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Abstract

Although deep learning has enabled a huge leap forward
in image inpainting, current methods are often unable to
synthesize realistic high-frequency details. In this paper,
we propose applying super-resolution to coarsely recon-
structed outputs, refining them at high resolution, and then
downscaling the output to the original resolution. By intro-
ducing high-resolution images to the refinement network,
our framework is able to reconstruct finer details that are
usually smoothed out due to spectral bias – the tendency of
neural networks to reconstruct low frequencies better than
high frequencies. To assist training the refinement network
on large upscaled holes, we propose a progressive learning
technique in which the size of the missing regions increases
as training progresses. Our zoom-in, refine and zoom-
out strategy, combined with high-resolution supervision and
progressive learning, constitutes a framework-agnostic ap-
proach for enhancing high-frequency details that can be
applied to any CNN-based inpainting method. We provide
qualitative and quantitative evaluations along with an ab-
lation analysis to show the effectiveness of our approach.
This seemingly simple, yet powerful approach, outperforms
existing inpainting methods.

1. Introduction

Image inpainting is a long-standing problem in computer
vision and has many graphics applications. The goal of the
problem is to fill in missing regions in a masked image,
such that the output is a natural completion of the captured
scene with (i) plausible semantics, and (ii) realistic details
and textures. The latter can be achieved with traditional
inpainting methods that copy patches of valid pixels, e.g.,
PatchMatch [3], thus preserving the textural statistics of the
surrounding regions. Nevertheless, the inpainted results of-
ten lack semantic context and do not blend well with the rest

†This work was done during an internship at Google Research.
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Figure 1. Qualitative comparison to existing inpainting methods,
HiFill [49] and Pluralistic [56]. Our method correctly reconstructs
high-frequency details, e.g., fine textures and narrow structures,
and preserves the continuity and the orientation of edges.

of the image. With the advent of deep learning, inpainting
neural networks are commonly trained in a self-supervised
fashion, by generating random masks and applying them to
the full image to produce masked images that are used as
the network’s input. These networks are able to produce
semantically plausible results thanks to abundant training
data. However, the results often do not have realistic de-
tails and textures, presumably due to the finding of a spec-
tral bias [36] in neural networks. That is, high-frequency
details are difficult to learn as neural networks are biased
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towards learning low-frequency components. This is espe-
cially problematic when training neural networks for image
restoration tasks such as image inpainting, because high-
frequency details must be generated for realistic results.

Recent neural network architectures for image inpainting
consist of (i) a coarse network that first generates a coarsely
filled-in result, and (ii) a refinement network that corrects
and refines the coarse output for better quality [49–51]. In
this paper, with the goal of generating more realistic high-
frequency details, we propose to refine after zooming in,
therefore refining the image at a resolution higher than the
target resolution. This allows the refinement network to cor-
rect local irregularities at a finer level and to learn from
high-resolution (HR) labels, thus effectively reducing the
spectral bias at the desired resolution and injecting more
high-frequency details into the resulting image. We show
that adding a simple bicubic upsampling component be-
tween the coarse and refinement networks improves inpaint-
ing results, and using a super-resolution (SR) network to up-
scale the intermediate result improves the results even fur-
ther.

Furthermore, as an HR refinement network can be more
difficult to train than a low-resolution (LR) refinement net-
work due to a larger mask and more missing pixels in the
HR input, we propose a novel progressive learning strat-
egy for inpainting, where the size of masks is increased as
training progresses and the framework is trained on larger
masks at a later training stage. Moreover, to further enhance
the high-frequency details, we propose to use an additional
gradient loss [11] that minimizes the gradients of the dif-
ference between the prediction and the ground truth. We
believe that these three fundamental strategies can benefit
any existing inpainting network.

In summary, our contributions are as follows:

• We propose a novel inpainting framework that includes
an SR network to zoom in, allowing refinement at HR
and training with HR labels, to enhance the generation
of high-frequency details in the final inpainted output.

• We propose a progressive learning strategy for inpaint-
ing to aid convergence with larger masks.

• We use a gradient loss for inpainting to further improve
textural details.

2. Related work
2.1. Image inpainting

Traditional image inpainting methods can be largely
classified into three types: (i) propagation-based ap-
proaches that gradually fill in the missing regions from
known pixel values at hole boundaries [5, 43], (ii) Markov

Random Field (MRF) approaches optimizing discrete
MRFs [19, 34], or (iii) patch-based approaches that search
for plausible patches outside of the hole to be pasted into
the missing region [3, 4] similar to texture synthesis algo-
rithms [9, 10]. These types of approaches exploit informa-
tion already present in the input image.

Deep-learning-based inpainting methods leverage infor-
mation external to any one specific image by learning global
semantics from an abundant corpus of training data. An
early convolutional neural network (CNN) based method
for inpainting was the Context Encoder [33], where the au-
thors proposed using an L2 loss with a global generative
adversarial network (GAN) loss for improved perceptual
quality. GANs [12] are especially suitable for image in-
painting because they are able to synthesize realistic im-
ages [6,16,20,24,26,35,44,54,55]. To consider local details
as well as global semantics, Demir et al. [8] proposed using
a PatchGAN [15] along with the global GAN. Our inpaint-
ing framework also employs a PatchGAN discriminator for
enhanced local details.

When generating each missing pixel, CNNs with stacked
convolution layers are limited by the local receptive field
of the convolution operation, whereas previous patch-based
methods are able to copy from any part in the surrounding
known regions. Thus, Yu et al. [50] devised a contextual at-
tention (CA) module that copies patches from the surround-
ing regions into the missing region, weighted by the com-
puted similarity. We add the CA module in the bottleneck of
our refinement network to get the best of both worlds – abil-
ity of GANs in synthesizing novel structures and details, as
well as the ability to copy patches anywhere from the image
without restrictions in the receptive field, like in [50, 51].
There also exist inpainting methods [27, 52] that use other
types of attention modules.

Typically, input images for inpainting consist of some
input pixels that are valid, or known, while others are in-
valid, or unknown/missing. Liu et al. [25] addressed this
dichotomy using partial convolution, where only the valid
pixels are taken into consideration during convolution by
using a predefined mask. Yu et al. [51] proposed gated
convolutions, where the masks are also learned, while Xie
et al. [47] proposed using learnable bidirectional attention
maps. We employ gated convolutions [51] in our framework
to handle the valid and invalid pixels.

Many recent CNN-based inpainting methods use a two-
stage approach, where the first network generates a coarse
output and the second network refines this output [49–51,
53]. Some methods [23, 32, 48] divide the stages as (i)
edge completion and (ii) image completion, or in Struc-
tureFlow [37], as (i) structure generation and (ii) texture
generation. Among the coarse-to-fine two-stage methods,
some methods [49, 53] handle inpainting for HR images by
first downscaling the HR input to a fixed resolution before
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Figure 2. Our proposed inpainting framework containing three main components: a coarse network, an SR network, and an HR refinement
network. The framework progressively learns to inpaint larger missing regions, and the refinement network is trained with a gradient loss to
enhance the generation of high-frequency details. Images shown in this figure are actual intermediate results produced by our framework,
and more examples are given in the Supplementary Material.

the inpainting stages, and increasing the resolution after in-
painting using residual aggregation [49] or guided upsam-
pling [53]. In our zoom-to-inpaint model, we increase the
resolution of the image between the coarse inpainting and
the refinement stages such that the coarse output is refined
at HR, and then come back to the original or the desired
resolution after refinement.

Unlike conventional CNN architectures for image and
video restoration that tend to reduce the size of the image
(as in multi-scale architectures [17,31]), or feature map (eg.
U-Net [38]), to increase the receptive field of the network,
our model goes beyond the input and target resolutions for
better refinement of high-frequency details. Upsampling
can be achieved by simple bicubic interpolation, and we
show that using an SR network, trained end-to-end with the
coarse and refinement inpainting networks, produces even
better results. The modular construction of this seemingly
simple idea is in fact non-trivial, and we explain the frame-
work in detail in Section 3. We further elaborate on how
HR refinement aids the generation of high-frequency details
in Section 3.1.3 and present a frequency-based analysis in
Section 4.4.

2.2. Progressive learning

Learning to solve a difficult task from scratch can be
challenging for neural networks. Hence, fine-tuning [14] or
transfer learning is a commonly applied technique, where
prior knowledge is transferred from pretrained networks
to the subsequent training stages. Progressive neural net-
works [39] expanded on this idea and added lateral con-
nections to previously learned features. Karras et al. [16]

proposed to progressively train a GAN to synthesize LR
images first, then to generate HR images by incrementally
adding on layers to stabilize and speed up the training pro-
cess. For image inpainting, filling in missing regions can be
increasingly difficult as they become larger. Hence, some
methods [13, 21] proposed a recurrent scheme that itera-
tively fills in holes from the boundary for each image as
in traditional propagation-based schemes, which must also
be applied during inference. In contrast, we propose to in-
crease the size of the masks as training progresses so that
our inpainting network learns progressively.

2.3. Gradient loss

Utilizing image gradients as a prior [42] or in the loss
function [11, 22, 29] has been widely explored for image
SR [29, 42] and depth estimation [11, 22] to increase sharp-
ness in the reconstructed images. In image inpainting, Telea
et al. [43] proposed a fast marching method that use the
gradients of neighboring pixels to estimate the missing val-
ues in the inpainted region. Liu et al. [28] proposed a loss
function to enforce the continuity of gradients in the re-
constructed region and its neighboring regions. Inspired by
Eigen et al.’s method [11] for depth estimation, we propose
to minimize the image gradients of the difference between
the prediction and the ground truth to further enhance high-
frequency details in the inpainted result.

3. Proposed method
We propose a novel inpainting framework that is able to

reconstruct high-frequency details in the final output by (i)
upsampling the result of a coarse inpainting network using
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an SR network and refining at HR, and (ii) employing a gra-
dient loss. For better convergence, the framework is trained
progressively, by increasing the size of masks.

3.1. Framework overview

Our inpainting framework consists of three trainable net-
works connected sequentially: a coarse inpainting network,
an SR network, and an HR refinement network. The SR net-
work and the HR refinement network are trained with HR
(original) labels, X̃ , whereas the coarse network is trained
with the bicubic-downscaled versions, X . Each network is
first pretrained separately, and then all networks are trained
jointly. Please refer to the Supplementary Material for the
detailed architectures of each network.

3.1.1 Coarse network

The coarse network, fc, aims to characterize the LR vari-
ations in the image across its entire field-of-view, coarsely
filling in the missing regions in the input masked image,
Xm, given by,

Xm = (1−M)�X, (1)

where M ∈ RH×W×3 is a binary mask where invalid
pixels, i.e., pixels to be inpainted, are 1 and valid pixels
are 0, with repeated values across the channel dimension,
X ∈ RH×W×3 is the full image, and � is element-wise
multiplication. We employ an encoder-decoder-based CNN
architecture with gated convolutions similar to [51], addi-
tionally with residual blocks and batch normalization. The
network output is masked with the input, yielding Xc as,

Xc = M � fc(Xm,M,Θc) +Xm, (2)

so that the network does not attempt to reconstruct already
valid regions. We train it by minimizing a loss function
Lc, consisting of an L1 loss to enforce pixel-wise similarity,
and a VGG loss to enforce similarity in the feature domain,
given as,

Lc = ‖Xc −X‖1 + λφc · ‖φ1,4(Xc)− φ1,4(X)‖1, (3)

where φi,j is the i-th convolution layer at the j-th block in
VGG19 [41], and λφc is a constant.

3.1.2 Super-resolution network

We use an SR network that zooms in on the coarse output
Xc by scale factor s > 1, yielding X̃SR ∈ RsH×sW×3.
Our SR network architecture is designed as a cascade of
four residual blocks with a pixel shuffle layer [40] at the
end. Contrary to the coarse network output, we do not
mask X̃SR since the refinement network in the following
stage can propagate the HR patches from valid regions to

the inpainted region using contextual attention (CA) [50].
Therefore, we train the SR network by directly minimizing
LSR = ‖X̃SR − X̃‖1, where X̃ ∈ RsH×sW×3 is the full
HR image.

3.1.3 High-resolution refinement network

Unlike common refinement schemes of previous inpainting
frameworks, our proposed refinement is achieved by zoom-
ing in, refining, then zooming out back to the input resolu-
tion, in order to benefit from the supervision of HR labels
during refinement and aid the learning of high-frequency
components. Specifically, given X̃SR and M̃ as input,
where M̃ ∈ RsH×sW×3 is M upscaled by nearest neigh-
bor upsampling, the HR refinement network, fr, generates
the refined image fr(X̃SR, M̃ ,Θr) ∈ RsH×sW×3. Then,
X̃r, which is used for optimizing the training losses in the
refinement network, is obtained by blending the network
output with the label, X̃:

X̃r = M̃ � fr(X̃SR, M̃ ,Θr) + (1− M̃)� X̃. (4)

By masking with the original label and not the input, X̃SR,
no loss occurs outside the inpainted regions. As the loss
is zero in the valid regions, the network does not spend its
capacity on reconstructing these regions, which will be re-
placed by the input image, Xm, after downscaling, in the fi-
nal output (Equation 7). The architecture of the refinement
network is similar to the coarse network and is encoder-
decoder-based, except that we add a CA module [50] to its
bottleneck.

For training, we use a gradient loss, L∇, between X̃r and
X̃ to further encourage the generation of high-frequency de-
tails. Inspired by [11], L∇ is given as,

L∇ =
1

2
(‖(X̃r − X̃)∇x

‖22 + ‖(X̃r − X̃)∇y
‖2
2
), (5)

where ∇x and ∇y are horizontal and vertical image gra-
dients, respectively, obtained by 1-tap filters, [−1, 1] and
[−1, 1]

T. Then, fr is trained with Lr that consists of an L1
loss, VGG loss, hinge GAN loss – Lh, and L∇, given by,

Lr = ‖X̃r − X̃‖1 + λφr · ‖φ1,4(X̃r)− φ1,4(X̃)‖1
+ λGANr · Lh(X̃r) + λ∇r · L∇. (6)

A PatchGAN [15] approach is adopted for good perceptual
results, with spectral normalization [30] similar to [51] for
stable training of GANs. By training the refinement net-
work with HR labels, we drive the CNN to explicitly learn
high-frequency details, additionally to the low-frequencies
that are inherently preferred according to the empirical evi-
dence of a spectral bias in neural networks [36].

After pretraining each of the three components sepa-
rately, the entire framework is trained end-to-end with a to-
tal loss L = Lc + LSR + Lr.
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Figure 3. Example masks used during progressive learning.

Downscaling. As a last step, the refined HR output,
fr(X̃SR, M̃ ,Θr), is downscaled back (zoomed out) by
scale factor s to the original resolution by bicubic down-
sampling, and blended with the input, Xm. The final output
Xr ∈ RH×W×3 is then given as,

Xr = M � fr(X̃SR, M̃ ,Θr) ↓s +(1−M)�Xm. (7)

Note that the refinement network would not be able to learn
from the HR labels if losses are only imposed on Xr.

3.2. Progressive learning for image inpainting

In image inpainting, the training time until convergence
tends to increase proportionally as invalid regions in masks
become larger and increasingly more difficult to fill in [25].
This is problematic if we want to refine at HR with the im-
age enlarged by scale factor s, since the number of missing
pixels would increase by s2. Thus, we propose a progres-
sive learning strategy for inpainting, where we train the net-
work inN steps by increasing the size of masks at each n-th
step, where n = 1, 2, ..., N . We set N = 2 in our experi-
ments, where masks at n = 2 are the same as random masks
used in [50] and masks at n = 1 are generated by modify-
ing the random generation parameters of masks in [50] to
produce smaller and more confined masks. Example masks
are shown in Figure 3 and a detailed configuration of the
parameters is provided in the Supplementary Material.

Empirically, if our framework is trained directly on
masks at n = 2 without progressive learning, it takes 2M
iterations to converge. With progressive learning, it takes
80K iterations to converge on masks at n = 1 then only
1.2M iterations on masks at n = 2. A mere addition of 80K
iterations on n = 1 drops the total number of iterations by
∼ 40%. In the following sections, masks denote masks at
n = 1 and large masks denote masks at n = 2.

4. Experiment results and evaluation
4.1. Implementation details

Training configuration. For training our zoom-to-inpaint
model, we first pretrain the coarse and refinement networks

on Places2 [57] at 256× 256 resolution for 180K iterations
using masks as defined in Section 3.2. For both networks,
we only use the L1 loss and the VGG loss, with λφ = 0.01.
For the SR network, we use an upsampling scale factor of
s = 2 and pretrain it on DIV2K [2] for 400K iterations with
randomly cropped 64 × 64 patches. Then, we jointly train
the entire framework on DIV2K using the proposed pro-
gressive learning strategy, i.e., 80K iterations with masks,
and then another 1.2M iterations with large masks. We ran-
domly crop 512×512 patches from DIV2K and use them as
HR labels (X̃), and bicubic-downsample them to 256×256
to generate LR labels (X). We use the following loss coef-
ficients: λφc = 0.01, λφr = 10−5, λGANr = 0.5 and λ∇r = 1.
Our implementation is in TensorFlow [1] and trained on 8
NVIDIA V100 GPUs using Adam optimizer [18] with a
mini-batch size of 16 and a learning rate of 10−5. Please
refer to the Supplementary Material for details of our model
architecture and a complexity analysis.

Test dataset. For the test dataset, we apply both masks on
200 images from the validation and test sets of Places2 (100
images each), and on 100 images in the validation set of
DIV2K. For DIV2K, 256×256 patches were center-cropped
from the full images and used as X .

Inpainting methods. We compare our method with the
following inpainting approaches: DeepFillv2 [51], Edge-
Connect [32], Pluralistic [56], and HiFill [49]. Similar to
our method, [32,51,56] were trained on 256× 256 images,
and therefore, our test set can be used as is. However, since
HiFill [49] was originally trained on 512× 512 images, we
bicubic-upscale the test images to 512 × 512 for input and
then downscale the output back to 256 × 256 before com-
puting the metrics. We used the publicly released weights
trained on Places2 for all methods.

4.2. Quantitative evaluation

For quantitative evaluation, we report the results of four
metrics – PSNR, SSIM [45], MS-SSIM (multi-scale SSIM)
[46] and L1 error – that are frequently used in inpainting lit-
erature, on both mask sizes in Table 1. Two additional per-
ceptual metrics – FID and LPIPS – that are less frequently
used, are reported in the Supplementary Material. As shown
in Table 1, our zoom-to-inpaint model outperforms all com-
pared methods on both mask sizes on all metrics, with at
most 0.97 dB PSNR and 0.0055 MS-SSIM gain over the
next best method. It shows that our framework is able to
generate results that are more consistent with the ground
truth compared to the compared inpainting methods.

In Table 1, the improvement over the next best method
on PSNR and L1 error, which are pixel-wise error metrics,
is larger on masks compared to large masks, showing that
our framework adds on better pixel-level details that are
closer to the ground truth when the missing region is rel-
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Method Places2 (256× 256) DIV2K (256× 256, center-cropped)
PSNR ↑ SSIM ↑ MS-SSIM ↑ L1 Error ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑ L1 Error ↓

Masks
HiFill [49] 31.12 0.9586 0.9742 0.00744 30.91 0.9633 0.9777 0.00700

Pluralistic [56] 33.23 0.9670 0.9807 0.00558 32.73 0.9703 0.9820 0.00543
DeepFill-v2 [51] 34.03 0.9719 0.9834 0.00485 33.11 0.9741 0.9852 0.00467

EdgeConnect [32] 33.98 0.9718 0.9841 0.00388 33.11 0.9734 0.9845 0.00388
Ours 34.78 0.9755 0.9863 0.00357 34.08 0.9787 0.9886 0.00329

Large Masks
HiFill [49] 24.94 0.8891 0.9134 0.02034 24.23 0.8739 0.8993 0.02302

Pluralistic [56] 26.17 0.9022 0.9191 0.01784 25.62 0.8890 0.9071 0.01949
DeepFill-v2 [51] 26.77 0.9158 0.9326 0.01536 26.07 0.9018 0.9229 0.01735

EdgeConnect [32] 27.61 0.9166 0.9382 0.01328 26.87 0.9036 0.9291 0.01494
Ours 27.71 0.9202 0.9415 0.01314 27.07 0.9094 0.9346 0.01462

Table 1. Quantitative evaluation. Values in bold denote the best performance.

Compared method [49] [56] [51] [32]
Preference of 75.49% 89.13% 69.23% 64.21%ours over compared

Table 2. User study results on masks, indicating the percentage
(%) of users who selected ours over the compared method. Results
on large masks are provided in the Supplementary Material.

atively smaller. The gain on MS-SSIM, which measures the
structural similarity at multiple scales, is greater for large
masks, showing that our model is able to recover better
global structures for large missing regions.

4.3. Qualitative evaluation

Visual results. We show qualitative comparisons of vi-
sual results in Figures 1 and 4. In Figure 1, our method
accurately reconstructs edges and fine lines in the correct
orientation while other methods find it difficult to preserve
the continuity of the fine lines or fail to produce any edges
at all in the missing region. Figure 4 shows the qualita-
tive results on both mask sizes. Similar to Figure 1, our
method accurately reconstructs high-frequency details such
as edges and fine texture, as well as global structures for
large masks. Please refer to the Supplementary Material for
additional results, including full images of the crops shown
in Figure 4.

User study. We conduct a user study to evaluate the pref-
erences of users on the results produced by our approach
compared to the other methods. We asked 13 users to eval-
uate 300 pairs of inpainted images in a random order, where
one image is generated by our method, and the other image
is generated by a method among [32, 49, 51, 56]. Users are
asked to select their preferred result based on the question:
“Which of these images looks better?”. The percentage of
users that prefer our method over the others for masks is

Ablations PSNR ↑ SSIM ↑ MS-SSIM ↑ L1 Error ↓
Masks

No zoom 32.12 0.9714 0.9812 0.00441
Bicubic zoom 32.80 0.9753 0.9832 0.00391
SR zoom 33.40 0.9770 0.9853 0.00363
SR zoom+L∇ 34.08 0.9787 0.9886 0.00329

Large Masks
No zoom 25.89 0.8977 0.9180 0.01747
Bicubic zoom 26.09 0.9016 0.9219 0.01657
SR zoom 26.95 0.9080 0.9307 0.01497
SR zoom+L∇ 27.07 0.9094 0.9346 0.01462

Table 3. Quantitative comparison of our model (SR zoom+L∇)
with its ablations.

summarized in Table 2, where users more frequently pre-
fer our method over all other methods, with at least 64.21%
preference rate. More details of the user study including a
screenshot, the raw number of counts, and results on large
masks are provided in the Supplementary Material. We ob-
served that masks are more suitable for comparing the abil-
ity to generate pleasing and comparable results rather than
large masks, due to objectionable artifacts being generated
by all methods for the latter, as shown in the Supplementary
Material.

4.4. Ablation study

Ablation study on framework components. In order to
analyze the contributions of the individual components, we
compare against three ablations of our inpainting frame-
work: (i) No zoom, (ii) Bicubic zoom, and (iii) SR zoom.
For (i), we replace the SR component (described in Sec-
tion 3.1.2) with an identity transform that simply copies the
coarse output without an upsampling component, so that re-
finement is applied at the original resolution like in other
conventional two-stage inpainting frameworks. For (ii), we
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HiFill Pluralistic DeepFillv2 EdgeConnect OursMasked Image Ground Truth

(a) Masks

(b)  Large Masks

Figure 4. Qualitative comparison to other methods on (a) Masks and (b) Large Masks. When images with high-frequency regions are fed
into inpainting networks, HiFill [49] and Pluralistic [56] tend to generate blurry texture as seen in the examples in the 1st, 2nd and 3rd
rows, and DeepFillv2 [51] and EdgeConnect [32] generate color artifacts as shown in the 2nd, 3rd and 5th rows. Our method is able to
accurately reconstruct high-frequency details, as well as global structures.

replace the SR component with bicubic upsampling, and for
(iii), we add back the SR zoom. (i), (ii) and (iii) are trained
without the gradient loss L∇. Lastly, SR zoom+L∇ cor-
responds to our full framework with L∇. The results are
shown in Table 3 and Figure 5.

As shown in Table 3, zooming in with bicubic upsam-
pling improves all metrics compared to refining at the orig-
inal resolution (No zoom), showing the benefit of refining at
a higher resolution and training the refinement network with

HR supervision. This indicates that as long as the refine-
ment network is trained on HR labels so that local irregular-
ities generated by the coarse network can be corrected with
the magnification, the zoom can even be achieved by bicubic
upsampling. Adding the SR network further improves the
accuracy by a large margin, with>1 dB gain in PSNR com-
pared to No zoom. Compared to Bicubic zoom, SR zoom is
able to generate sharper results for the surrounding regions,
that can then be propagated by the CA module into the in-
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Figure 5. Visual comparison of results produced by our model and
its ablations. HR refinement and the gradient loss improves the
generation of high-frequency details.

painted region. Adding the gradient loss further improves
the quantitative metrics for both mask sizes. Its benefit is
especially prominent for masks, where the network is more
likely to reconstruct the image more accurately, and thus,
fine details contribute more to the evaluation metrics. Fig-
ure 5 shows that each component improves the reconstruc-
tion quality, analogously to the quantitative results. Please
refer to the Supplementary Material for additional results.

Frequency-domain analysis. We provide insights into
the benefits of zooming in and refining at HR even though
the final output is of lower resolution. Using a frequency-
domain analysis, we demonstrate that our strategy intro-
duces desirable frequencies into the inpainted result that
survive downsampling. Specifically, instead of directly
computing the metrics corresponding to a ground truth im-
age and a prediction, we first construct a 2-level Laplacian
pyramid [7] for each of them using a traditional 5-tap Gaus-
sian kernel, and report per-level metric values. This allows
us to measure the accuracy in different frequency bands.

In Figure 6, we show the per-level improvement of Bicu-

Figure 6. Frequency domain comparison of the ablation models
using 2-level Laplacian pyramids [7], evaluated on masks. Each
component of our framework adds to improving the reconstruction
of the inpainted regions, with high frequencies benefitting more
than lower frequencies.

bic zoom, SR zoom and SR zoom+L∇ over the baseline No
zoom. We use the SSIM metric that is known to be sensitive
to local structural changes, and use masks to avoid the effect
of artifacts generated with very large masks. While we see
improvements in all frequency bands, we observe that the
improvements are skewed towards higher frequency bands
for all models. This indicates that all components of our
framework, i.e., refining at HR with HR labels, SR zoom
and gradient loss, improve the overall reconstruction, more
so at higher frequencies.

5. Conclusion
We propose a novel inpainting framework with HR re-

finement, by inserting an SR network between coarse and
refinement networks. By training the refinement network
with HR labels, our model is able to learn from high-
frequency components present in the HR labels, reducing
the spectral bias [36] at the desired resolution. Furthermore,
we propose a progressive learning strategy for inpainting
that increases the area of the missing regions as training
progresses, and a gradient loss for inpainting to generate
even more accurate texture and details. The HR refinement,
progressive learning and gradient loss can each or together
be applied to any inpainting framework. These simple but
non-trivial modular constructions greatly improve the final
inpainted result quantitatively and qualitatively.

Limitations. In cases of challenging inputs with very
large holes where all methods tend to generate severe ar-
tifacts, we find that our method produces artifacts contain-
ing a high-frequency repetitive pattern that is displeasing
and sometimes more objectionable than artifacts produced
by other methods. We analyze these artifacts with the user
study on large masks in the Supplementary Material.
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