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of stereo image super resolution (Stereo SR) has received
prior convolution-based works have achieved admirable ! E EE ! E 5§
tasks. In this paper, we propose a novel approach namely

SwiniPASSR, which adopts Swin Transformer as the back- (a) reconstruction comparison (b) valid mask comparison
bone, meanwhile incorporating it with the Bi-directional Figure 1. Visualization of solid mask heatmaps and reconstruction
Parallax Attention Module (biPAM) to maximize auxil- outputs for different approaches: (a) by visualizes details restored

by different approaches, for either multi-view information issue
or structural reconstruction issue, we could see from the marked
regions that SwiniPASSR achieves most satisfactory fine-grained
detail restoration. (b) by comparing the valid mask heatmaps be-

iary information given by the binocular mechanism. Even
Transformer and parallax attention mechanism (PAM) have
been separately proved usefulness by prior studies, we find

that simply integrating convolution-based PAM with Trans-ccn iPASSR and SwiniPASSR, we observe that SwiniPASSR
former or directly optimizing for stereo SR problem was with patch size 24 fails to precisely recognize precise occlusions
may not achieve desirable result. We therefore introduced and boundaries (the salient areas) but patch size 48 is able to cap-
a conversion layer to resolve integration and adopted pro- ture boundaries well.

gressive training strategy to learn disparity correspondence
through progressively enlarged receptive fields. Both ex-
tensive experiments and ablation studies demonstrate the
effectiveness of our proposed SwiniPASSR. In particular,
in the NTIRE 2022: Stereo Image Super-Resolution Chal-
lenge, we report 23.71dB PSNR and 0.7295 SSIM perfor- Super Resolution (SR) is one of the long-lasting low-
mance which ranked 2nd place on the leaderboard. Source level vision tasks, whose objective is to reconstruct the
fine-grained high-resolution (HR) image from degraded
+ This work was supported by the National Natural Science Foundation of low—reso.lutlon (LR) ones. For a long time, extensive
China under grants 61972046, and in part by the Beijing Natural Science convolution-based methods [6,25,45] have been proposed
Foundation under grants 4202051. to address low-level vision problems and achieved excel-

code is available at https://github. com/SMI -
Lab/SwinIPASSR.

1. Introduction
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lent performance. Recently, Transformer-based methods
have also shown impressive capability to model global in-
teractions via self-attention mechanism and present promis-
ing results on various low-level vision tasks [16,42], while
few attempts has been made on stereo image SR problem.
For another, the photographic imaging also embraces up-
grading, dual cameras have been widely adopted by a large
amount of devices, such as mobile phones, drones, and au-
tonomous vehicles, by which people capture stereo images
more easily. SR will benefit from extra information on
stereo image pairs, therefore the stereo SR has drawn in-
creasing attention from both industries and academics.

After witnessing success of deep-based single image su-
per resolution works, researchers started to discover the
Stereo image Super Resolution task [9,15,23,39,47]. How-
ever it is challenging to incorporate superb stereo corre-
spondence due to varied parallax among objects, dispar-
ity at different depths, cross-view information incorpora-
tion or potential occlusions. Several prior works made their
attempts to address the above-mentioned issues: Wang et
al. [33] proposed an attention module for parallax learning,
while further extended such scheme by tactfully using sym-
metry among stereo images in iPASSR [36]; Ying et al. [43]
introduced a generic stereo attention module (SAM) to in-
teract cross-view information; and Yan et al. [41] designed
a Feature Modulation Dense Block (FMDB) adaptively in-
serted into the network with disparity prior.

Previous studies worked closely on various attention
mechanisms to address the disparity incorporation and ob-
tained splendid quantitative results, but modeling long-
range stereo correspondence dependency has not been well
studied, which leads restoration deficiency in global tex-
tural and detailed reference. As show in Fig. 1, even
existing state-of-the-art iPASSR [36] fails to restore tex-
tures and sharped lines on the vein effectively. Although
Transformer-based architectures offer an possibility and re-
cent methods have achieved impressive performance on
other low-level vision tasks [16,42], it is still unknown how
to combine the merit of both Transformer and parallax at-
tention mechanism.

Thus in this paper, we propose a unified framework
called SwiniPASSR for the stereo SR problem. Inspired
by prior work SwinlIR [16] for image restoration, we de-
sign the siamese neural network without any downsampling
opeartion instead composed of residual Swin Transformer
blocks (RSTB) [19], where we incorporate parallax atten-
tion mechanism by using the Bi-directional Parallax Atten-
tion Module (biPAM) [36] that has proved success on learn-
ing stereo correspondence. However, simply integrating the
biPAM with RSTB is unsatisfactory, the performance could
even be worse than directly using SwinIR for the stereo SR
problem. Experiments find that the placement of parallax
attention module in the network hierarchy is critical and
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it also requires a feature translation between convolution-
based biPAM and patch-based RSTB. To solve this issue,
we introduce layer conversion and place it in the middle
of RSTB for using well-representation features to compute
stereo correspondence and benefiting following feature fu-
sion as shown in Fig. 2. While directly optimizing Swini-
PASSR end up with sub-optimal result due to the difficulty
of jointly learning low-level signal restoration and dispar-
ity estimation, therefore we propose a progressive training
strategy by progressively enlarging training receptive fields
in multi-stage to simmer the network and achieve a promis-
ing improvement. In summary, our proposed method con-
tributes as follows:

* We propose a Swin Transformer based parallax atten-
tion network for the stereo SR problem that can well
model global texture and local image details while
yielding accurate stereo correspondence.

* We conduct a progressive training strategy to address
the joint optimization problem of image restoration
and disparity estimation by using gradually expanding
patch size during multiple training stages.

» Extensive experiments demonstrate the effectiveness
of proposed method, and it obtains state-of-the-art per-
formance with 24.13 dB PSNR and 0.7579 SSIM!
on validation set of Flickr1024 [35]. Meanwhile, in
the NTIRE 2022 Stereo Image Super-Resolution Chal-
lenge [32], SwiniPASSR achieves 23.71dB PSNR and
0.7295 SSIM, ranks 2nd place in the leaderboard.

2. Related Work

2.1. Stereo Image Super-Resolution

Different from the single image super resolution (SISR)
task which utilizes only one LR image to reconstruct HR
image, the stereo image super resolution task provides im-
age pairs with stereo viewpoint as auxiliary information for
super resolution task, while it upgrades challenges by re-
quiring detail consistency in each high resolution outputs.
Considering that the stereo SR task and depth estimation
problem are intertwined, [2] first propose an integrated ap-
proach to jointly predict the HR depth and the SR image
from multiple LR stereo observations, and following tradi-
tional methods [26, 27] extend the pipeline but with high
computational cost. Recently, due to strong representation
ability for vision signals, deep learning based super reso-
lution evolve rapidly. [11] propose a two-stage network by
learning parallax prior which enhances spatial resolution re-
markably, then multiple works springs up: [14] explores
correlative information among stereos images and propose
interaction module, DFAM [7], SSRDEENET [5] exploits

IThe result uses self-ensemble strategy [17] in inferencing.
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Figure 2. Network Architecture of SwiniPASSR and its core modules. (a) Overall Framework. SwiniPASSR can be divided into three
part: Feature Extraction, Cross-view Interaction, Reconstruction. Given a pair of LR images, SwiniPASSR extract features for each
input from two respective yet parameter sharing branches: a CNN layer acts as shallow feature extractor, followed by 3 Residual Swin
Transformer Blocks (RSTB) sequentially, within Feature Extraction part, SwiniPASSR is capable of capturing sufficient features for each
viewing angle. As a matter of course, next we utilize Bi-directional Parallax Attention Module (biPAM) to exchange complementary
features from each branch, by such Cross-view Interaction our network is able to acquire better stereo correspondence. In the later
Reconstruction part, similar consecutive blocks of RSTB remains, equipped with element-wise summation between different feature maps,
SwiniPASSR outcome the HR pair. (b) Residual Swin Transformer Block(RSTB). a computation block which consists of several Swin
Transformer Layer (STL) and element-wise sum operation. (c)Swin Transformer Layer(STL). Basic computing unit of RSTB, it could
provide commendable feature extraction. (d) Bi-directional Parallax Attention Module(biPAM). A flexible attention mechanism that we
utilize to capture better stereo correspondence and global context existed in LR features.

disparity features, and PSSR [22] manages to improve per-
ceptual performance and construct a StereoSRQA database.
Meanwhile a batch of prior works continuously explore the
attention mechanism: PASSRnet [33] propose a parallax-
attention module, which boosts the performance by captur-
ing correspondence between stereo images, iPASSR [36]
extends the core concept and further propose symmetric bi-
directional parallax attention module into their iPASSR. Be-
yond this, prior works such as SAM [43], CPASSRnet [3],
BSSRnet [40], and SPAMnet [29] also further explore dif-
ferent attention modules respectively. Different from prior
work iPASSR [36], we focus more on modelling long-range
dependency of global textural description based on the char-
acteristic of Swin Transformer.

2.2. Vision Transformer

Not only exemplary performance the Transformer mod-
els have achieved on a broad range of natural language
processing tasks, but Transformer also reveals its adaptive
transferability upon vision. Vision Transformer (ViT) [8]
and DeiT [30] as the representative works showcase how
Transformer can replace standard convolutions in deep net-
works, then the following works such as Pyramid ViT [34],
Convolutional vision Transformer (CvT) [37], Twins [4],
and etc. iteratively update their architecture and proves
solid performance in vision recognition task, until Swin
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Transformer [19], which constructs hierarchical architec-
ture by shifted windows approach, can fulfill promising
performance on high-level vision tasks such as recogni-
tion, object detection and segmentation. In addition to
that, Transformer has been applied on low-level vision task
such as super resolution: Yang et al. [42] propose Trans-
former network (TTSR) for super-resolution, in which it
proposes learnable texture extractor and relevance embed-
ding achieve fair performance, considering the prohibitively
high computation cost, efficient Transformer based super
resolution models SwinIR [16], ESRT [21] come up as
well. SwinlIR builds upon Swin Transformer, extract fea-
tures through Swin Transformer blocks (RSTB), conduct
state-of-the-art results on multiple low-level vision tasks.

3. Method

In this section, we present our proposed SwiniPASSR as
follows: we firstly elaborate the network architecture and
the impact of the conversion layer, then we explain the pro-
gressive training strategy and learning objects we built.

3.1. Network Architecture

As shown in Fig. 2, the input of the SwiniPASSR net-
work is a pair of low-resolution RGB stereo images =% and
IEE, then through network computation flow, it outputs the
corresponding generated high-resolution RGB stereo im-



ages I7F and I3F. Referring to Fig. 2(a), SwiniPASSR
consists of three modules: feature extraction, cross-view in-
teraction, and reconstruction. And we build two identical
branches to symmetrically process 122 and I5%, in which
they share the same parameters and utilize complementary
information in each other.

Feature Extraction. Given the stereo image pair
TER JER ¢ RHXWX3 at first we feed them to a 3 x 3
convolutional layer to extract shallow features F}, FY €
RHXWXC where C is the number feature channels. Then
the shallow features with the preliminary perception of
images are fed to consecutive |K/2| cascade Residual
Swin Transformer Blocks (RSTB) [16], to extract features
Fp,Fr € RHXWXC Where K is the number of RSTB
blocks in the overall architecture, | | is rounded down. The
RSTB block is one kind residual block with Swin Trans-
former layer (STL) and convolutional layers as shown in
Fig. 2(b), in RSTB we first extract intermediate features
through L STL layers, where L is the number of STL. Then
we reuse another convolutional layer before residual skip
connection, since additional convolutional layer could en-
hance the translational equivalence of the network due to
its spatially invariant filter properties. Besides, the design
of residual skip connections provides reconstruction mod-
ules with identity-based connections from different RSTB
blocks, by which strengthens the aggregation of features at
different levels. STL is a variant of the standard multi-head
self-attention in Transformer [31], the key differences re-
side in local attention and the shifted window mechanism,
referring details in Fig. 2(c).

Cross-view Interaction. As it is well-known the im-
portance of cross-view information fusion in Stereo SR, we
here interact with cross-view information of stereo features
Fp, Fr through the bi-directional parallax attention mod-
ule (biPAM), where we refer to the detailed module struc-
ture from [36], the detailed workflow shown in Fig. 2(d). It
is worth noting that even though existing works have indi-
cated that hierarchical features are beneficial to stereo corre-
spondence learning, which does not make it to be applica-
ble to Transformer networks. Compared with single-layer
features, concatenating the hierarchical features as inputs
does not bring significant gain, so as shown in Fig. 2(a),
we only use the features after | /2| RSTB as the input of
the biPAM module. In the final, through the module, we
can obtain left and right attention maps { Mg, M1 R},
valid masks {V7,, Vr}, and cross-view interaction features
{Fr>r, Fr—r}. With the simple yet appropriate adjust-
ment, the cross-view interaction module will achieve the
best feature interaction effect at the position.

Reconstruction. As we’ve mentioned multiple times,
HR reconstructions including complete information and
refine details are essential in the whole process. Here,
we firstly concatenate conversion layer generated features
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with their correpsonding cross-view interaction features
{FL,Fr~1r},{FRr, FrL— R} in each branch. Then subse-
quent feature integration is performed by a 3 x 3 convolution
and restores the number of feature channels to C. By us-
ing the conversion layer, the regularization transformation
is performed on the integration features. Then, we symet-
rically use [ K/2] RSTB exactly as feature extraction mod-
ule, acting as the base blocks of the reconstruction module,
here | | represents rounded up. Finally, the super-resolution
images 77, 1 I%R are generated by a 1 x 1 convolution and
sub-pixel convolution layers [28].

3.2. Conversion layer

Because the bi-PAM and the subsequent fusion modules
are convolutional-based operations, features are inherent in
consistent distribution among mini-batch via using batch
normalization [10], which is different from Transformer-
based feature that is more inclined to establish intra-sample
dependencies and maintain independence between samples.
To this end, we introduce a conversion layer by a learnable
layer normalization [1] for strengthening the internal con-
nection of samples. Experiments demonstrate that directly
feeding the fused feature into subsequent RSTB hardly con-
verges, which also proves the necessity of conversion layer.
This conversion design usually is used in Transformer and
Convolutional fusion works, [18, 38] also exist similar de-
sign module.

3.3. Progressive training strategy

Since learning parallax attention requires accurate struc-
tured information, we propose a multi-stage training pro-
cedure namely progressive training strategy, which could
guide the SwiniPASSR to learn better stereo correspon-
dence by enlarging the training patch size gradually. Dif-
ferent from HERN [24] that adds resolution without any
parameter changing or ProGAN [12] that grows resolution
and trainable layers, the proposed method simultaneously
changes the network structure, patch size and training strat-
egy. We will explain the procedure in the following.

SwinIR-S/M. In the first stage, the stereo SR task is re-
garded as a SISR task by training a SwinIR with L1 loss
and 24 x 24 patch size. The trained network could con-
struct well-represented low-level features with precise tex-
tural and structural information. As shown in SwinIR-M
visualized outputs Fig. 5, those fine lines and boundaries
are clearer and more sharp than iPASSR.

SwiniPASSR-S1/M1. In the second stage, on one side
two branches process LR input pairs simultaneously, share
weights of the shallow, deep extractor, and keep low-level
feature representation for reconstruction. On the other side,
the biPAM module is introduced to connect them for con-
structing better stereo correspondence and learning to han-
dle both occlusions and fuzzy boundaries. As quantitative



results, SwiniPASSR-M1/S1 achieves higher PSNR refer
to Tab. 3, but it fails to handle occlusions or restore clear
boundaries as shown in Fig. 4.

SwiniPASSR-S2/M2. In the last stage, to better uti-
lize cross-view information and facilitate occlusions han-
dling ability, we enlarge the training patch size to as large
as 48 x48 because training patch size larger than 48x48 is
unable to fit into GPU card for limited 11G GPU memory.
In addition, we use smaller learning rate and adopt expo-
nential moving average (EMA) technique to stabilize train-
ing process in this stage. As shown in Fig. 4, compared
with the second stage results of SwiniPASSR-S1/M1, the
SwiniPASSR-S2/M2 model in the last stage presents a well-
defined stereo correspondence.

3.4. Objectives

To construct parallax attention mechanism (PAM), we
introduce biPAM module and its related loss function,
which includes L1 pixel loss for super resolution recon-
struction, photometric loss for illumination robustness, cy-
cle loss for consistency, smooth loss for stereo correspon-
dence, and consistency loss for super-resolved stereo con-
sistency. Thus our ultimate optimization objective is de-
fined as £ = Ercc + /\photo * Ephoto + )\cycle * Ecycle +
)\smooth * »Csmooth + )\cons * »Ccons’ where Aphotm )\cycle’
Asmooths and Acons denotes the corresponding weight of
each loss item, respectively. On general in this part we
greatly refer to prior work [36], more detailed explanation
could be found there.

4. Experiments

In this section, We firstly illustrate the stereo SR bench-
mark dataset used for the contest and our experimental set-
tings in Sec. 4.1. Then in Sec. 4.3, we justify the efficiency
of extra augmentation and characteristics of the parallax at-
tention map under different patch sizes. Finally, in Sec. 4.2
and Sec. 4.4, we thoroughly compare our proposed method
with both previous state-of-the-art and winning solutions
from other teams.

4.1. Implementation Details

Dataset. Flickr1024 [35] as a commonly used bench-
mark dataset, provides 800 training pairs, 112 validation
pairs and 112 test pairs. NTIRE 2022 Stereo Image Super-
Resolution Challenge followed the same training and val-
idation settings, but changed the testing set to 100 pairs.
Flickr1024 includes plenty of images from various real-
life scenarios and even synthesis scenarios, in which the
image sizes range from minimum 123x 198 to maximum
675x525. Considering variance appeared in image con-
tents, we preliminarily compute SIFT features [20] on the
images, in order to search for matching parts and obtain
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Figure 3. Parallax illustration on training dataset. (a) and (b) are
corresponding to SIFT computed feature of a stereo image pair.
(c) is the matching points and warped image between two views.

disparity values. Visualized outcomes of SIFT are illus-
trated in Fig. 3a and Fig. 3b, the matching points are more
concentrated on edges and corners, yet less on the texture,
while Fig. 3c indicates that paired points under the same
depth tend to have similar disparity values. Besides, based
on SIFT analysis, we also find that there is merely vertical
disparity in the dataset, instead there is a 2.5 pixel average
disparity in the horizontal direction for LR training pairs.

Evaluation Metrics. For evaluation, Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
indices are used to estimate the restoration level between SR
images and HR images in the RGB domain. Furthermore,
for NTIRE 2022 Stereo Image Super-Resolution Challenge,
the final leaderboard is ranked by PSNR calculated in the
test dataset.

Model Setting. Our proposed SwiniPASSR uses suf-
fix -S denotes small-sized network and suffix -M denotes
medium-sized network. For the two different model-sized
networks, the RSTB number, STL number, window size,
channel number and attention head number are set to 8/12,
6/6, 12/12, 180/180 and 6/10, respectively.

Training Details. Refer to Sec. 3.3, progressive train-
ing requires three stages training with different hyper-
parameters. During the first training stage, we use HR
training patches size of 96x96, and the sizes of the corre-
sponding LR patches are 24 x24 for 4x SISR. Also, train-
ing patches are augmented with clockwise rotating of 90,
180, and 270 degrees and flipping horizontally, then randy
selected. In addition to above, extra RGB channel shuffling
augmentation is also applied for photometric consideration.
For optimization, the Adam optimizer is used and set to
81 = 0.9, B2 = 0.999, with initial learning rate as le-4.
During training, total 16 samples in a batch are equally dis-
tributed to 4 parts scattered on 4 Nvidia RTX 2080Ti GPUs.
At 250k, 375k, and 450k iterations, we decay the learning
rate to half of the former value, and stop training this stage
when it completes total 500k iterations.

During the second training stage, we continue to use
a pair of LR patches with 24x24 and HR patches with
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Figure 4. Valid mask heatmaps across different approaches over 0026’ and *0080’ validation images. iPASSR uses 30x90 patch size as
training, and variants of SwiniPASSR employ 24, 36 and 48 patch sizes for training. Distinct red-colored area means high possibility of
occlusion and boundaries. It is obvious that larger training patch size visualize more accurate valid mask heatmaps based on occlusion

handling scheme from iPASSR.

96x96, but LR and HR patches will have exactly the same
coordinate positions and apparent disparity values. In this
stage, we reduce augmentations to only clockwise of 180
degrees and corresponding flipping vertically to keep par-
allax attention maps’ consistency. Similarly, RGB channel
shuffling scheme is used. All training hyper-parameters set-
tings remain the same as the first training stage. Except
that, we will use parallax losses in this stage, hence the hy-
perparameters mentioned in Sec. 3.4, Asr, Aphoto> Acycles
Asmooth, and Ao s coefficients are set to 1.0, 0.1, 0.1, 0.01,
and 0.1, respectively.

During the last training stage, we expand the LR patches
to 36x36 and 48x48 and corresponding HR patches to
144 <144 and 192 x 192 for learning better parallax relation-
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ships. Also, the EMA technique is used for stabilizing train-
ing process and improving model robustness. Note that due
to the limitation of GPU memory, we reduce the batch size
to 8 for SwiniPASSR-M2 model with 48 x48 LR patch size.

4.2. Comparison to state-of-the-art methods

Tab. 1 shows the quantitative results among Swini-
PASSR and state-of-the-arts. Here we includes VDSR [13],
EDSR [17], RDN [46], RCAN [45], and SwinIR [19].
We retrain two SwinlR models with different model sizes
on Flickr1024 dataset, training details refer to Sec. 4.1.
Four stereo SR, approaches such as PASSRNet [33], SR-
Res+SAM [44], iPASSR [36] are included. Note that our
implementation of SwinlR and SwiniPASSR use all the
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Figure 5. Qualitative validation samples visualization. iPASSR and SwinIR methods sometimes fail to restore edges or fine-grained texture
of objects. Our proposed SwiniPASSR-M2 with patch size 48 model enhances image details and alleviate the blur condition.

Table 1. Quantitative results across different super resolution ap-
proaches. Params stands for the volumer of parameters. PSNR
and SSIM are computed by RGB image and reported in terms of a
pair of stereo images. Methods with * represent using Flickr1024
and Middlebury mixed dataset for training.

Method #Params. | PSNR | SSIM
*Bicubic / 21.82 | 0.6293
*VDSR 0.66M | 22.46 | 0.6718
*EDSR 389M | 2346 | 0.7285
*RDN 22.0M | 2347 | 0.7295
*RCAN 154M | 2348 | 0.7286
SwinIR-S 14.95M | 23.81 | 0.7444
SwinIR-M 21.20M | 23.84 | 0.7450
*PASSRnet 1.42M | 2331 | 0.7195
*SRRes+SAM L73M | 2327 | 0.7233
*PASSR 142M | 2344 | 0.7297
SwiniPASSR-S2 | 16.55M | 24.00 | 0.7549
SwiniPASSR-M2 | 22.81M | 24.05 | 0.7560
SwiniPASSR-M27 | 22.81M | 24.13 | 0.7579

mentioned augmentation techniques while other compared
works only use randomly horizontal and vertical flipping.
Compared with SwinIR-S/M, SwiniPASSR-S2/M2 has ex-

Table 2. Ablation studies about the position of biPAM in RSTBs.
Bottom, middle and top denote placing the biPAM at either the
first, third, or last RSTB block respectively. Listed methods do not
use rotation, RGB shuffling, or dropout augmentation.

Method Training Position | PSNR
SwiniPASSR-S1 directly bottom | 21.70
SwiniPASSR-S1 directly top 23.67
SwiniPASSR-S1 directly middle | 23.75
SwiniPASSR-S1 | progressively | middle | 23.82

tra 1.6M parameters but the performance gains 0.19 dB and
0.21 dB improvements as well, which proves the efficiency
of our approach in addressing stereo super resolution issue.
Also, by further using self-ensemble strategy refer to [17]
during inference, SwiniPASSR-M2" achieves highest 24.13
dB on PSNR and 0.7579 on SSIM.

4.3. Ablation Study

Incorporation. As described in Tab. 2, we explore the
network performance under three fusion strategies of the
bottom layer, the middle layer and the top layer. It turns out
that top-level fusion works the worst since the fused infor-
mation has little chance to change the well-represented re-
constructed features. The bottom-level fusion has a certain



Table 3. Quantitative results from different model sizes and train-
ing stages on validation dataset. Patch size stands for size of the
square-croped patches from images.

Method Patch Size | PSNR | SSIM

SwinIR-S 24 23.81 | 0.7444
SwiniPASSR-S1 24 23.92 | 0.7483
SwiniPASSR-S2 24 2397 | 0.7524
SwiniPASSR-S2 36 23.99 | 0.7542
SwiniPASSR-S2 48 24.00 | 0.7549

SwinIR-M 24 23.84 | 0.7450
SwiniPASSR-M1 24 23.95 | 0.7499
SwiniPASSR-M2 24 23.98 | 0.7504
SwiniPASSR-M2 36 24.04 | 0.7556
SwiniPASSR-M2 48 24.05 | 0.7560

Table 4. Quantitative test results of Top 10 Teams for NTIRE 2022
Challenge on Stereo Image Super-Resolution Challenge.

Team Name PSNR
The Fat, The Thin and The Young | 23.7873
BigoSR 23.7126
NUDT-CV&CPLab 23.6007
BUPT-PRIV 23.5983
NKU _caroline 23.5770
BUAA-MC2 23.5733
No War 23.5664
GDUT_506 23.5601
DSSR 23.5533
xiaozhazha 23.5490

effect, while the features entering the biPAM are rudimen-
tary and lack sufficient structural information. Mid-level
fusion utilizes well-represented features to estimate dispar-
ity correspondences, providing better reference information
for subsequent feature learning.

Model Size. As shown in Tab. 3, experimental re-
sults demonstrate larger model size tends to have a gen-
eral improvement across different training stage. For
SwinIR-based models, medium sized network SwinlIR-
S has 0.03 dB higher PSNR than small one SwinIR-M.
When it progressively enlarges patch size to 48, the final
staged SwinIR-M2 can achieve 24.05 dB PSNR, remark-
ably higher than SwinIR-S2 by 0.05 dB, which proves a
better representative ability of larger model size.

Patch Size. As shown in Fig. 4, even SwiniPASSR-
S2/SwiniPASSR-M2 with patch size 24 present higher
quantitative results as 23.97 dB and 23.98 dB, they still fail
to finely reconstruct the valid mask, meanwhile iPASSR
with patch size 30 x 90 has clearer and more accurate
valid mask heatmap. For the first and second rows in
Fig. 4, SwiniPASSR-S2/SwiniPASSR-M2.24 give inaccu-
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rate valid mask over low-frequency texture area and scat-
tered responses around edges and corners. By enlarging the
training patch size from 24 to 36 or even 48, SwiniPASSR-
S2 and SwiniPASSR-M2 gain a remarkable improvement
from 23.97 and 23.98 dB (24) to 24.00 and 24.05 dB (48),
respectively.

Progressive Training. Proposed SwiniPASSR is sup-
posed to address parallax issue in an unsupervised learning
alike fashion, which leads difficulty to simultaneously re-
store low-level image signals and model stereo correspon-
dence from cross-view information. As shown in Tab. 3,
the progressive training method enhance performance of
the small network from 23.81 dB to 24.00 dB on PSNR
and helps medium network from 23.84 dB to 24.05 dB
similar visualization results from Fig. 5, compared to in-
termediate model results, restored super resolution images
by SwiniPASSR-M2.48 reflect the more identifiable text of
’37 for left view and it presents more sharp black lines ac-
cording to the last row in Fig. 5.

4.4. NTIRE 2022 Stereo SR Challenge Results

The top-10 results selected by NTIRE 2022 committee
are shown in Tab. 4. Our method finally ranked 2nd place
and obtained 23.7126 dB on Flickr1024 test dataset. In the
challenge, all participants are required not to use any ex-
ternal model and data, including pre-trained backbone and
optical flow network, hence our results are acquired from
Flickr1024 dataset solely. As for final reporting metrics,
we utilize the average ensemble method to combine multi-
ple SwiniPASSR outputs which are produced by different
models trained on various patch sizes or model sizes. It is
also worth noting that identical ensemble technique is im-
plemented over validation dataset and acquires 24.1557 dB
on PSNR and 0.7574 on SSIM, which is merely 0.025 dB
higher than our best single model.

5. Conclusion

In this paper, we propose a unified framework namely
SwiniPASSR to better fulfill the stereo SR task. By intro-
ducing the conversion layer with biPAM and placing it into
RSTBs carefully, the siamese-like architecture could effec-
tively model global textures, refined details, and accurate
stereo correspondences. Due to the difficulty of simulta-
neously optimizing image reconstruction and disparity esti-
mation, we propose a progressive training strategy to learn
stereo correspondences from progressively enlarged recep-
tive fields. Extensive ablation studies demonstrate the ef-
fectiveness of proposed method. In NTIRE 2022: Stereo
Image Super-Resolution Challenge, SwiniPASSR achieves
23.71dB PSNR and 0.7295 SSIM and ranks 2nd. In the
future, we will focus more on Transformer-based parallax
attention mechanism and related optimization strategies.
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