribed in Figure 2a is added into the corresponding de-
coders to retrain the variable-rate decoder with the JPEG-AI
training data through MAML meta-training [1!]. That is,
for Minnen2018, we have two meta-trained decoders corre-
sponding to pre-trained encoders for quality A1, A2, A3, Ag
and A5, \g, A7, Ag, respectively. For Cheng2020, we have
two meta-trained decoders corresponding to pre-trained en-
coders for quality A1, Ag, A3 and Mg, A5, Ag, respectively.
The training is based on 256x256 patches randomly cropped
from training images.

5.2. Online meta adaptation

For each given test image z, it is divided into 512 x 512
patches to feed into the LIC network, where online adapta-
tion is conducted for each patch individually. 512 x 512 is
the maximum patch size, i.e., small images and boundary
patches will directly go through inference. For each patch,
the original encoder computes the quantized latent repre-
sentation, whose compression bpp stays unchanged for our
meta online adaptation. Also, we send K updated hyperpa-
rameters Aj,..., A} as 16-bit float numbers to the decoder
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for each 512 x 512 patch. Since K is a very small number
(K = 4 in our experiments), there is almost no additional
transmission overhead (about 0.00025 bpp).

When \¥ is updated through Eqn. (5), the updating step
size v needs to be determined. We take a heuristic method
to choose . For the first SGD iteration, we try several dif-
ferent step sizes (i.e., v = 0.01,0.1, 1,10, 100, 1000) and
select the best v* with the minimum reconstruction distor-
tion. Then we conduct n iterations using *, where at any
iteration, if the distortion does not improve, we reduce ~*
by half. Finally, the best performing A is recorded as AF".

5.3. Experimental results

Figure 4a, 4b and 4c shows the performance improve-
ments of OML over different baseline methods for different
bpps, targeting at online adaptation for PSNR and MSS-
SIM, respectively. The results show that our OML method
consistently improves the underlying variable-rate decoder
for all measured qualities. In general, the OML adapta-
tion helps the low-bitrate reconstruction more than the high-
bitrate reconstruction. Also, the improvements over Min-
nen2018 are more than cheng2020. This is quite reason-
able, since the low-bitrate latent representation corresponds
to large reconstruction artifacts, which gives more room for
OML to finetune the features. In comparison, high-bitrate
latent is good for reconstruction itself, and can be less ro-
bust to online changes. Also, the better the underlying en-
coder/decoder in context modeling, the less the training-test
gap for OML to help with.

Note that it is within expectation that improvements for
MSSSIM are less than those for PSNR. This is because the
underlying encoder/decoder networks are trained targeting
at PSNR, which learns the mapping relationship between
PSNR and conditional tradeoffs. This experiment actually
shows some level of flexible of using a different OML met-
ric from the original training metric, so as to tune the recon-
struction towards the current need at test time.

Figure 5 shows the relationship between the increase of
time complexity and the improvement of reconstruction,
with different online update steps (iterations). More steps
lead to better reconstruction, with a cost of more computa-
tion. Since our OML works on decoder network using quan-
tized latent and avoids multiple passes of context modeling,
the online iteration is quite fast, e.g., with about 1% encod-
ing time increase for 5 iterations to get 1.5% ~ 5% PSNR
gains. With about 20% time increase with 99 iterations, we
get 2% ~ 8.8% gains. The decoder still has only one-time
inference, and the decoding time remains unchanged.

Figure 6a gives some examples of the 512 x 512 infer-
ence patches with large gains from online adaptation for
Cheng2020. For PSNR, all patches benefit from online
adaptation. While for MSSSIM, OML does not help over
some patches, and Figure 6b gives some examples of such

~-cheng2020-base
cheng2020-sub-iteS
cheng2020-sub-ite10
cheng2020-sub-ite-99
+minnen2018-base
+minnen2018-sub-ite5
—-minnen2018-sub-ite-10
~-minnen2018-sub-ite-99

0 02 04 06 08 1 12 14 16

(a) OML adaptation btp'grgeting at PSNR.

—cheng2020-sub-ite5
cheng2020-sub-ite10
cheng2020-sub-ite99
minnen2018-sub-ite5

+-minnen2018-sub-ite10

+-minnen2018-sub-ite99

o
3

PSNR improvement (dB)

=4
@

o
=

=

0 0.2 0.4 0.6 0.8 1 12 14 16

b,
(b) OML adaptation targeting at PSNR.

o

~—cheng2020-sub-ite5
cheng2020-sub-ite10
cheng2020-sub-itedd
minnen2018-sub-ite5
+minnen2018-sub-ite10
+-minnen2018-ite99

MS-SSIM improvement

0.1 03 0.5 0.7 09 11 13 15 17

b
(c) OML adaptation targeting at MSSSIM.

Figure 4. Performance improvements of OML over different base
models through different numbers of iterations. The MSSSIM is
magnified as: —101og(1 — MSSSIM)
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Figure 5. Performance vs. time for different iterations.
patches. Overall, patches with large gains have rich fine
details or simple homogeneous textures with visible recon-
struction artifacts (blocking effect, noises, efc.). Patches
without gains are high quality patches, with simple textures
comprising of clean homogeneous regions.

Intuitively, patches with homogeneous textures have
small rate losses in nature, while patches with rich fine de-
tails have large rate losses. It is hard for encoder/decoder
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(a) Patches with large gains. The second row shows the changes OML added to the reconstructed images. Brighter color corresponds to larger change.

Y

(b) Patches not benefit from online adaptation for MSSSIM.

Figure 6. Example patches that do or do not benefit from our OML approach. All patches get improvements for PSNR.

to reduce their rate losses during training, and therefore the
model focuses on other patches whose losses can be effec-
tively reduced. Through online adaptation, we can change
reconstruction to better attend such patches at test time, i.e.,
to bridge the gap between their latent distribution and the
trained estimation. On the other hand, high-quality patches
are less robust to changes induced by online adaptation.
Figure 7 further gives some examples of the changes
our method makes into the reconstructed patches, as well
as how such changes vary with the target tradeoff . As
the bitrate increases, the amount of changes OML makes
decrease. For low-quality reconstruction, the OML makes
changes all over the place. For high-quality reconstruction,
most changes are over the high-intensity regions with un-
even textures like water, cloud, blurred content, etc. Such
results help us to understand the modeling capability of the
underlying network in dealing with different content. Im-
proved CVAE networks may be developed to handle such
content diversity and bring further performance gains.

6. Conclusion

We proposed an OML framework for LIC using the
CVAE architecture. The online learning mechanism is used
to bridge the gap between the training soft approximate
quantization and the true hard quantization at test time. The
meta-learning mechanism is used to control reconstruction
with different RD tradeoffs. Direct SGD is used to effec-
tively update the conditional meta parameters so that the
decoder can adapt its reconstruction based on the quantized
latent representation. Experiments demonstrate the effec-
tiveness of our method. With negligible transmission and
computation overhead, our method can boost the perfor-
mance of different state-of-the-art LIC methods.

The OML framework also helps to reveal the modeling
capability of the underlying LIC network for different im-
age content with different compression qualities. Future
work includes further exploring such capabilities and de-
veloping content-adaptive CVAE architectures.

Figure 7. Example of reconstruction and changes varying with \.

6.1. Limitations

When the test image has very similar latent distribution
to the estimated one, it can not benefit much from our OML.
As other LIC methods, we assume a fixed task distribution
where the underlying encoder/decoder networks are trained
to handle all natural images. Therefore, we do not change
the trained network parameters in OML. This is in con-
trast to continuous learning where the task distribution can
change overtime. In such a case, our OML can be extended
to include model adaptation.
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